Precision low energy searches for new physics

Dinko Počanić

University of Virginia

30 January 2009
Outline

Standard Model of elementary particles and interactions
 Historical Motivation
 Pion and Muon
 Brief Overview of the SM

The PIBETA/PEN Program
 Overall Physics Agenda
 PEN Goals and Motivation
 About the PEN Experiment

Neutron Decay Measurements: Nab and abBA
 Motivation and Goals of Nab/abBA
 Nab Measurement Principles and Apparatus
 Overview of SNS and FnPB
Overall Motivation

Since earliest times (Democritus, Greek atomists, Aristotle) humans have wondered:

a. What is our world really made of?
 Mostly e, p and n. But, there’s lots more (γ, ν, …)

b. How is it held together?
 That’s even tougher to answer!

c. How did it come to be this way?

The answers fit together to form a large mosaic called the Standard Model (SM). We’re still fitting pieces, esp. on the edges.
Overall Motivation

Since earliest times (Democritus, Greek atomists, Aristotle) humans have wondered:

a. What is our world really made of?
 Mostly e, p and n. But, there’s lots more (γ, ν . . .)

b. How is it held together?
 That’s even tougher to answer!

c. How did it come to be this way?

The answers fit together to form a large mosaic called the Standard Model (SM). We’re still fitting pieces, esp. on the edges.
Overall Motivation

Since earliest times (Democritus, Greek atomists, Aristotle) humans have wondered:

a. What is our world really made of?
 Mostly e, p and n. But, there’s lots more (γ, ν …)

b. How is it held together?
 That’s even tougher to answer!

c. How did it come to be this way?

The answers fit together to form a large mosaic called the Standard Model (SM). We’re still fitting pieces, esp. on the edges.
Overall Motivation

Since earliest times (Democritus, Greek atomists, Aristotle) humans have wondered:

a. What is our world really made of?
 Mostly e, p and n. But, there’s lots more (γ, ν \ldots)

b. How is it held together?
 That’s even tougher to answer!

c. How did it come to be this way?

The answers fit together to form a large mosaic called the Standard Model (SM). We’re still fitting pieces, esp. on the edges.
Since earliest times (Democritus, Greek atomists, Aristotle) humans have wondered:

a. What is our world really made of?
 Mostly \(e, p \) and \(n \). But, there’s lots more (\(\gamma, \nu \ldots \))

b. How is it held together?
 That’s even tougher to answer!

c. How did it come to be this way?

The answers fit together to form a large mosaic called the Standard Model (SM). We’re still fitting pieces, esp. on the edges.
Overall Motivation

Since earliest times (Democritus, Greek atomists, Aristotle) humans have wondered:

a. What is our world really made of?
 Mostly e, p and n. But, there’s lots more (γ, ν . . .)

b. How is it held together?
 That’s even tougher to answer!

c. How did it come to be this way?

The answers fit together to form a large mosaic called the Standard Model (SM). We’re still fitting pieces, esp. on the edges.
Early “elementary” particles

1897 J.J. Thomson measures e/m for cathode rays and postulates the electron.

1909-11 E. Rutherford (Geiger & Marsden) discover the atomic nucleus.

1917-18 E. Rutherford produces protons: $\alpha + N \rightarrow p + X$

1932 J. Chadwick discovers the neutron in “beryllium rays”: $\alpha + \text{Be} \rightarrow n + X$

1932 Carl Anderson discovers the e^+ predicted by Dirac in 1929.
Early “elementary” particles

1897 J.J. Thomson measures e/m for cathode rays and postulates the electron.

1909-11 E. Rutherford (Geiger & Marsden) discover the atomic nucleus.

1917-18 E. Rutherford produces protons: $\alpha + N \rightarrow p + X$

1932 J. Chadwick discovers the neutron in “beryllium rays”: $\alpha + Be \rightarrow n + X$

1932 Carl Anderson discovers the e^+ predicted by Dirac in 1929.
Early “elementary” particles

1897 J.J. Thomson measures e/m for cathode rays and postulates the electron.

1909-11 E. Rutherford (Geiger & Marsden) discover the atomic nucleus.

1917-18 E. Rutherford produces protons: $\alpha + N \rightarrow p + X$

1932 J. Chadwick discovers the neutron in “beryllium rays”: $\alpha + \text{Be} \rightarrow n + X$

1932 Carl Anderson discovers the e^+ predicted by Dirac in 1929.
Early “elementary” particles

1897 J.J. Thomson measures e/m for cathode rays and postulates the electron.

1909-11 E. Rutherford (Geiger & Marsden) discover the atomic nucleus.

1917-18 E. Rutherford produces protons: $\alpha + N \rightarrow p + X$

1932 J. Chadwick discovers the neutron in “beryllium rays”: $\alpha + \text{Be} \rightarrow n + X$

1932 Carl Anderson discovers the e^+ predicted by Dirac in 1929.
Early “elementary” particles

1897 J.J. Thomson measures e/m for cathode rays and postulates the electron.

1909-11 E. Rutherford (Geiger & Marsden) discover the atomic nucleus.

1917-18 E. Rutherford produces protons: $\alpha + N \rightarrow p + X$

1932 J. Chadwick discovers the neutron in “beryllium rays”: $\alpha + \text{Be} \rightarrow n + X$

1932 Carl Anderson discovers the e^+ predicted by Dirac in 1929.
Early “elementary” particles

1897 J.J. Thomson measures e/m for cathode rays and postulates the electron.

1909-11 E. Rutherford (Geiger & Marsden) discover the atomic nucleus.

1917-18 E. Rutherford produces protons: $\alpha + N \rightarrow p + X$

1932 J. Chadwick discovers the neutron in “beryllium rays”: $\alpha + \text{Be} \rightarrow n + X$

1932 Carl Anderson discovers the e^+ predicted by Dirac in 1929.
Early “elementary” particles

1897 J.J. Thomson measures e/m for cathode rays and postulates the electron.

1909-11 E. Rutherford (Geiger & Marsden) discover the atomic nucleus.

1917-18 E. Rutherford produces protons: $\alpha + N \rightarrow p + X$

1932 J. Chadwick discovers the neutron in “beryllium rays”: $\alpha + Be \rightarrow n + X$

1932 Carl Anderson discovers the e^+ predicted by Dirac in 1929.
The **PION** (and the **MUON**)

1935 Pion predicted by Yukawa to explain the short range NN force:

- heavy exchanged particle.
- $V(r) = \frac{g}{r} e^{-(mc/\hbar)r} = \frac{g}{r} e^{-r/r_0}$.
- $r_0 \sim 2 \text{ fm} \Rightarrow m \simeq 200 \text{ MeV}/c^2$, hence, the name meson.

1936 Anderson & Neddermeyer ‘discover’ π in cloud chamber tracks of cosmic rays . . . turns out to be the μ (“mesotron”).

1942 Tanikawa; 1943 Sakata + Inoue; 1947 Marshak + Bethe independently suggest another Yukawa meson.

1947 Lattes, Muirhead, Occhialini & Powell observe $\pi \rightarrow \mu \rightarrow e$ in nuclear emulsions.
The **PION** (and the **MUON**)

1935 Pion predicted by Yukawa to explain the short range \(NN\) force:

- heavy exchanged particle.
- \(V(r) = \frac{g}{r} e^{-\frac{mc}{\hbar} r} = \frac{g}{r} e^{-r/r_0}\).
- \(r_0 \sim 2 \text{ fm} \Rightarrow m \simeq 200 \text{ MeV}/c^2\), hence, the name meson.

1936 Anderson & Neddermeyer ‘discover’ \(\pi\) in cloud chamber tracks of cosmic rays . . . turns out to be the \(\mu\) (“mesotron”).

1942 Tanikawa; 1943 Sakata + Inoue; 1947 Marshak + Bethe independently suggest another Yukawa meson.

1947 Lattes, Muirhead, Occhialini & Powell observe \(\pi \rightarrow \mu \rightarrow e\) in nuclear emulsions.
The PION (and the MUON)

1935 Pion predicted by Yukawa to explain the short range NN force:

- heavy exchanged particle.

\[V(r) = g e^{-\left(\frac{mc}{\hbar}\right)r} = \frac{g}{r} e^{-r/r_0}. \]

- $r_0 \sim 2$ fm $\Rightarrow m \simeq 200$ MeV/c2, hence, the name meson.

1936 Anderson & Neddermeyer ‘discover’ π in cloud chamber tracks of cosmic rays . . . turns out to be the μ (‘mesotron’).

1942 Tanikawa; 1943 Sakata + Inoue; 1947 Marshak + Bethe independently suggest another Yukawa meson.

1947 Lattes, Muirhead, Occhialini & Powell observe $\pi \rightarrow \mu \rightarrow e$ in nuclear emulsions.
The PION (and the MUON)

1935 Pion predicted by Yukawa to explain the short range NN force:

- heavy exchanged particle.
- $V(r) = \frac{g}{r} e^{-(mc/\hbar)r} = \frac{g}{r} e^{-r/r_0}$.
- $r_0 \sim 2 \text{ fm} \Rightarrow m \simeq 200 \text{ MeV}/c^2$, hence, the name meson.

1936 Anderson & Neddermeyer ‘discover’ π in cloud chamber tracks of cosmic rays . . . turns out to be the μ (“mesotron”).

1942 Tanikawa; 1943 Sakata + Inoue; 1947 Marshak + Bethe independently suggest another Yukawa meson.

1947 Lattes, Muirhead, Occhialini & Powell observe $\pi \to \mu \to e$ in nuclear emulsions.
The PION (and the MUON)

1935 Pion predicted by Yukawa to explain the short range NN force:

- heavy exchanged particle.
- \(V(r) = \frac{g}{r} e^{-(mc/\hbar)r} = \frac{g}{r} e^{-r/r_0} \).
- \(r_0 \sim 2 \text{ fm} \Rightarrow m \sim 200 \text{ MeV}/c^2 \), hence, the name meson.

1936 Anderson & Neddermeyer ‘discover’ \(\pi \) in cloud chamber tracks of cosmic rays ... turns out to be the \(\mu \) (“mesotron”).

1942 Tanikawa; 1943 Sakata + Inoue; 1947 Marshak + Bethe independently suggest another Yukawa meson.

1947 Lattes, Muirhead, Occhialini & Powell observe \(\pi \rightarrow \mu \rightarrow e \) in nuclear emulsions.
The PION (and the MUON)

1935 Pion predicted by Yukawa to explain the short range NN force:
 - heavy exchanged particle.
 - $V(r) = \frac{g}{r} e^{-(mc/\hbar)r} = \frac{g}{r} e^{-r/r_0}$.
 - $r_0 \sim 2$ fm $\Rightarrow m \sim 200$ MeV/c2, hence, the name meson.

1936 Anderson & Neddermeyer ‘discover’ π in cloud chamber tracks of cosmic rays . . . turns out to be the μ (“mesotron”).

1942 Tanikawa; 1943 Sakata + Inoue; 1947 Marshak + Bethe independently suggest another Yukawa meson.

1947 Lattes, Muirhead, Occhialini & Powell observe $\pi \rightarrow \mu \rightarrow e$ in nuclear emulsions.
The PION (and the MUON)

1935 Pion predicted by Yukawa to explain the short range NN force:

- heavy exchanged particle.

\[V(r) = \frac{g}{r} e^{-(mc/\hbar)r} = \frac{g}{r} e^{-r/r_0}. \]

- $r_0 \sim 2$ fm $\Rightarrow m \simeq 200$ MeV/c2, hence, the name meson.

1936 Anderson & Neddermeyer ‘discover’ π in cloud chamber tracks of cosmic rays . . . turns out to be the μ (“mesotron”).

1942 Tanikawa; 1943 Sakata + Inoue; 1947 Marshak + Bethe independently suggest another Yukawa meson.

1947 Lattes, Muirhead, Occhialini & Powell observe $\pi \rightarrow \mu \rightarrow e$ in nuclear emulsions.
The PION (and the MUON)

1935 Pion predicted by Yukawa to explain the short range NN force:
- heavy exchanged particle.
- $V(r) = \frac{g}{r} e^{-(mc/\hbar)r} = \frac{g}{r} e^{-r/r_0}$.
- $r_0 \sim 2$ fm $\Rightarrow m \simeq 200$ MeV/c^2, hence, the name meson.

1936 Anderson & Neddermeyer ‘discover’ π in cloud chamber tracks of cosmic rays . . . turns out to be the μ (“mesotron”).

1942 Tanikawa; 1943 Sakata + Inoue; 1947 Marshak + Bethe independently suggest another Yukawa meson.

1947 Lattes, Muirhead, Occhialini & Powell observe $\pi \rightarrow \mu \rightarrow e$ in nuclear emulsions.
The PION (and the MUON)

1935 Pion predicted by Yukawa to explain the short range NN force:

- heavy exchanged particle.
- $V(r) = \frac{g}{r} e^{-(mc/\hbar)r} = \frac{g}{r} e^{-r/r_0}$.
- $r_0 \sim 2$ fm $\Rightarrow m \simeq 200$ MeV/c2, hence, the name meson.

1936 Anderson & Neddermeyer ‘discover’ π in cloud chamber tracks of cosmic rays . . . turns out to be the μ (“mesotron”).

1942 Tanikawa; 1943 Sakata + Inoue; 1947 Marshak + Bethe independently suggest another Yukawa meson.

1947 Lattes, Muirhead, Occhialini & Powell observe $\pi \rightarrow \mu \rightarrow e$ in nuclear emulsions.
Physical properties of the PION

\[J^\pi = 0^- \quad \text{(pseudoscalar)} \]

\[I = 1 \quad \text{(3 charge states: } \pi^+, \pi^0, \pi^-) \]

\[m_{\pi^\pm} \approx 140 \text{ MeV}/c^2 \quad \tau_{\pi^\pm} \approx 26 \text{ ns} \]
\[m_{\pi^0} \approx 135 \text{ MeV}/c^2 \quad \tau_{\pi^0} \approx 8.4 \times 10^{-17} \text{ s} \]

Not elementary—has quark substructure:

\[\pi^+: \bar{u}d \quad \pi^0: (\bar{u}u - \bar{d}d)/\sqrt{2} \quad \pi^-: d\bar{u} \]

For comparison:

\[p: uud \quad n: udd \]
Physical properties of the PION

\[J^\pi = 0^- \quad \text{(pseudoscalar)} \]

\[l = 1 \quad \text{(3 charge states: } \pi^+, \pi^0, \pi^-) \]

\[m_{\pi^\pm} \simeq 140 \ \text{MeV}/c^2 \quad \tau_{\pi^\pm} \simeq 26 \ \text{ns} \]
\[m_{\pi^0} \simeq 135 \ \text{MeV}/c^2 \quad \tau_{\pi^0} \simeq 8.4 \times 10^{-17} \ \text{s} \]

Not elementary—has quark substructure:

\[\pi^+: u\bar{d} \quad \pi^0: (u\bar{u} - d\bar{d})/\sqrt{2} \quad \pi^-: d\bar{u} \]

For comparison:

\[p: uud \quad n: udd \]
Physical properties of the PION

\[J^\pi = 0^- \quad \text{(pseudoscalar)} \]

\[I = 1 \quad \text{(3 charge states: } \pi^+, \pi^0, \pi^-) \]

\[m_{\pi^\pm} \simeq 140 \text{ MeV}/c^2 \quad \tau_{\pi^\pm} \simeq 26 \text{ ns} \]
\[m_{\pi^0} \simeq 135 \text{ MeV}/c^2 \quad \tau_{\pi^0} \simeq 8.4 \times 10^{-17} \text{ s} \]

Not elementary—has quark substructure:

\[\pi^+: u\bar{d} \quad \pi^0: (u\bar{u} - d\bar{d})/\sqrt{2} \quad \pi^-: d\bar{u} \]

For comparison: \[p: uud \quad n: udd \]
Physical properties of the PION

$J^\pi = 0^-$ (pseudoscalar)

$I = 1$ (3 charge states: π^+, π^0, π^-)

$m_{\pi^\pm} \simeq 140 \text{ MeV}/c^2 \quad \tau_{\pi^\pm} \simeq 26 \text{ ns}$

$m_{\pi^0} \simeq 135 \text{ MeV}/c^2 \quad \tau_{\pi^0} \simeq 8.4 \times 10^{-17} \text{ s}$

Not elementary—has quark substructure:

$\pi^+: u\bar{d} \quad \pi^0: (u\bar{u} - d\bar{d})/\sqrt{2} \quad \pi^-: d\bar{u}$

For comparison:

$p: uud \quad n: udd$
Physical properties of the PION

\[J^\pi = 0^- \quad \text{(pseudoscalar)} \]

\[I = 1 \quad \text{(3 charge states: } \pi^+, \pi^0, \pi^-) \]

\[m_{\pi^\pm} \simeq 140 \text{ MeV/c}^2 \quad \tau_{\pi^\pm} \simeq 26 \text{ ns} \]

\[m_{\pi^0} \simeq 135 \text{ MeV/c}^2 \quad \tau_{\pi^0} \simeq 8.4 \times 10^{-17} \text{ s} \]

Not elementary—has quark substructure:

\[\pi^+: u\bar{d} \quad \pi^0: \frac{(u\bar{u} - d\bar{d})}{\sqrt{2}} \quad \pi^-: d\bar{u} \]

For comparison:

\[p: uud \quad n: udd \]
Physical properties of the PION

\[J^\pi = 0^- \] (pseudoscalar)

\[I = 1 \] (3 charge states: \(\pi^+ \), \(\pi^0 \), \(\pi^- \))

\[m_{\pi^\pm} \simeq 140 \text{ MeV}/c^2 \quad \tau_{\pi^\pm} \simeq 26 \text{ ns} \]
\[m_{\pi^0} \simeq 135 \text{ MeV}/c^2 \quad \tau_{\pi^0} \simeq 8.4 \times 10^{-17} \text{ s} \]

Not elementary—has quark substructure:

\(\pi^+ : \bar{u}d \quad \pi^0 : (u\bar{u} - d\bar{d})/\sqrt{2} \quad \pi^- : d\bar{u} \)

For comparison: \(p : uud \quad n : udd \)
Pion and Muon Decays

<table>
<thead>
<tr>
<th>Decay</th>
<th>Branching Fr.</th>
<th>Nickname</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\pi^+ \rightarrow \mu^+ \nu)</td>
<td>1.0</td>
<td>((\pi_{\mu2}))</td>
</tr>
<tr>
<td>(\mu^+ \nu\gamma)</td>
<td>(\sim 2.0 \times 10^{-4})</td>
<td></td>
</tr>
<tr>
<td>(e^+\nu)</td>
<td>(\sim 1.2 \times 10^{-4})</td>
<td>((\pi_{e2}))</td>
</tr>
<tr>
<td>(e^+\nu\gamma)</td>
<td>(\sim 5.6 \times 10^{-8})</td>
<td></td>
</tr>
<tr>
<td>(\pi^0 e^+\nu)</td>
<td>(\sim 1.0 \times 10^{-8})</td>
<td>((\pi_{\beta}))</td>
</tr>
<tr>
<td>(\pi^0 \rightarrow \gamma\gamma)</td>
<td>(\sim 0.9880)</td>
<td></td>
</tr>
<tr>
<td>(e^+e^-\gamma)</td>
<td>(\sim 1.2 \times 10^{-2})</td>
<td>(Dalitz)</td>
</tr>
<tr>
<td>(e^+e^-e^+e^-)</td>
<td>(\sim 3.1 \times 10^{-5})</td>
<td></td>
</tr>
<tr>
<td>(e^+e^-)</td>
<td>(\sim 6.2 \times 10^{-8})</td>
<td></td>
</tr>
<tr>
<td>(\mu^+ \rightarrow e^+\nu\bar{\nu})</td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>(e^+\nu\bar{\nu}\gamma)</td>
<td>(\sim 0.014)</td>
<td></td>
</tr>
<tr>
<td>(e^+\nu\bar{\nu}e^+e^-)</td>
<td>(\sim 3 \times 10^{-5})</td>
<td></td>
</tr>
</tbody>
</table>
Fundamental Interactions: the STANDARD MODEL

Strongly Interacting Particles

Quarks \((m \neq 0)\): \(J = \frac{1}{2}\)
\[
\begin{pmatrix}
 u \\
 d \\
 c \\
 s \\
 t
\end{pmatrix}
\]
\[+\frac{2}{3}e\]
\[-\frac{1}{3}e\]

Gluons: \(J = 1, m = 0\); Mesons: \(q\bar{q}\)

Baryons: \(qqq\)

Particles Not Interacting Strongly

Leptons: \(J = \frac{1}{2}\)
\[
\begin{pmatrix}
 e \\
 \nu_e \\
 \mu \\
 \nu_\mu \\
 \tau \\
 \nu_\tau
\end{pmatrix}
\]
\[-e\]

Gauge Bosons: \(J = 1\)
\[
\begin{array}{l}
 W^\pm \\
 Z^0 \\
 \gamma
\end{array}
\]
\[
\begin{array}{l}
 m \text{ (GeV)} \\
 80 \\
 91 \\
 0
\end{array}
\]
Fundamental Interactions: the STANDARD MODEL

Strongly Interacting Particles

Quarks \((m \neq 0) \):
\[
J = \frac{1}{2} \begin{pmatrix} u \\ d \\ c \\ s \\ t \end{pmatrix} \begin{pmatrix} 1 \\ 2 \\ 3 \\ 1/2 \\ -3/2 \end{pmatrix} + \frac{2}{3}e - \frac{1}{3}e
\]

Gluons: \(J = 1, \ m = 0 \); Mesons: \(q\bar{q} \)

Baryons: \(qqq \)

Particles Not Interacting Strongly

Leptons:
\[
J = \frac{1}{2} \begin{pmatrix} e \\ \nu_e \\ \mu \\ \nu_\mu \\ \tau \\ \nu_\tau \end{pmatrix} \begin{pmatrix} 1 \\ 0 \end{pmatrix} - e
\]

Gauge Bosons:
\[
J = 1 \\
m (GeV) \\
W^\pm 80 \\
Z^0 91 \\
\gamma 0
\]
Fundamental Interactions: the STANDARD MODEL

Strongly Interacting Particles

Quarks \((m \neq 0)\): \(J = \frac{1}{2} \begin{pmatrix} u \\ d \\ c \\ s \\ t \end{pmatrix} \begin{pmatrix} +\frac{2}{3}e \\ -\frac{1}{3}e \end{pmatrix} \)

Gluons: \(J = 1, m = 0 \); Mesons: \(q\bar{q} \)
Baryons: \(qqq \)

Particles Not Interacting Strongly

Leptons: \(J = \frac{1}{2} \begin{pmatrix} e \\ \nu_e \\ \mu \\ \nu_\mu \\ \tau \\ \nu_\tau \end{pmatrix} \begin{pmatrix} -e \\ 0 \end{pmatrix} \)

Gauge Bosons: \(J = 1 \)
\(m (\text{GeV}) \)
\begin{array}{c|ccc}
W^\pm & Z^0 & \gamma \\
80 & 91 & 0 \\
\end{array} \)
Some Shortcomings of the Standard Model

- arbitrary fermion (quark, lepton) masses,
- arbitrary number of generations, (is there a fourth?)
- origin of the masses? (Higgs)
- quark mixing (CKM parameters, CP symmetry breaking . . .),
- quark confinement, hadron properties at low energies, transition to asymptotic freedom,
- exotic particles (leptoquarks, supersymmetric partners, ν_R, . . .)
- new level of substructure?
- . . .
The PIBETA/PEN program of measurements

Perform precision checks of Standard Model and QCD predictions:

- $\pi^+ \rightarrow \pi^0 e^+ \nu_e$ – main goal
 - SM checks related to CKM unitarity
- $\pi^+ \rightarrow e^+ \nu_e \gamma$ (or $e^+ e^-$)
 - F_A/F_V, π polarizability (χPT prediction)
 - tensor coupling besides $V - A$ (?)
- $\mu^+ \rightarrow e^+ \nu_e \bar{\nu}_\mu \gamma$ (or $e^+ e^-$)
 - departures from $V - A$ in $\mathcal{L}_{\text{weak}}$

2nd phase: The PEN experiment

- $\pi^+ \rightarrow e^+ \nu_e$
 - $e-\mu$ universality
 - pseudoscalar coupling besides $V - A$
 - ν sector anomalies, Majoron searches, m_{h^+}, PS l-q’s, V l-q’s, …
The **PIBETA/PEN** program of measurements

Perform precision checks of Standard Model and QCD predictions:

- $\pi^+ \rightarrow \pi^0 e^+ \nu_e$ – main goal
 - SM checks related to CKM unitarity

- $\pi^+ \rightarrow e^+ \nu_e \gamma$ (or $e^+ e^-$)
 - F_A/F_V, π polarizability (χPT prediction)
 - tensor coupling besides $V - A$ (?)

- $\mu^+ \rightarrow e^+ \nu_e \bar{\nu}_\mu \gamma$ (or $e^+ e^-$)
 - departures from $V - A$ in $\mathcal{L}_{\text{weak}}$

2nd phase: The PEN experiment

- $\pi^+ \rightarrow e^+ \nu_e$
 - $e - \mu$ universality
 - pseudoscalar coupling besides $V - A$
 - ν sector anomalies, Majoron searches, m_{h^+}, PS l-q's, V l-q's, ...
The PIBETA/PEN program of measurements

Perform precision checks of Standard Model and QCD predictions:

- $\pi^+ \rightarrow \pi^0 e^+ \nu_e$ – main goal
 - SM checks related to CKM unitarity

- $\pi^+ \rightarrow e^+ \nu_e \gamma$ (or $e^+ e^-$)
 - F_A/F_V, π polarizability (χPT prediction)
 - tensor coupling besides $V - A$ (?)

- $\mu^+ \rightarrow e^+ \nu_e \bar{\nu}_\mu \gamma$ (or $e^+ e^-$)
 - departures from $V - A$ in $\mathcal{L}_{\text{weak}}$

______________________________ 2nd phase: The PEN experiment ____________________________

- $\pi^+ \rightarrow e^+ \nu_e$
 - $e - \mu$ universality
 - pseudoscalar coupling besides $V - A$
 - ν sector anomalies, Majoron searches, m_{h^+}, PS l-q's, V l-q's, ...
The PIBETA/PEN Program

PEN Goals and Motivation

$\pi \to e\nu$ decay: SM predictions; measurements

Modern theoretical calculations:

\[
B_{\text{calc}} = \frac{\Gamma(\pi \to e\nu(\gamma))}{\Gamma(\pi \to \mu\nu(\gamma))_{\text{calc}}}
\]

\[
\begin{align*}
1.2352 (5) \times 10^{-4} & \quad \text{Marciano and Sirlin, [PRL 71 (1993) 3629]} \\
1.2354 (2) \times 10^{-4} & \quad \text{Decker and Finkemeier, [Phys. Lett. B 387 (1996) 391]} \\
1.2352 (1) \times 10^{-4} & \quad \text{Cirigliano and Rosell, [PRL 99, 231801 (2007)]}
\end{align*}
\]

Experiment, world average [current PDG]:

\[
\frac{\Gamma(\pi \to e\nu(\gamma))}{\Gamma(\pi \to \mu\nu(\gamma))_{\text{exp}}} = (1.230 \pm 0.004) \times 10^{-4}
\]

PEN goal:

\[
\frac{\delta B}{B} \approx 5 \times 10^{-4}.
\]
\[\pi \rightarrow e\nu \text{ decay: SM predictions; measurements} \]

Modern theoretical calculations:

\[
B_{\text{calc}} = \frac{\Gamma (\pi \rightarrow e\bar{\nu}(\gamma))}{\Gamma (\pi \rightarrow \mu\bar{\nu}(\gamma))}_{\text{calc}} = \begin{cases}
1.2352 (5) \times 10^{-4} & \text{Marciano and Sirlin, [PRL 71 (1993) 3629]} \\
1.2352 (1) \times 10^{-4} & \text{Cirigliano and Rosell, [PRL 99, 231801 (2007)]}
\end{cases}
\]

Experiment, world average [current PDG]:

\[
\frac{\Gamma (\pi \rightarrow e\bar{\nu}(\gamma))}{\Gamma (\pi \rightarrow \mu\bar{\nu}(\gamma))}_{\exp} = (1.230 \pm 0.004) \times 10^{-4}
\]

PEN goal:

\[
\frac{\delta B}{B} \simeq 5 \times 10^{-4}.
\]
\[\pi \to e\bar{\nu} \text{ decay: SM predictions; measurements} \]

Modern theoretical calculations:

\[
B_{\text{calc}} = \frac{\Gamma(\pi \to e\bar{\nu}(\gamma))}{\Gamma(\pi \to \mu\bar{\nu}(\gamma))_{\text{calc}}} =
\]

\[
\begin{cases}
1.2352 \ (5) \times 10^{-4} & \text{Marciano and Sirlin, [PRL 71 (1993) 3629]} \\
1.2354 \ (2) \times 10^{-4} & \text{Decker and Finkemeier, [Phys. Lett. B 387 (1996) 391]} \\
1.2352 \ (1) \times 10^{-4} & \text{Cirigliano and Rosell, [PRL 99, 231801 (2007)]}
\end{cases}
\]

Experiment, world average [current PDG]:

\[
\frac{\Gamma(\pi \to e\bar{\nu}(\gamma))}{\Gamma(\pi \to \mu\bar{\nu}(\gamma))_{\text{exp}}} = (1.230 \pm 0.004) \times 10^{-4}
\]

PEN goal:

\[\frac{\delta B}{B} \simeq 5 \times 10^{-4}. \]
The PIBETA/PEN Program

PEN Goals and Motivation

πe2 Decay and the SM

\[B(\pi \to e\nu) = \frac{\Gamma(\pi e_2)}{\Gamma(\pi \mu_2)} \text{ given in SM to } 10^{-4} \text{ accuracy; dominated by helicity suppression } (V - A). \]

Deviations can be caused by:

(a) charged Higgs in theories with richer Higgs sector than SM,
(b) PS leptoquarks in theories with dynamical symmetry breaking,
(c) V leptoquarks in Pati-Salam type GUT's,
(d) loop diagrams involving certain SUSY partner particles,
(e) non-zero neutrino masses (and mixing).

Proc’s. (a)–(d) ⇒ PS currents. Most general 4-fermion \(\pi e_2 \) amplitude:

\[
\frac{G_F}{\sqrt{2}} \left[(\bar{d}\gamma_\mu \gamma^5 u) (\bar{\nu}_e \gamma^\mu \gamma^5 (1 - \gamma^5)e) f^{e}_{AL} + f^{e}_{PL} (\bar{d}\gamma^5 u) (\bar{\nu}_e \gamma^5 (1 - \gamma^5)e) \right] + \text{r.h. } \nu \text{ term}
\]

In the SM: \(f_{AL}^l = 1 \), while \(f_{XR}^l = f_{PX}^l = 0 \), with \(l = e, \mu \).
The f_{PL}^e and Mass Bounds

Allowing for LH pseudoscalar coupling \cite{Shanker, NP B204 (82) 375}:

$$B_{\pi e^2} = B_{SM} \left(1 + \frac{2m_\pi a_P}{m_e a_A} f_{PL}^e \right) / \left(1 + \frac{2m_\pi a_P}{m_\mu a_A} f_{PL}^\mu \right),$$

where 2nd term in denominator is negligible because $f_{PL}^e \approx f_{PL}^\mu$, while

$$\frac{a_P}{a_A} \approx \frac{m_\pi}{m_u + m_d} \approx 14.$$

Therefore

$$\left(B_{\pi e^2}^{obs} - B_{\pi e^2}^{SM} \right) / B_{\pi e^2}^{SM} = \frac{\Delta B}{B_{SM}} \approx \frac{2m_\pi a_P}{m_e a_A} f_{PL}^e \approx 7700 f_{PL}^e!$$

PEN goal is $\Delta B / B \approx 5 \times 10^{-4}$, giving a 1σ sensitivity of

$$\delta f_{PL}^e \approx 6.5 \times 10^{-8}.$$

We can use this sensitivity to get estimates of the mass reach of PEN.
PEN Mass Bounds Cont’d.

(a) **Charged Higgs,** \(m_{H^+} \)

Given a mixing angle suppression \(S \approx 10^{-2} \), we get

\[
f_{PL}^e \approx S \frac{m_t m_\tau}{m_{H^+}^2} \quad \text{yielding} \quad m_{H^+} > 6.9 \text{ TeV}.
\]

(b) **Pseudoscalar leptoquarks,** \(m_P \)

Given an estimated effective Yukawa coupling of \(y \approx 1/250 \), we can find

\(m_P \), mass of the color-triplet PS \(l-q \):

\[
f_{PL}^e \approx \sqrt{2} \frac{y^2}{G_F} \frac{1}{2m_P^2} \quad \text{yielding} \quad m_P > 3.8 \text{ TeV}.
\]

(c) **Vector leptoquarks,** \(M_G \)

Following Shanker who assumes gauge coupling \(g \approx g_{SU(2)} \), we have:

\[
f_{PL}^e \approx \frac{4M_W^2}{M_G^2} \quad \text{yielding} \quad M_G > 630 \text{ TeV}.
\]
The PEN Apparatus

- stopped π^+ beam
- active target counter
- 240-det. CsI(p) calo.
- central tracking
- digitized PMT signals
- stable temp./humidity

PEN Detector 2008

D. Počanić (UVa)
The PEN Apparatus

- stopped π^+ beam
- active target counter
- 240-det. CsI(p) calo.
- central tracking
- digitized PMT signals
- stable temp./humidity
PIBETA Detector Assembly (1998)
PIBETA Detector on Platform (1998)

Dept of Physics, Univ of Virginia, Charlottesville, VA 22904-4714, USA
Paul Scherrer Institut, CH-5232 Villigen PSI, Switzerland
Joint Institute for Nuclear Research, RU-141980 Dubna, Russia
Institute for Nuclear Studies, PL-05-400 Swierk, Poland
IHEP, Tbilisi, State University, GUS-380086 Tbilisi, Georgia
Rudjer Bošković Institute, HR-10000 Zagreb, Croatia
Physik Institut der Universität Zürich, CH-8057 Zürich, Switzerland

Home page – http://pen.phys.virginia.edu
Neutron Decay Parameters (SM): \(n \rightarrow pe\bar{\nu}_e + 782 \text{ keV} \)

\[
\frac{dw}{dE_e d\Omega_e d\Omega_\nu} \simeq k_e E_e (E_0 - E_e)^2 \times \left[1 + a \frac{k_e \cdot k_\nu}{E_e E_\nu} + b \frac{m}{E_e} + \langle \vec{\sigma}_n \rangle \cdot \begin{pmatrix} \frac{k_e}{E_e} & \frac{k_\nu}{E_\nu} & \frac{k_e \times k_\nu}{E_e E_\nu} \end{pmatrix} \right]
\]

with:

\[
a = \frac{1 - |\lambda|^2}{1 + 3|\lambda|^2}, \quad A = -2 \frac{|\lambda|^2 + \text{Re}(\lambda)}{1 + 3|\lambda|^2}
\]

\[
B = 2 \frac{|\lambda|^2 - \text{Re}(\lambda)}{1 + 3|\lambda|^2}, \quad D = 2 \frac{\text{Im}(\lambda)}{1 + 3|\lambda|^2}
\]

\[
\lambda = \frac{G_A}{G_V}
\]

\((D \neq 0 \Leftrightarrow T \text{ invariance violation.})\)
Goals of the **Nab** and **abBA** Experiments

\[
\frac{\delta a}{a} \lesssim 1 \times 10^{-3}
\]

\[
\frac{\delta b}{b} \lesssim 3 \times 10^{-3}
\]

\[
\frac{\delta A}{A} \lesssim 3 \times 10^{-3}
\]

\[
\frac{\delta B}{B} \lesssim 1 \times 10^{-3}
\]
n-decay Correlation Parameters Beyond V_{ud}

- Beta decay parameters constrain L-R symmetric model extensions to the SM.
 [Review: Herczeg, Prog. Part. Nucl. Phys. 46, 413 (2001)]

- Measurement of the electron-energy dependence of a and A can separately confirm CVC and absence of SCC.

- Fierz interference term, never measured for the neutron, offers a sensitive test of non-($V - A$) terms in the weak Lagrangian (S, T).

- A general connections exists between non-SM (e.g., S, T) terms in $d \rightarrow ue\bar{\nu}$ and limits on ν masses.
 [Ito + Prézaeu, PRL 94 (2005)]
Nab Measurement principles: Proton phase space

Note: For a given E_e, $\cos \theta_{ev}$ is a function of p_p^2 only.
Measurement principles: Proton TOF response functions

\[\text{Slope} = a \]
Measurement principles: Spectrometer sketch

- Neutron Beam
- Decay Volume
- TOF region
- Transition region
- Acceleration region
- Segmented Si detector

D. Počanić (UVa)
The Spallation Neutron Source
The Fundamental Neutron Physics Beamline
The Nab Collaboration

Arizona State University R. Alarcon, S. Balascuta,
IKEP Karlsruhe F. Glück,
University of Kentucky C. Crawford,
Los Alamos Nat’l. Lab. A. Klein, W.S. Wilburn,
University of Manitoba M.T. Gericke, S.A. Page,
Univ. of New Hampshire J.R. Calarco, F.W. Hersman,
North Carolina State U. A. Young,
Oak Ridge Nat’l. Lab. J.D. Bowman, T.V. Cianciolo, S.I. Penttilä,
 K.P. Rykaczewski, G.R. Young,
Univ. of South Carolina V. Gudkov,
University of Sussex J. Byrne,
University of Tennessee G.L. Greene, R.K. Grzywacz,
University of Virginia L.P. Alonzi, S. Baeßler, M.A. Bychkov,
University of Winnipeg J. Martin.

Home page – http://nab.phys.virginia.edu