Smectics, Symmetry Breaking and Surfaces

Gareth Alexander

Bryan Gin-ge Chen Elisabetta Matsumoto Randall Kamien

Department of Physics \& Astronomy University of PennsyIvania

Photo by Michi Nakata
University of Virginia, March 25th 2010

Liquid Crystal Mesophases

cool or increase concentration

Isotropic

Nematic
uniaxial directional order

Smectic-A
one-dimensional positional order

Nematics in Two Dimensions

3Penn

Nematics in Two Dimensions

3Penn

Nematics in Two Dimensions

Penn

Nematics in Two Dimensions: What are we seeing?

"polarizer" "analyzer"

Nematics in Two Dimensions: What are we seeing?

Penn

Nematics in Two Dimensions: What are we seeing?

the brushes are the preimages of the polarizer and analyzer direction

Penn

Nematics in Two Dimensions

Maps from $\mathbb{R}^{2} \backslash\{0\} \rightarrow \mathbb{R} P^{1}$

Higher Charges?

©Penn

DISLOCATIONS: DEFECTS IN THE TRANSLATIONAL ORDER

Maps from $\mathbb{R}^{2} \backslash\{0\} \rightarrow S^{1}$

DISCLINATIONS: DEFECTS IN THE ORIENTATIONAL ORDER

Maps from $\mathbb{R}^{2} \backslash\{0\} \rightarrow \mathbb{R} P^{1}$

Ground State Manifold: Fundamental Group

Maps from $\mathbb{R}^{2} \backslash\{0\} \rightarrow\left\langle S, F \mid F S^{-1} F^{-1}=S\right\rangle$

Defects and Номоtopy: Quick Review

Ground State Manifold

Defects and Homotopy: Quick Review

Ground State Manifold

Maps from $\pi_{1}(B) \rightarrow \pi_{1}(T)$

Defects and Номоtopy: Quick Review

fix conjugacy class in B

free homotopy on T

Defects and Homotopy: Quick Review

fix conjugacy class in B
free homotopy on T

$$
\text { Maps from } B \rightarrow \mathrm{Cl}(\alpha), \alpha \in \pi_{1}(T)
$$

Penn

Defects and Homotopy: Quick Review

$$
\text { Maps from } B \rightarrow \mathrm{Cl}(\alpha), \alpha \in \pi_{1}(T)
$$

Defects and Homotopy: Quick Review

$$
S\left(F S^{2}\right) S^{-1}=S F S=F
$$

Fundamental Group: Not the whole story

Theorem (Poénaru)

Let \mathbf{n} be a field of directors [a line field] in \mathbb{R}^{2} with an isolated singularity at 0 , defining a measured foliation. Then $I(\mathbf{n}) \leq 1$. In particular, a vector field ξ on \mathbb{R}^{2}, with an isolated singularity at 0 , such that $\nabla \times \xi=0$, has the property that $I(\xi) \leq 1$.

Fundamental Group: Not the whole story

Theorem (Poénaru)

Let \mathbf{n} be a field of directors [a line field] in \mathbb{R}^{2} with an isolated singularity at 0 , defining a measured foliation. Then $I(\mathbf{n}) \leq 1$. In particular, a vector field ξ on \mathbb{R}^{2}, with an isolated singularity at 0 , such that $\nabla \times \xi=0$, has the property that $I(\xi) \leq 1$.

Measured:

Not:

Smectic Phase Field as a Height Function

Contour Maps: Smectic Disclinations

Penn

Contour Maps: Smectic Disclinations

Penn

Contour Maps: Smectic Disclinations

Penn

Edge Dislocations in Two Dimensions

Maps from $\mathbb{R}^{2} \backslash\{0\} \rightarrow S^{1}$

+2 DISLOCATION

Dislocation is a helicoid!

+2 DISLOCATION

Dislocation is a helicoid!

+2 DISLOCATION

Dislocation is a helicoid!

+ 2 DISLOCATION

Dislocation is a helicoid!

+2 DISLOCATION

Dislocation is a helicoid!

+2 DISLOCATION

Dislocation is a helicoid!

+2 DISLOCATION

Dislocation is a helicoid!

+2 DISLOCATION

Dislocation is a helicoid!

+2 DISLOCATION

Dislocation is a helicoid!

+2 DISLOCATION

Dislocation is a helicoid!

+2 DISLOCATION

Dislocation is a helicoid!

+2 DISLOCATION

Dislocation is a helicoid!

+2 DISLOCATION

Dislocation is a helicoid!

+2 DISLOCATION

Dislocation is a helicoid!

+2 DISLOCATION

Dislocation is a helicoid!

+2 DISLOCATION

Dislocation is a helicoid!

+2 DISLOCATION

Dislocation is a helicoid!

+2 DISLOCATION

Dislocation is a helicoid!

Smectic Symmetries: Layer or Layers?

$$
\text { density wave: } \quad \rho \propto \cos \left(\frac{2 \pi \phi}{a}\right)
$$

Phase is periodic ...
$\phi \sim \phi+a$
... and unoriented
$\phi \sim-\phi$

$$
\Rightarrow \quad \phi \in S^{1} / \mathbb{Z}_{2}
$$

Smectic Symmetries: Layer or Layers?

$$
\text { density wave: } \quad \rho \propto \cos \left(\frac{2 \pi \phi}{a}\right)
$$

Phase is periodic ...
$\phi \sim \phi+a$
... and unoriented
$\phi \sim-\phi$

$$
\Rightarrow \quad \phi \in S^{1} / \mathbb{Z}_{2}
$$

Smectic Symmetries: Layer or Layers?

density wave: $\quad \rho \propto \cos \left(\frac{2 \pi \phi}{a}\right)$

Phase is periodic ...
$\phi \sim \phi+a$
... and unoriented
$\phi \sim-\phi$

$$
\Rightarrow \quad \phi \in S^{1} / \mathbb{Z}_{2}
$$

- sheets cross at the fixed points of these point symmetries
- only slices at these heights yield consistent smectics
- critical points are constrained to these heights

+1/2 DISCLINATION

+1/2 DISCLINATION

+1/2 DISCLINATION

+1/2 DISCLINATION

-1/2 DISCLINATION

-1/2 DISCLINATION

-1/2 DISCLINATION

-1/2 DISCLINATION

-1/2 DISCLINATION

PINCH

Benn

PINCH

PINCH

The Dislocation

The Dislocation

The Dislocation

The Dislocation

The Dislocation

The Dislocation

The Dislocation

The Dislocation

The Dislocation

DISCLINATION DIPOLE: + 1 DISLOCATION

DISCLINATION DIPOLE: + 1 DISLOCATION

DISCLINATION DIPOLE: + 1 DISLOCATION

DISCLINATION DIPOLE: + 1 DISLOCATION

DISCLINATION DIPOLE: + 1 DISLOCATION

DISCLINATION DIPOLE: + 1 DISLOCATION

DISCLINATION DIPOLE: + 1 DISLOCATION

DISCLINATION DIPOLE: + 1 DISLOCATION

DISCLINATION DIPOLE: + 1 DISLOCATION

DISCLINATION DIPOLE: + 1 DISLOCATION

DISCLINATION DIPOLE: + 1 DISLOCATION

DISCLINATION DIPOLE: + 1 DISLOCATION

DISCLINATION DIPOLE: + 1 DISLOCATION

Free Energy and Rotational Invariance

Linear elasticity:

$$
F=\frac{B}{2} \int \mathrm{~d}^{2} r\left[\left(\partial_{z} u\right)^{2}+\lambda^{2}\left(\partial_{\perp}^{2} u\right)^{2}\right]
$$

Free Energy and Rotational Invariance

$\phi=a$

Linear elasticity:

$$
F=\frac{B}{2} \int \mathrm{~d}^{2} r\left[\left(\partial_{z} u\right)^{2}+\lambda^{2}\left(\partial_{\perp}^{2} u\right)^{2}\right]
$$

Nonlinear elasticity: $\quad F=\frac{B}{2} \int \mathrm{~d}^{2} r\left[\frac{1}{4}\left[(\nabla \phi)^{2}-1\right]^{2}+\lambda^{2}(\nabla \cdot \mathbf{n})^{2}\right]$

$$
\phi=z-u(r)
$$

$$
\mathrm{n}=\frac{\nabla \phi}{|\nabla \phi|}
$$

Surface Energetics

Viewing ϕ as a graph: $\quad \mathbf{N}=\frac{\left(-\partial_{x} \phi,-\partial_{y} \phi, 1\right)}{\sqrt{1+(\nabla \phi)^{2}}}$

Equal spacing of curves: $\quad \mathbf{e}_{z} \cdot \mathbf{N}=\frac{1}{\sqrt{2}}$

Surface Energetics

Viewing ϕ as a graph:

$$
\mathbf{N}=\frac{\left(-\partial_{x} \phi,-\partial_{y} \phi, 1\right)}{\sqrt{1+(\nabla \phi)^{2}}}
$$

Equal spacing of curves: $\quad \mathbf{e}_{z} \cdot \mathbf{N}=\frac{1}{\sqrt{2}}$

$$
\text { Candidate: } \quad \begin{array}{r}
F=\frac{B}{2} \int \mathrm{~d} A\left[\left(\mathbf{e}_{z} \cdot \mathbf{N}-\frac{1}{\sqrt{2}}\right)^{2}+\lambda^{2} H^{2}\right] \\
\\
\approx \frac{B}{2} \int \mathrm{~d}^{2} r\left[\left(\partial_{x} u\right)^{2}+\left(\partial_{y}^{2} u\right)^{2}\right]
\end{array}
$$

"Willmore in a field"

EQUAL SpACING

EqUAL SpACING

$$
\mathbf{e}_{z} \cdot \mathbf{N}=\frac{1}{\sqrt{2}}
$$

$$
K=0
$$

isometric to the plane

EqUAL SpACING

$K=0$

isometric to the plane

EqUAL SPACING

$$
\mathbf{e}_{z} \cdot \mathbf{N}=\frac{1}{\sqrt{2}}
$$

$$
K=0
$$

isometric to the plane

FOCAL CONICS

Friedel, Granjean, Bull. Soc. Fr. Minéral. 33, 409-465 (I9I0)

Observations géométriques sur les liquides
 à coniques focales;

Par MM. G. Fribdrl et F. Grandjean.

Nous avons signalé, dans une précédente Note (${ }^{1}$), les étranges figures géométriques que renferment certains liquides anisotropes. Ces figures, qui sont des groupes de coniques focales associées suivant des lois simples, s'observent dans le par-

[^0]

Two Cones

Two Cones

Two Cones

Alexander, Chen, Matsumoto, Kamien, (2010)

Two Cones

Two Cones

Alexander, Chen, Matsumoto, Kamien, (2010)

Shedding Light on Focal Conics

Shedding Light on Focal Conics

$$
\phi=-\sqrt{x^{2}+y^{2}}
$$

Shedding Light on Focal Conics

$$
\phi^{2}=x^{2}+y^{2}
$$

Shedding Light on Focal Conics

$$
-\phi^{2}+x^{2}+y^{2}=0
$$

$\|\cdot\|_{\mathbb{M}^{3}}^{2}$
light cone

Shedding Light on Focal Conics

$$
-\phi^{2}+x^{2}+y^{2}=0
$$

$\|\cdot\|_{\mathbb{M}^{3}}^{2}$
light cone

Equal spacing \Leftrightarrow Null hypersurface

Space-Like Separated Events

Space-Like Separated Events

$$
\text { events } \quad e_{1}, e_{2}=(0,0, \pm r)
$$

foci $\quad(0, \pm r)$

Space-Like Separated Events

$$
\text { events } \quad e_{1}, e_{2}=(0,0, \pm r)
$$

hyperbola $-\phi^{2}+x^{2}=-r^{2}, y=0$

Space-Like Separated Events

$$
\text { Lorentz } \quad \phi^{\prime}=\gamma(\phi-\beta y), x^{\prime}=x, y^{\prime}=\gamma(y-\beta \phi)
$$

Space-Like Separated Events

$$
\text { Lorentz } \quad \phi^{\prime}=\gamma(\phi-\beta y), x^{\prime}=x, y^{\prime}=\gamma(y-\beta \phi)
$$

 events $\quad e_{1}, e_{2}=(\mp \gamma \beta r, 0, \pm \gamma r)$ hyperbola $\quad-\left(\phi^{\prime} / \gamma\right)^{2}+x^{\prime 2}=-r^{2}, y^{\prime}=-\beta \phi^{\prime}$

Time-Like Separated Events

$$
\begin{array}{ll}
\text { events } & (\pm r, 0,0) \\
\text { circle } & x^{2}+y^{2}=r^{2}, \phi=0
\end{array}
$$

Time-Like Separated Events

$$
\text { Lorentz } \quad \phi^{\prime}=\gamma(\phi-\beta y), x^{\prime}=x, y^{\prime}=\gamma(y-\beta \phi)
$$

Time-Like Separated Events

$$
\text { Lorentz } \quad \phi^{\prime}=\gamma(\phi-\beta y), x^{\prime}=x, y^{\prime}=\gamma(y-\beta \phi)
$$

events $\quad(\pm \gamma r, 0, \mp \gamma \beta r)$ circle $\quad x^{\prime 2}+\left(y^{\prime} / \gamma\right)^{2}=r^{2}, \phi^{\prime}=-\beta y^{\prime}$

Focal Sets

space-like separated events

time-like separated events

Focal Sets

space-like separated events

$$
\begin{aligned}
& \Sigma=\left\{(0,0, y) \text { s.t. } y^{2}=r^{2}\right\} \\
& \bar{\Sigma}=\left\{(\phi, x, 0) \text { s.t. }-\phi^{2}+x^{2}=-r^{2}\right\}
\end{aligned}
$$

time-like separated events

$$
\begin{aligned}
& \Sigma=\left\{(0, x, y) \text { s.t. } x^{2}+y^{2}=r^{2}\right\} \\
& \bar{\Sigma}=\left\{(\phi, 0,0) \text { s.t. }-\phi^{2}=-r^{2}\right\}
\end{aligned}
$$

Three Dimensions

space-like separated events

$$
\begin{aligned}
& \Sigma=\left\{(0,0,0, z) \text { s.t. } z^{2}=r^{2}\right\} \\
& \bar{\Sigma}=\left\{(\phi, x, y, 0) \text { s.t. }-\phi^{2}+x^{2}+y^{2}=-r^{2}\right\}
\end{aligned}
$$

time-like separated events

$$
\begin{aligned}
& \Sigma=\left\{(0, x, y, z) \text { s.t. } x^{2}+y^{2}+z^{2}=r^{2}\right\} \\
& \bar{\Sigma}=\left\{(\phi, 0,0,0) \text { s.t. }-\phi^{2}=-r^{2}\right\}
\end{aligned}
$$

DUPIN CYCLIDES

two one-dimensional focal sets - "confocal conics"

DUPIN CYCLIDES

two one-dimensional focal sets - "confocal conics"

Alexander, Chen, Matsumoto, Kamien, (2010) F. G. Friedlander, Math. Proc. Camb. Phil. Soc. 43, 360-373 (1947)

FOCAL CONICS

Photo: C.Williams, from de Gennes \& Prost

FOCAL CONICS

Photo: C.Williams, from de Gennes \& Prost

FOCAL CONICS

Friedel, Granjean, Bull. Soc. Fr. Minéral. 33, 409-465 (1910)

Nested Focal Sets

Many ellipses are organised through common points - view this as a pair of events

$$
\begin{aligned}
& \Sigma_{0}=\left\{(0,0,0, z) \text { s.t. } z^{2}=R^{2}\right\} \\
& \bar{\Sigma}_{0}=\left\{(\phi, x, y, 0) \text { s.t. }-\phi^{2}+x^{2}+y^{2}=-R^{2}\right\}
\end{aligned}
$$

Nested Focal Sets

Many ellipses are organised through common points - view this as a pair of events

$$
\begin{aligned}
& \Sigma_{0}=\left\{(0,0,0, z) \text { s.t. } z^{2}=R^{2}\right\} \\
& \bar{\Sigma}_{0}=\left\{(\phi, x, y, 0) \text { s.t. }-\phi^{2}+x^{2}+y^{2}=-R^{2}\right\}
\end{aligned}
$$

cut out a circle

Nested Focal Sets

Many ellipses are organised through common points - view this as a pair of events

$$
\begin{aligned}
& \Sigma_{0}=\left\{(0,0,0, z) \text { s.t. } z^{2}=R^{2}\right\} \\
& \bar{\Sigma}_{0}=\left\{(\phi, x, y, 0) \text { s.t. }-\phi^{2}+x^{2}+y^{2}=-R^{2}\right\}
\end{aligned}
$$

cut out a circle

$$
\begin{aligned}
& \Sigma_{1}=\left\{\left(-\sqrt{r^{2}+R^{2}}, x, y, 0\right) \text { s.t. } x^{2}+y^{2}=r^{2}\right\} \\
& \bar{\Sigma}_{1}=\left\{(\phi, 0,0, z) \text { s.t. }-\left(\phi+\sqrt{r^{2}+R^{2}}\right)^{2}+z^{2}=-r^{2}\right\}
\end{aligned}
$$

Nested Focal Sets

Many ellipses are organised through common points - view this as a pair of events

$$
\begin{aligned}
& \Sigma_{0}=\left\{(0,0,0, z) \text { s.t. } z^{2}=R^{2}\right\} \\
& \bar{\Sigma}_{0}=\left\{(\phi, x, y, 0) \text { s.t. }-\phi^{2}+x^{2}+y^{2}=-R^{2}\right\}
\end{aligned}
$$

$$
\begin{aligned}
& \bar{\Sigma}_{0} \supset \Sigma_{1}=\left\{\left(-\sqrt{r^{2}+R^{2}}, x, y, 0\right) \text { s.t. } x^{2}+y^{2}=r^{2}\right\} \\
& \Sigma_{0} \subset \bar{\Sigma}_{1}=\left\{(\phi, 0,0, z) \text { s.t. }-\left(\phi+\sqrt{r^{2}+R^{2}}\right)^{2}+z^{2}=-r^{2}\right\}
\end{aligned}
$$

Nested Focal Sets

Many ellipses are organised through common points - view this as a pair of events

$$
\begin{aligned}
& \Sigma_{0}=\left\{(0,0,0, z) \text { s.t. } z^{2}=R^{2}\right\} \\
& \bar{\Sigma}_{0}=\left\{(\phi, x, y, 0) \text { s.t. }-\phi^{2}+x^{2}+y^{2}=-R^{2}\right\}
\end{aligned}
$$

move with Lorentz transformations

$$
\begin{aligned}
& \bar{\Sigma}_{0} \supset \Sigma_{1}=\left\{\left(-\sqrt{r^{2}+R^{2}}, x, y, 0\right) \text { s.t. } x^{2}+y^{2}=r^{2}\right\} \\
& \Sigma_{0} \subset \bar{\Sigma}_{1}=\left\{(\phi, 0,0, z) \text { s.t. }-\left(\phi+\sqrt{r^{2}+R^{2}}\right)^{2}+z^{2}=-r^{2}\right\}
\end{aligned}
$$

Nested Focal Sets

Many ellipses are organised through common points - view this as a pair of events

$$
\begin{aligned}
& \Sigma_{0}=\left\{(0,0,0, z) \text { s.t. } z^{2}=R^{2}\right\} \\
& \bar{\Sigma}_{0}=\left\{(\phi, x, y, 0) \text { s.t. }-\phi^{2}+x^{2}+y^{2}=-R^{2}\right\}
\end{aligned}
$$

and rotations

$$
\begin{aligned}
& \bar{\Sigma}_{0} \supset \Sigma_{1}=\left\{\left(-\sqrt{r^{2}+R^{2}}, x, y, 0\right) \text { s.t. } x^{2}+y^{2}=r^{2}\right\} \\
& \Sigma_{0} \subset \bar{\Sigma}_{1}=\left\{(\phi, 0,0, z) \text { s.t. }-\left(\phi+\sqrt{r^{2}+R^{2}}\right)^{2}+z^{2}=-r^{2}\right\}
\end{aligned}
$$

Null Separation - Corresponding Cones

Two circular subsets with a point in common

Null Separation - Corresponding Cones

Two circular subsets with a point in common

Null Separation - Corresponding Cones

Two circular subsets with a point in common

Mutually tangent iff foci are null separated

Polygonal Textures: trélluis et réseaux

Photo: C. Williams, from de Gennes \& Prost

POLYGONAL TEXTURES: TRÉILLIS ET RÉSEAUX

Photo: C.Williams, from de Gennes \& Prost

- Multiple tangency of ellipses \Rightarrow Apollonian packing
- "Curvatures" satisfy the hyperbolic Déscartes-Soddy-Gossett theorem
- Polygonal boundaries correspond to intersections of hyperboloids

THANKS!

Bryan Gin-ge Chen Elisabetta Matsumoto Randall Kamien

Chen, Alexander, Kamien, PNAS I06, I5577-I5582 (2009)
Alexander, Chen, Matsumoto, Kamien, (2010)

We are grateful to Gary Gibbons, Jim Halverson, Juan Maldacena, Carl Modes and Ari Turner for stimulating discussions

FUNDING

NSF DMR05-20020 (PENN MRSEC) DMR05-47230
Gifts from L. J. Bernstein and H. H. Coburn

[^0]: (') Les liquides à coniques focales (Comptes rendus de l'Académie des Sciences, t. 151, 31 octobre 1910, p. 762).

