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“polarizer” “analyzer”

rubbed plates

NEMATICS IN TWO DIMENSIONS: WHAT ARE WE SEEING?
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Lavrentovich & Natishin, EPL 12, 135 (1990)

HIGHER CHARGES?
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Maps from R2\{0}→ S1

DISLOCATIONS: DEFECTS IN THE TRANSLATIONAL ORDER
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DISCLINATIONS: DEFECTS IN THE ORIENTATIONAL ORDER
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Ground State Manifold
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DEFECTS AND HOMOTOPY: QUICK REVIEW
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Maps fromB → Cl(α), α ∈ π1(T )
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N. D. Mermin, Rev. Mod. Phys. 51, 591-648 (1979); V. Poénaru, Commun. Math. Phys. 80, 127-136 (1981)

128 V. Poenaru

(no singularity)

Fig. 1. Measured foliations (2 dimensional "smectics")

Fig. 2. N on measured foliation

mathematical tool which we will be putting to use is the "theory of foliations". We

will give now a very sketchy idea of what this is all about more mathematical

details are to be found in the appendix at the end of this paper.

Assume, for simplicity, that the physical space M is an open region of the

euclidean ! space R
n
 and that V is the set of all / c dimensional linear subvarieties of

R
n
 (this is called the G rassman manifold G

n!
). Assume, also, that the order

parameter " associates to every peM — # such a / c dimensional linear subvariety

"(p) passing through p. One will say that " defines a foliation if M — # can be

completely covered by two by two disjoint, / c dimensional smooth, connected

layers such that "(p) is the tangent space of the (unique) layer passing through the

point p.

If k= 1, such layers always exist, because one just has to integrate an ordinary

differential equation in order to get them. But if k  ̂  2, a field of / c dimensional

planes " very seldom defines a foliation. The condition for this to be the case is a

non linear "integrability condition" involving the first order derivations of the

map ". If the condition is satisfied, we say that " is "integrable" (and if this is so,

then a foliation # " is defined by ").

A very important class of foliations are the so called "measured foliations", for

which the layers (or rather "leaves" as they are usually called) are all equidistant.

One can think of a measured foliation as being a very rough mathematical model

of a smectic liquid crystal. F igure 1 below shows some examples of such measured

foliations, with singularities, in dimension 2 (n =  2, k—i).

By contrast, the foliation in Fig. 2 is not measured.

N ow, with respect to the standard homotopy theory, here comes a new fact. If

our ordered medium is modeled by a (measured) foliation with V— G
n>k

, although

every individual value "(p)eV is acceptable, a global map M — # •  V is not

necessarily acceptable. All this is very much in line with Mermin's critique.

The first two paragraphs of this paper will give instances of the following two

basic facts (in this framework of ordered media defined by foliations):

(i) N ot every (homotopy class of) defect(s) predicted by pure homotopy theory

is necessarily realized. In particular, we show that for a punctual defect of a two 

dimensional smectic the index of the corresponding plane field takes only the
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Theorem (Poénaru)
Let n be a field of directors [a line field] in R2 with
an isolated singularity at 0, defining a measured
foliation. Then I(n) ≤ 1. In particular, a vector
field ξ on R2, with an isolated singularity at 0, such
that ∇× ξ = 0, has the property that I(ξ) ≤ 1.

FUNDAMENTAL GROUP: NOT THE WHOLE STORY
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SMECTIC PHASE FIELD AS A HEIGHT FUNCTION

15



Chen, Alexander, Kamien, PNAS 106, 15577-15582 (2009)

φ(x, y)
y

x

SMECTIC PHASE FIELD AS A HEIGHT FUNCTION

15



φ = 0

SMECTIC PHASE FIELD AS A HEIGHT FUNCTION

Chen, Alexander, Kamien, PNAS 106, 15577-15582 (2009)
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φ = 1

SMECTIC PHASE FIELD AS A HEIGHT FUNCTION
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SMECTIC PHASE FIELD AS A HEIGHT FUNCTION
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φ = 3

SMECTIC PHASE FIELD AS A HEIGHT FUNCTION
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φ = 4

SMECTIC PHASE FIELD AS A HEIGHT FUNCTION

Chen, Alexander, Kamien, PNAS 106, 15577-15582 (2009)
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CONTOUR MAPS: SMECTIC DISCLINATIONS
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Peaks or Basins
(+1)

CONTOUR MAPS: SMECTIC DISCLINATIONS
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Peaks or Basins
(+1)

Passes (-1)

CONTOUR MAPS: SMECTIC DISCLINATIONS
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Maps from R2\{0}→ S1

EDGE DISLOCATIONS IN TWO DIMENSIONS
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+2 DISLOCATION

Dislocation is a helicoid!

23



+2 DISLOCATION

Dislocation is a helicoid!

24



+2 DISLOCATION

Dislocation is a helicoid!

25



+2 DISLOCATION

Dislocation is a helicoid!

26



+2 DISLOCATION

Dislocation is a helicoid!

27



+2 DISLOCATION

Dislocation is a helicoid!

28



+2 DISLOCATION

Dislocation is a helicoid!

29



+2 DISLOCATION

Dislocation is a helicoid!

30



+2 DISLOCATION

Dislocation is a helicoid!

31



+2 DISLOCATION

Dislocation is a helicoid!

32



+2 DISLOCATION

Dislocation is a helicoid!

33



+2 DISLOCATION

Dislocation is a helicoid!

34



+2 DISLOCATION

Dislocation is a helicoid!

35



+2 DISLOCATION

Dislocation is a helicoid!

36



+2 DISLOCATION

Dislocation is a helicoid!

37



+2 DISLOCATION

Dislocation is a helicoid!

38



+2 DISLOCATION

Dislocation is a helicoid!

39



+2 DISLOCATION

Dislocation is a helicoid!
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SMECTIC SYMMETRIES: LAYER OR LAYERS?

density wave:

Phase is periodic ...

... and unoriented
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SMECTIC SYMMETRIES: LAYER OR LAYERS?

density wave:

‣ sheets cross at the fixed points of these 
point symmetries
‣only slices at these heights yield 

consistent smectics
‣critical points are constrained to these 

heights

Phase is periodic ...

... and unoriented
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+1/2 DISCLINATION
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-1/2 DISCLINATION
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DISCLINATION DIPOLE: +1 DISLOCATION

46



DISCLINATION DIPOLE: +1 DISLOCATION

47



DISCLINATION DIPOLE: +1 DISLOCATION

48



DISCLINATION DIPOLE: +1 DISLOCATION

49



DISCLINATION DIPOLE: +1 DISLOCATION

50



DISCLINATION DIPOLE: +1 DISLOCATION

51



DISCLINATION DIPOLE: +1 DISLOCATION

52



DISCLINATION DIPOLE: +1 DISLOCATION

53



DISCLINATION DIPOLE: +1 DISLOCATION

54



DISCLINATION DIPOLE: +1 DISLOCATION

55



DISCLINATION DIPOLE: +1 DISLOCATION

56
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DISCLINATION DIPOLE: +1 DISLOCATION
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FREE ENERGY AND ROTATIONAL INVARIANCE

Linear elasticity:

density wave:
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FREE ENERGY AND ROTATIONAL INVARIANCE

Linear elasticity:

density wave:

Nonlinear elasticity:
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Viewing φ as a graph:

Equal spacing of curves:

SURFACE ENERGETICS
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Viewing φ as a graph:

Equal spacing of curves:

SURFACE ENERGETICS

Candidate:

“Willmore in a field”
60



EQUAL SPACING
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K = 0
isometric to the plane

EQUAL SPACING
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K = 0
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FOCAL CONICS

Nastishin, Meyer, and Kléman (2008),  C. Williams, from de Gennes & Prost

Friedel, Granjean, Bull. Soc. Fr. Minéral. 33, 409-465 (1910)
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TWO CONES

Alexander, Chen, Matsumoto, Kamien, (2010)
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SHEDDING LIGHT ON FOCAL CONICS

light cone

Alexander, Chen, Matsumoto, Kamien, (2010)
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SHEDDING LIGHT ON FOCAL CONICS

light cone

Equal spacing  ⇔  Null hypersurface
Alexander, Chen, Matsumoto, Kamien, (2010)
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SPACE-LIKE SEPARATED EVENTS

Alexander, Chen, Matsumoto, Kamien, (2010)
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TIME-LIKE SEPARATED EVENTS

Alexander, Chen, Matsumoto, Kamien, (2010)
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TIME-LIKE SEPARATED EVENTS
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TIME-LIKE SEPARATED EVENTS

Alexander, Chen, Matsumoto, Kamien, (2010)
72



FOCAL SETS

space-like separated events

time-like separated events

Alexander, Chen, Matsumoto, Kamien, (2010)
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FOCAL SETS

space-like separated events

time-like separated events

F. G. Friedlander, Math. Proc. Camb. Phil. Soc. 43, 360-373 (1947)
Alexander, Chen, Matsumoto, Kamien, (2010)
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THREE DIMENSIONS

space-like separated events

time-like separated events

F. G. Friedlander, Math. Proc. Camb. Phil. Soc. 43, 360-373 (1947)
Alexander, Chen, Matsumoto, Kamien, (2010)
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DUPIN CYCLIDES

two one-dimensional focal sets - “confocal conics”

F. G. Friedlander, Math. Proc. Camb. Phil. Soc. 43, 360-373 (1947)
Alexander, Chen, Matsumoto, Kamien, (2010)
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DUPIN CYCLIDES

two one-dimensional focal sets - “confocal conics”

F. G. Friedlander, Math. Proc. Camb. Phil. Soc. 43, 360-373 (1947)
Alexander, Chen, Matsumoto, Kamien, (2010)

Nastishin, Meyer, and Kléman (2008)
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FOCAL CONICS

Photo: C. Williams, from de Gennes & Prost
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FOCAL CONICS

Photo: C. Williams, from de Gennes & Prost

Friedel, Granjean, Bull. Soc. Fr. Minéral. 33, 409-465 (1910)
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NESTED FOCAL SETS

Many ellipses are organised through common points - view this as a pair of events

Alexander, Chen, Matsumoto, Kamien, (2010)

focal hyperboloid 
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NESTED FOCAL SETS

Many ellipses are organised through common points - view this as a pair of events

Alexander, Chen, Matsumoto, Kamien, (2010)

focal hyperboloid 

move with Lorentz 
transformations
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NESTED FOCAL SETS

Many ellipses are organised through common points - view this as a pair of events

Alexander, Chen, Matsumoto, Kamien, (2010)

focal hyperboloid 

and rotations

78



NULL SEPARATION - CORRESPONDING CONES

Two circular subsets with a point in common

Alexander, Chen, Matsumoto, Kamien, (2010)
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NULL SEPARATION - CORRESPONDING CONES

Two circular subsets with a point in common

Mutually tangent iff foci are null separated

Alexander, Chen, Matsumoto, Kamien, (2010)
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POLYGONAL TEXTURES: TRÉILLIS ET RÉSEAUX

Alexander, Chen, Matsumoto, Kamien, (2010)

Photo: C. Williams, from de Gennes & Prost
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POLYGONAL TEXTURES: TRÉILLIS ET RÉSEAUX

Alexander, Chen, Matsumoto, Kamien, (2010)

‣Multiple tangency of ellipses  ⇒  Apollonian packing

‣“Curvatures” satisfy the hyperbolic Déscartes-Soddy-Gossett 
theorem
‣Polygonal boundaries correspond to intersections of hyperboloids 

Photo: C. Williams, from de Gennes & Prost
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