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(i)  The electromagnetic field has zero-point energy 

whose density is infinite.

(ii)  An object 

modifies the spectrum.  This gives a self-energy relative to the vacuum.   This is also infinite.  

(iii)  Objects that are close to each other have overlapping influence:

This gives a finite change in the self-energy.   The outcome is the Casimir force measured 
in modern experiments. 
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E =
∑

ν

1
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!ων

modes
Not really:  field modes of sufficiently high energy should not enter the count since they are 
unaffected by the geometry;  a physical cutoff is inevitable



Example:  a scalar field              on a one-dimensional 
Dirichlet interval

u(x,t)

0 s
speed of “light”/sound

diverges.   But real materials become transparent at short wavelengths.  
So we can cut off the sum at some n=N>>1.  Then   

sharp

The upper limit is of the order                     where       is 
the cutoff frequency.   Therefore

ω0

Bulk, linear in size s Ends Finite-size/Intrinsic=Cutoff-independent=Universal

The cutoff-dependent parts have geometrical interpretation.  The force on either end is cutoff-
dependent ,  and dominated by the bulk term,                                           .  It is divergent in the 
               limit.  Let us now insert another Dirichlet partition at           and compute the force on it.ω0 →∞ x = a

u(x, t)
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phenomenologically

 expected

ωn = cqn = πcn/s



u(x,t)0 a s

a,s-independent• a-independent
•                limit - infinities 
  are subtracted  

ω0 →∞• size determined by         and macroscopic
   length scales.

• intrinsic or universal
!, c

non-universal• if               then                     is uniquely             
  determined by dimensional analysis.  

E ≈ !c/a

• although the effect is electromagnetic in origin, the charge quantum e does not appear.
• determines universal Casimir force on the partition,                           ;  the estimate is a toy
   version of Casimir’s original calculation.
• determination of const requires smooth cutoff;  the sign determines if it is attractive or repulsive.

Q:  Why is the  force                         cutoff-dependent while                         is not ?  

F = −dE/da

F = −dE/da

A:  The force is energy change per virtual displacement;  varying s changes system  size thus      
     leading to a large non-universal force;  varying a keeps system size fixed and only changes 
     overlapping influence - the outcome is a small universal force.

Dirichlet partition
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Determining the numerical prefactor

•  Assume a smooth cutoff function, for example exp(-n/N):                      

no end effect! Can the sign be predicted?
N ! 1

So                                           - attractive.

• Regularization route:  the Riemann ζ-function,                           , convergent for σ>1 and 
  
  can be analytically continued to all complex σ≠1.   Then the regularized energy can be
  defined as                                       with the understanding that we are interested in the
  σ=-1 case.

  Employing ς(-1)=-1/12 we find                           .
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E = −π!c
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2s
ζ(σ)

E(R) = −π!c

24s

• Conclusion:  ς-function regularization method only determines intrinsic piece of the effect
   and it shows its universality.  However it does not provide an insight regarding its sign.  It 
   correctly determines the force      on the partition at x=a but overlooks the main  
   contribution into the force F on the ends in the interval geometry.
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Exceptions:  always in calculations of self-stress

• The calculation just explained is an example of a scenario common to many 
geometries - computations could be mathematically more involved but 
nothing changes  in principle.  However there are exceptions when 
regularization techniques fail to produce finite intrinsic piece of the effect:

• Bender&Milton, 1994, demonstrated that for a spherical shell in d spatial 
dimensions the Casimir pressure is infinite for even d.   Does it mean that 
conductive ring in two dimensions is unstable?

• Sen, 1981,  who employed the cutoff method, concluded that the Casimir 
energy of a Dirichlet ring in a plane (d=2) contains geometric terms with 
quadratic and logarithmic cutoff dependencies.  Perhaps the latter is 
responsible for failure of regularization approach to extract an intrinsic piece of 
the effect?   Indeed regularization method would not work if analytic continuation 
to physically relevant situation would not be possible.      

Our contention:
Both the cases when regularization is successful (Dowker&Kennedy, 1978;  Deutsch&Candelas, 1979) 
and those when it is not can be understood systematically through the connection of the Casimir 
problem to the Weyl problem of mathematical physics whose essence can be summarized by the title of 
1966 paper by Mark Kac, “Can one hear the shape of a drum?”

Not a complete list

Highly recommended for its beauty and accessibility



Imaginary time action for a scalar field: SE [w] =
1
2

∫ !/T

0
dτddx

(
c−2(

∂w

∂τ
)2 + (∇w)2

)Temperature

Imaginary time

w(r, 0) = w(r, !/T ) - periodicity on the Matsubara circle

The Feynman path integral can be interpreted as 
the partition function for a classical statistical 
mechanics problem with the Hamiltonian        at a
fictitious temperature equal to Planck’s constant.  
The zero-point energy is then given by the T=0  
limit of the “free energy” per unit length in 

imaginary time direction, i.e. by  ☞

Zw =
∫

Dw(r, τ) exp(−SE [w]/!)
over all possible w(r,τ) satisfying 
various boundary conditionsSE

E0 = −!(lnZw)/(!/T ) = −T lnZw

Introduce a new Dirichlet boundary.  This will constrain the field suppressing its 
fluctuations at the location of the boundary and nearby.

Calculating the Casimir energy



w          =                     u        +                v

random                              Laplace            constrained random 
+=

There is a unique way to associate the unconstrained field w with a constrained field v  (satisfying new 
boundary condition):

w(r,τ)= v(r,τ)+u(r,τ)

Solution to                                 agreeing with w on the boundary.(
∂2

c2∂τ2
+!)u = 0

Then                                       thus implying                     .SE [w] = SE [v] + SE [u] Zw = ZvZu

E = +T lnZu



The rule
In words:  the Casimir energy due to a Dirichlet boundary is negative of the zero-point energy of the 

modes suppressed by this boundary.

Determination of sign:  confinement is the source of the zero-point energy which is necessarily positive.  
Then suppression (removal) of some field fluctuations by the boundary lowers the zero-point energy. 

In symbols:  we need to solve the boundary-value Laplace problem:

dynamical field

(
∂2

c2∂τ2
+!)u = 0, u|boundary = f(r, τ)

After a Fourier expansion                                             we arrive at the boundary-value Helmholtz 

problem                                                                  - put into            :              

u(r, τ) =
∑
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Gaussian
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Geometrical interpretation of ultraviolet divergences
Let us assume that the physical boundary is characterized by a frequency cutoff        :  the boundary 
is impenetrable to low-energy field modes but invisible to the modes whose energy significantly 
exceeds      .  Such a boundary can be modeled by a Dirichlet surface.  Let us estimate the 
coefficient of fluctuation-induced surface tension       of a single Dirichlet plane immersed in a d- 
dimensional vacuum.

ω0

!ω0

γ0

The problem is only characterized by microscopic energy and length scales,        and          , 
respectively.   As a first step, dimensional analysis will suffice:                       

!ω0 c/ω0

γ0 ∼
energy

(length)d−1
∼ !ω0

(c/ω0)d−1
= !c(ω0/c)d diverges as ω0 →∞

Deutsch&Candelas,1979;  Jaffe et. al. 2002+, Barton, 2004:  this is a formal divergence that may have 
measurable consequences:     

0 a s

versus
a

The area does not change, the  force is 
small and cutoff-independent - similar to 
1d example analyzed earlier. 

The area changes, the force is large and cutoff-dependent.  
What if (like in 1d) the surface tension vanishes?  Still the 
force could be large and cutoff-dependent because 
curvature changes.

different curvatures

To see the role of the geometry an explicit calculation is needed!



Surface energy of a plane in d dimensions

0 z

In-plane translational symmetry:  

Boundary-value problem:  (
d2

dz2
− q2 − ω2

c2
)uωq(z) = 0, uωq(0) = fωq

Solution:                                                                - localized at the boundary.uωq(z) = fωq exp
(
−

√
q2 + ω2/c2|z|

)

Gaussian action:                                                          - conforms with                                          .SE =
!

2T

∑

ω,q

2A
√

q2 + ω2/c2|fωq|2 SE =
!

2T

∑

ω,ν

|fων |2

λν(|ω|/c)
area

Geometrical coefficient:                                                    becomes small for large q.  The disturbance 

u introduced by the boundary is localized within a length that is proportional to λ itself.

λq(ω/c) = 1/(2A
√

q2 + ω2/c2)

Surface energy:                                                                                    - negative of a fraction of the

zero-point energy of a harmonic field in d-1 dimensions!  Why?

E = − !
4π

∑

q

′
∫ ∞

0
dω ln

ω2 + c2q2

ω2
= −1

2

∑

q

′ !cq

2

(i)  If u would be infinitely localized, the surface energy would be exactly negative of d-1- dimensional zero-
point energy.  However the surface energy is merely dominated by highly-localized field modes - the fraction is 
less than unity. 

(ii) It is negative because the effect is due to field modes eliminated by the boundary. 

uω(r) =
∑

q

uωq(z) exp iqr⊥



Surface energy of a plane in d dimensions, continued...

E = −1
2

∑

q

′ !cq

2
→ −!cAKd−1

4

∫ ∞ ′

0
qd−1dq ∼ −Kd−1!c(ω0/c)dA

coefficient of surface tension;
agrees with dimensional estimate

macroscopic
limit

Kd =
area of d− dimensional unit sphere

(2π)d

Coefficient of surface tension is negative except for d=1 where it is zero (            ).   Does the latter 
contradict the argument that introduction of the Dirichlet surface lowers the vacuum energy?  No, in 
fact, it explains the sign of the intrinsic piece of the effect:

K0 = 0

0 s
One-dimensional Dirichlet interval again: E =

!ω2
0

c
s− π!c

24s

Two halves of two Dirichlet points

Compared to boundary-free segment of vacuum,  insertion of two halves of two Dirichlet points  still 
lowers the vacuum energy.   This decrease manifests itself in the intrinsic piece of the effect since 
surface tension (edge energy) is zero.

now understood

Is there more to understand?  Yes, there is a fundamental feature 
built into the cutoff-dependent part of the effect!



Surface energy of a plane in d dimensions and the Weyl problem  

Let us make explicit the fact that the surface energy has its origin in zero-point motion:

E = −!cAKd−1

4

∫ ∞ ′

0
qd−1dq ≡

∫ ∞ ′

0

!cq

2
garea(q)dq
number of vibrations 
of wavevector
 between q and q+dq

garea(q) = −1
2
AKd−1q

d−2 areal density of states (DOS), purely geometrical
 (cutoff-independent) quantity

Dowker&Kennedy, 1978; Deutsch&Candelas, 1979:  all cutoff-dependent contributions into the Casimir 
self-energy have a geometrical nature interpretable in terms of some DOS!

Scalar Casimir effect:  asymptotic limit of the density of eigenvalues of the Laplacian, the Weyl problem.

In 1910 Lorentz conjectured that                             for a field confined to a volume V in the large q 
limit independent of the shape of the volume.  Hilbert predicted that the proof will not be supplied during 
his lifetime.  In 1911-1913 Weyl proved the statement and conjectured next order term, proportional to 
the area A, essentially areal DOS above.  Lorentz-Weyl result is easy to demonstrate for rectangular 
parallelepiped shape (Jeans, 1905) and we use it all the time when macroscopic limit is taken:   

g(q) = VKdq
d−1

∑

q

→ V
∫

ddq/(2π)d In fact, I used it already when areal 
DOS was derived



Weyl DOS and the formally divergent part of the Casimir energy
For a field confined to a region the zero-point energy is the sum of zero-point energies of the field 

oscillators:

E =
∑

ν

′ !cqν

2
≡

∫ ∞ ′

0

!cq

2
G(q)dq
exact DOS

        are eigenvalues of the Laplacian:                         ;  the spectrum is determined by                       .                                −q2
ν (!+ q2)w = 0 w|boundary = 0

G(q) =
∑

ν

δ(q − qν) ≡ g(q) + [G(q)− g(q)]

histogram

smooth Weyl DOS,
average of G over 
scales exceeding 
distance between
neighboring peaks 

of G, large-q
 behavior, origin of
cutoff-dependent 

part of the Casimir
energy

oscillatory remainder, origin of 
intrinsic part of the Casimir effect

Assume separability of the zero-point energy into cutoff-dependent and intrinsic pieces:

E =
∫ ∞ ′

0

!cq

2
g(q)dq +

∫ ∞

0

!cq

2
[G(q)− g(q)]dq

additive Weyl energy of local origin non-additive intrinsic part
Not a universally applicable rule



Weyl expansion and geometry
The smooth part of the exact DOS, g(q), can be represented as a large-q expansion and each term of 

this Weyl expansion can be interpreted geometrically.  Indeed,  for a d-dimensional volume V enclosed by 
a (d-1)-dimensional Dirichlet boundary of area A the Weyl expansion starts out as   

g(q) = VKdq
d−1 − 1

4
AKd−1q

d−2 + ...

conjectured by Lorentz,
proved by Weyl (1911-13)

half of areal DOS derived earlier,
conjectured by Weyl, 

proved by Brownell (1957), Ivrii (1980), 
Melrose (1980) and others. 

curvature, perimeter, 
edge, corner etc.

terms

Spectral information encoded in the Weyl DOS could be used to extract at least partial information 
about the volume,  area and shape, thus explaining Mark Kac’s question:  Can one hear the shape of a 

drum?

Although the Weyl DOS is a purely geometrical concept having little to 
do with physics, its relationship to the Casimir problem explains the sign 

of the surface term.



Examples and 
applications  



One-dimensional Dirichlet interval of length s
Exact DOS:   

π/s0 2π/s 3π/s 4π/s 5π/s
q

 every interval of length Δq=π/s (except for
q=0) contains exactly one eigenvalue: 

the Weyl DOS is g(q)=s/π.

s/π

G

In the macroscopic limit                    the zero-point energy can be computed with desired accuracy 
with the help of the Euler-Maclaurin summation formula:

ω0s/c! 1

∞∑

n=1

′F (n) ≈
∫ ∞ ′

0
F (x)dx− 1

2
F (0)− 1

12
F ′(0)

G(q) =
∞∑

n=1

δ(q − πn

s
)

The zero-point energy is given by:

E =
π!c

2s

∞∑

n=1

′n→ π!c

2s

(∫ ∞′

0
xdx− 1

12

)
=

∫ ∞′

0

!cq

2
sdq

π
− π!c

24s
Weyl energy Intrinsic piece

     
q=πn/s



One-dimensional periodic interval of length s:  effect of topology

Exact DOS:                                              - twice the distance between the peaks of the Dirichlet 

case.  However |n|>0 eigenvalues are doubly degenerate - same Weyl DOS g(q)=s/π as in the Dirichlet case.

G(q) =
∞∑

n=−∞
δ(q − 2πn

s
)

The zero-point energy is given by:

E =
π!c

s

∞∑

n=−∞

′n→ 2π!c

s

(∫ ∞′

0
xdx− 1

12

)
=

∫ ∞′

0

!cq

2
sdq

π
− π!c

6s
 
    

q=2πn/s

Weyl energy is insensitive
 to topology (its
origin is local) 

intrinsic piece is
 sensitive to topology (its

 origin is non-local)

Although this is the case without physical boundary, we can still understand it geometrically:

•The cutoff is provided by deviation of the spectrum from ω=cq at large q.  
•Edge term cannot be present since the interval is periodically bound.
•Intrinsic term is negative because periodically binding the interval turns continuum spectrum into a 
discrete spectrum - removed field modes no longer contribute into the zero-point energy.  As a 
result the latter goes down.

The difference between                     (Dirichlet) and                    (periodic) intrinsic pieces is well-
known:  Johnson (1975), Lüscher et al. (1980), Blöte et al.(1986), Affleck (1986).

−π!c/(24s) −π!c/(6s)



Smooth boundary in two dimensions
It was demonstrated earlier that the zero-point energy due to a Dirichlet plane inserted in a d-
dimensional space is negative half of the (d-1)-dimensional zero-point energy.  The same will remain true for 
a finite-size piece of the plane and approximately true for sufficiently smooth surface.   Thus one-
dimensional results explained earlier have interesting implications on what is going on in two 
dimensions.   Let us consider two Dirichlet curves of length s, open and closed...

s s

This neglects the effects of curvature but accounts for circumference.

Eopen =
∫ ∞ ′

0

!cq

2

(
−sdq

2π

)
+

π!c

48s
Eclosed =

∫ ∞ ′

0

!cq

2

(
−sdq

2π

)
+

π!c

12s

             

twice Weyl areal DOS

Cutting the loop at a point lowers the energy and this is determined by the intrinsic part of the effect!

✄



Boundary as a membrane
The Weyl energy of a boundary separating media with the same speed of light is given by a surface 
integral of an “even” combination of curvature invariants that does not depend on the sense of local 
normal (contributions from “odd” terms cancel).  In three dimensions we have (Deutsch&Candelas, 
1979):

E(ω0) =
∫

ds(γ0 + γ1a(C1 − C2)2 + γ1bC1C2)

surface tension curvature stiffnesses principal curvatures

Gaussianmean ∼ !ω0

•This is an expansion in powers of the cutoff - no need to take into account invariants beyond those     
displayed.  
•Since the boundary is made of real material, the shape constants γ’s should be interpreted as 
contributions into elastic properties of the boundary viewed as a flexible membrane.
•Can be written down phenomenologically without referring to the Weyl  problem.
•Applicable to any harmonic field and boundary conditions.

Canham-Helfrich 
Hamiltonian of a 

biological membrane, 
1970,1983

Spherical shell of radius a Long cylindrical shell of radius a  

E = 4πγ0a
2 + 4πγ1b + #

!c

a
Weyl energy intrinsic 

Only for the case of electromagnetic field when
surface tension is zero (Boyer, 1968) is Casimir self-

stress determined by small intrinsic part of the 
effect.  

E
L

= 2πaγ0 +
2πγ1a

a
+ #

!c

a2

Casimir self-stress is always dominated by
large Weyl part of the effect

Weyl energy intrinsic

∼ !ω3
0/c2 ∼ !ω0



Why are even space dimensions special?
Examples and applications described so far assumed separability of the Weyl and intrinsic pieces of the 

Casimir effect.    This assumption breaks down in even space dimensions.  Indeed, let us assume 
separability and estimate the Weyl energy of a spherical shell of radius a in d dimensions:

E(ω0) ∼
M∑

n=0

γna−2nad−1 =
M∑

n=0

γnad−1−2n ∼ !c
M∑

n=0

(
ω0

c
)d−2nad−1−2n

even powers
of curvature

surface
 area

dimensional
 analysis

The number of terms M+1 of the Weyl series is fixed by the condition d-2M≥0.

• d is odd →(d+1)/2 terms → the least divergent is linear in      .  ω0

•d is even → (d/2)+1 terms → the least divergent is cutoff-independent.   This however contradicts the 
expectation that the Weyl energy only contains the cutoff-dependent parts of the Casimir effect.  

Phenomenological resolution:  allow logarithmic cutoff dependence.  Then in addition to the usual 
cutoff-dependent and intrinsic contributions the Casimir energy would have a contribution of the 

form 

Ueven ∼
!c

a
ln

ω0a

c
universal no longer local

such terms cannot be removed by formal 
regularization  

For even d the Weyl and intrinsic parts of the effect are entangled! 



Main result:  Casimir energy due to a smooth Dirichlet boundary Γ

E =
∫ ∞ ′

0

!cq

2

(
−Adq

2π

)

+
∫ ∞ ′

1/S

!cq

2

(
− dq

128πq2

∫

Γ
C2(s)ds

)

− γ!c

256π

∫

Γ
C2(s)ds

+ Una

length of the boundary

Euler’s constant

inverse macroscopic length
 scale, sensitive to topology

⎤
⎦

curvature square

have their origin in the Weyl DOS

g(q) = − A
2π
− 1

128πq2

∫

Γ
C2(s)ds

☜ geometric and cutoff-independent, unique to two dimensions 

Stewartson&Waechter, 1971,
can be anticipated phenomenologically

non-additive, intrinsic, 
sensitive to topology 

☞

     contains circumference terms                   (open curve) or                  
     (closed curve) and curvature corrections.                                 

π!c/(48A) π!c/(12A)☜

The bulk of the effect has geometrical origin:

Egeom =
∫ ∞′

0

!cq

2

(
−Adq

2π

)
−

(
!c

256π

∫

Γ
C2(s)ds

)
ln

ω0S

c

universal

logarithmic accuracy



Summary 
• Solution of the problem of the Casimir self-energy that invokes transmission 

properties of the boundary inevitably encounters the Weyl problem of 
mathematical physics. 

• The intrinsic part of the Casimir effect is interesting because it does not 
depend on the material properties of the boundary;  the physical effect is 
however small. 

• The cutoff-dependent part of the Casimir effect is also interesting because it 
can lead to large measurable stress and because its origin can be traced back 
to the universal Weyl DOS, the fundamental concept of geometry. 

• In most cases there is clear separation of the Weyl and intrinsic 
contributions into the energy and cutoff-dependent part of the effect has 
entirely local geometrical origin.

• This fails in even space dimensions because the Weyl DOS expansion 
contains a marginal          term.  However even in such cases the concept of 
the Weyl DOS continues to play a prominent role.  It is expected that the 
mystery of divergent Casimir self-stress in general even space dimension is 
solved similarly to our solution of the two-dimensional case.

1/q2


