SMECTICS, SYMMETRY BREAKING AND SURFACES

Gareth Alexander

Bryan Gin-ge Chen Elisabetta Matsumoto Randall Kamien

Department of Physics & Astronomy University of Pennsylvania

Photo by Michi Nakata

University of Virginia, March 25th 2010

LIQUID CRYSTAL MESOPHASES

cool or increase concentration

lsotropic

Nematic

uniaxial directional order

Smectic-A

one-dimensional positional order

NEMATICS IN TWO DIMENSIONS: WHAT ARE WE SEEING?

NEMATICS IN TWO DIMENSIONS: WHAT ARE WE SEEING?

NEMATICS IN TWO DIMENSIONS: WHAT ARE WE SEEING?

the brushes are the preimages of the polarizer and analyzer direction

Maps from $\mathbb{R}^2 \setminus \{0\} \to \mathbb{R}P^1$

HIGHER CHARGES?

Lavrentovich & Natishin, EPL 12, 135 (1990)

DISLOCATIONS: DEFECTS IN THE TRANSLATIONAL ORDER

Maps from $\mathbb{R}^2 \setminus \{0\} \to S^1$

DISCLINATIONS: DEFECTS IN THE ORIENTATIONAL ORDER

Maps from
$$\mathbb{R}^2 \setminus \{0\} o \mathbb{R}P^1$$

Ground State Manifold

Maps from
$$\pi_1(B) \to \pi_1(T)$$

free homotopy on T

Maps from $B \to \operatorname{Cl}(\alpha), \alpha \in \pi_1(T)$

Maps from
$$B \to \operatorname{Cl}(\alpha), \alpha \in \pi_1(T)$$

$$S(FS^2)S^{-1} = SFS = F$$

n

FUNDAMENTAL GROUP: NOT THE WHOLE STORY

Theorem (Poénaru)

Let **n** be a field of directors [a line field] in \mathbb{R}^2 with an isolated singularity at 0, defining a measured foliation. Then $I(\mathbf{n}) \leq 1$. In particular, a vector field ξ on \mathbb{R}^2 , with an isolated singularity at 0, such that $\nabla \times \xi = 0$, has the property that $I(\xi) \leq 1$.

FUNDAMENTAL GROUP: NOT THE WHOLE STORY

Theorem (Poénaru)

Let **n** be a field of directors [a line field] in \mathbb{R}^2 with an isolated singularity at 0, defining a measured foliation. Then $I(\mathbf{n}) \leq 1$. In particular, a vector field ξ on \mathbb{R}^2 , with an isolated singularity at 0, such that $\nabla \times \xi = 0$, has the property that $I(\xi) \leq 1$.

Measured:

CONTOUR MAPS: SMECTIC DISCLINATIONS

CONTOUR MAPS: SMECTIC DISCLINATIONS

CONTOUR MAPS: SMECTIC DISCLINATIONS

EDGE DISLOCATIONS IN TWO DIMENSIONS

+2 **DISLOCATION**

Dislocation is a helicoid!

SMECTIC SYMMETRIES: LAYER OR LAYERS?

density wave: $\rho \propto \cos\left(\frac{2\pi\phi}{a}\right)$

Phase is periodic ...

... and unoriented

$$\phi \sim \phi + a$$
$$\phi \sim -\phi$$

 $\Rightarrow \quad \phi \in S^1/\mathbb{Z}_2$

SMECTIC SYMMETRIES: LAYER OR LAYERS?

density wave: $\rho \propto \cos\left(\frac{2\pi\phi}{a}\right)$

Phase is periodic ...

... and unoriented

$$\phi \sim \phi + a$$

$$\phi \sim -\phi$$

$$\Rightarrow \quad \phi \in S^1/\mathbb{Z}_2$$

SMECTIC SYMMETRIES: LAYER OR LAYERS?

density wave:
$$\rho \propto \cos\left(\frac{2\pi\phi}{a}\right)$$

Phase is periodic ...

... and unoriented

$$\phi \sim \phi + a$$

$$\phi \sim -\phi$$

 $\Rightarrow \phi \in S^1/\mathbb{Z}_2$

- sheets cross at the fixed points of these point symmetries
- only slices at these heights yield consistent smectics
- critical points are constrained to these heights

-1/2 Disclination

THE DISLOCATION

FREE ENERGY AND ROTATIONAL INVARIANCE

density wave:
$$ho \propto \cos \left(rac{2\pi (z - u(r))}{a}
ight)$$

Linear elasticity:

$$F = \frac{B}{2} \int d^2 r \left[\left(\partial_z u \right)^2 + \lambda^2 \left(\partial_\perp^2 u \right)^2 \right]$$

FREE ENERGY AND ROTATIONAL INVARIANCE

density wave:
$$ho \propto {
m corr}$$

$$\propto \cos\left(\frac{2\pi\phi}{a}\right)$$

Linear elasticity: $F = \frac{B}{2} \int d^2 r \left[\left(\partial_z u \right)^2 + \lambda^2 \left(\partial_\perp^2 u \right)^2 \right]$

Nonlinear elasticity: $F = \frac{B}{2} \int d^2 r \left[\frac{1}{4} \left[(\nabla \phi)^2 - 1 \right]^2 + \lambda^2 (\nabla \cdot \mathbf{n})^2 \right]$

$$\phi = z - u(r)$$
 $\mathbf{n} = \frac{\nabla \phi}{|\nabla \phi|}$

SURFACE ENERGETICS

Viewing ϕ as a graph:

$$\mathbf{N} = \frac{(-\partial_x \phi, -\partial_y \phi, 1)}{\sqrt{1 + (\nabla \phi)^2}}$$

SURFACE ENERGETICS

Viewing ϕ as a graph:

 $\mathbf{N} = \frac{(-\partial_x \phi, -\partial_y \phi, 1)}{\sqrt{1 + (\nabla \phi)^2}}$

Equal spacing of curves:

$$\mathbf{e}_z \cdot \mathbf{N} = \frac{1}{\sqrt{2}}$$

Candidate:

$$F = \frac{B}{2} \int dA \left[\left(\mathbf{e}_z \cdot \mathbf{N} - \frac{1}{\sqrt{2}} \right)^2 + \lambda^2 H^2 \right]$$
$$\approx \frac{B}{2} \int d^2r \left[\left(\partial_x u \right)^2 + \left(\partial_y^2 u \right)^2 \right]$$

"Willmore in a field"

isometric to the plane

FOCAL CONICS

Friedel, Granjean, Bull. Soc. Fr. Minéral. 33, 409-465 (1910)

Observations géométriques sur les liquides à coniques focales;

PAR MM. G. FRIEDEL BT F. GRANDJEAN.

Nous avons signalé, dans une précédente Note (1), les étranges figures géométriques que renferment certains liquides anisotropes. Ces figures, qui sont des groupes de *coniques focales* associées suivant des lois simples, s'observent dans le par-

(1) Les liquides à coniques focales (Comptes rendus de l'Académie des Sciences, t. 151, 31 octobre 1910, p. 762).

Nastishin, Meyer, and Kléman (2008), C.Williams, from de Gennes & Prost

Two Cones

SHEDDING LIGHT ON FOCAL CONICS

SHEDDING LIGHT ON FOCAL CONICS

 $\phi = -\sqrt{x^2 + y^2}$

SHEDDING LIGHT ON FOCAL CONICS

$$\phi^2 = x^2 + y^2$$

Shedding Light on Focal Conics

$$-\phi^2 + x^2 + y^2 = 0$$
$$\parallel \cdot \parallel^2_{\mathbb{M}^3} \qquad \text{light cone}$$

SHEDDING LIGHT ON FOCAL CONICS

 $-\phi^2 + x^2 + y^2 = 0$ $\|\cdot\|_{\mathbb{M}^3}^2$ light cone

Equal spacing \Leftrightarrow Null hypersurface

events $e_1, e_2 = (0, 0, \pm r)$

TIME-LIKE SEPARATED EVENTS

Penn

Alexander, Chen, Matsumoto, Kamien, (2010)

 $(\pm r, 0, 0)$

circle $x^2 + y^2 = r^2, \phi = 0$

events

TIME-LIKE SEPARATED EVENTS

TIME-LIKE SEPARATED EVENTS

FOCAL SETS

space-like separated events

time-like separated events

FOCAL SETS

space-like separated events

$$\Sigma = \{(0, 0, y) \text{ s.t. } y^2 = r^2\}$$

$$\overline{\Sigma} = \{(\phi, x, 0) \text{ s.t. } -\phi^2 + x^2 = -r^2\}$$

$$\Sigma = \{ (0, x, y) \text{ s.t. } x^2 + y^2 = r^2 \}$$

$$\overline{\Sigma} = \{ (\phi, 0, 0) \text{ s.t. } -\phi^2 = -r^2 \}$$

Alexander, Chen, Matsumoto, Kamien, (2010) F. G. Friedlander, *Math. Proc. Camb. Phil. Soc.* **43**, 360-373 (1947)

THREE DIMENSIONS

space-like separated events

$$\Sigma = \{ (0, 0, 0, z) \text{ s.t. } z^2 = r^2 \}$$

$$\overline{\Sigma} = \{ (\phi, x, y, 0) \text{ s.t. } -\phi^2 + x^2 + y^2 = -r^2 \}$$

$$\Sigma = \{ (0, x, y, z) \text{ s.t. } x^2 + y^2 + z^2 = r^2 \}$$

$$\overline{\Sigma} = \{ (\phi, 0, 0, 0) \text{ s.t. } -\phi^2 = -r^2 \}$$

Alexander, Chen, Matsumoto, Kamien, (2010) F. G. Friedlander, *Math. Proc. Camb. Phil. Soc.* **43**, 360-373 (1947)

DUPIN CYCLIDES

Alexander, Chen, Matsumoto, Kamien, (2010) F. G. Friedlander, *Math. Proc. Camb. Phil. Soc.* **43**, 360-373 (1947)

DUPIN CYCLIDES

Alexander, Chen, Matsumoto, Kamien, (2010) F. G. Friedlander, Math. Proc. Camb. Phil. Soc. 43, 360-373 (1947)

 $T-T_{c} = -0.200$

I

NORM

FOCAL CONICS

Photo: C. Williams, from de Gennes & Prost

FOCAL CONICS

Photo: C. Williams, from de Gennes & Prost

FOCAL CONICS

Friedel, Granjean, Bull. Soc. Fr. Minéral. 33, 409-465 (1910)

Photo: C. Williams, from de Gennes & Prost

Many ellipses are organised through common points - view this as a pair of events

$$\Sigma_0 = \{ (0, 0, 0, z) \text{ s.t. } z^2 = R^2 \}$$

$$\overline{\Sigma}_0 = \{ (\phi, x, y, 0) \text{ s.t. } -\phi^2 + x^2 + y^2 = -R^2 \}$$

Many ellipses are organised through common points - view this as a pair of events

Many ellipses are organised through common points - view this as a pair of events

$$\Sigma_1 = \{ (-\sqrt{r^2 + R^2}, x, y, 0) \text{ s.t. } x^2 + y^2 = r^2 \}$$

$$\overline{\Sigma}_1 = \{ (\phi, 0, 0, z) \text{ s.t. } - (\phi + \sqrt{r^2 + R^2})^2 + z^2 = -r^2 \}$$

Many ellipses are organised through common points - view this as a pair of events

$$\overline{\Sigma}_0 \supset \Sigma_1 = \{ (-\sqrt{r^2 + R^2}, x, y, 0) \text{ s.t. } x^2 + y^2 = r^2 \}$$

$$\overline{\Sigma}_0 \subset \overline{\Sigma}_1 = \{ (\phi, 0, 0, z) \text{ s.t. } - (\phi + \sqrt{r^2 + R^2})^2 + z^2 = -r^2 \}$$

Many ellipses are organised through common points - view this as a pair of events

$$\Sigma_{0} = \{(0,0,0,z) \text{ s.t. } z^{2} = R^{2}\}$$

$$\overline{\Sigma}_{0} = \{(\phi, x, y, 0) \text{ s.t. } -\phi^{2} + x^{2} + y^{2} = -R^{2}\}$$
move with Lorentz
transformations
focal hyperboloid $\overline{\Sigma}_{0}$

$$\overline{\Sigma}_0 \supset \Sigma_1 = \{ (-\sqrt{r^2 + R^2}, x, y, 0) \text{ s.t. } x^2 + y^2 = r^2 \}$$

$$\overline{\Sigma}_0 \subset \overline{\Sigma}_1 = \{ (\phi, 0, 0, z) \text{ s.t. } - (\phi + \sqrt{r^2 + R^2})^2 + z^2 = -r^2 \}$$

Many ellipses are organised through common points - view this as a pair of events

$$\Sigma_{0} = \{(0, 0, 0, z) \text{ s.t. } z^{2} = R^{2}\}$$

$$\overline{\Sigma}_{0} = \{(\phi, x, y, 0) \text{ s.t. } -\phi^{2} + x^{2} + y^{2} = -R^{2}\}$$
and rotations
focal hyperboloid $\overline{\Sigma}_{0}$

$$\overline{\Sigma}_0 \supset \Sigma_1 = \{ (-\sqrt{r^2 + R^2}, x, y, 0) \text{ s.t. } x^2 + y^2 = r^2 \}$$

$$\overline{\Sigma}_0 \subset \overline{\Sigma}_1 = \{ (\phi, 0, 0, z) \text{ s.t. } - (\phi + \sqrt{r^2 + R^2})^2 + z^2 = -r^2 \}$$

NULL SEPARATION – CORRESPONDING CONES

Two circular subsets with a point in common

NULL SEPARATION – CORRESPONDING CONES

Two circular subsets with a point in common

NULL SEPARATION – CORRESPONDING CONES

Two circular subsets with a point in common

Mutually tangent iff foci are null separated

POLYGONAL TEXTURES: TRÉILLIS ET RÉSEAUX

Photo: C. Williams, from de Gennes & Prost

POLYGONAL TEXTURES: TRÉILLIS ET RÉSEAUX

Photo: C.Williams, from de Gennes & Prost

- Multiple tangency of ellipses \Rightarrow Apollonian packing
- "Curvatures" satisfy the hyperbolic Déscartes-Soddy-Gossett theorem
- Polygonal boundaries correspond to intersections of hyperboloids

THANKS!

Bryan Gin-ge Chen Elisabetta Matsumoto Randall Kamien

Chen, Alexander, Kamien, PNAS 106, 15577-15582 (2009)

Alexander, Chen, Matsumoto, Kamien, (2010)

FUNDING

Penn

NSF DMR05-20020 (PENN MRSEC) DMR05-47230 Gifts from L. J. Bernstein and H. H. Coburn

