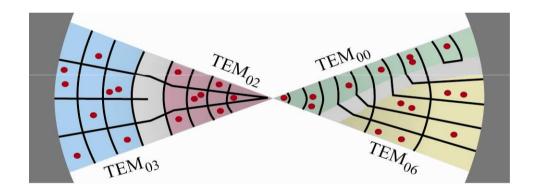
Photons as phonons: from cavity QED to quantum solids



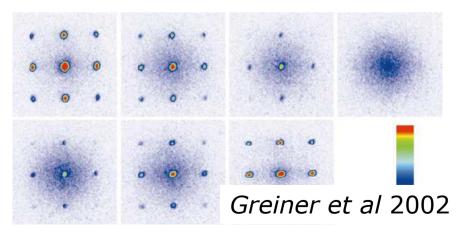
Sarang Gopalakrishnan Benjamin Lev, Paul Goldbart University of Illinois at Urbana-Champaign Nature Physics **5**, 845 (2009); PRA **82**, 043612 (2010)

University of Virginia / Condensed matter seminar / Feb 3, 2011

Why cold atoms?

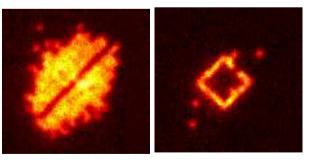
Advantages

- Control
 - Isolation and tunability
 - Well-understood Hamiltonian
 - Real-time dynamics accessible
- New probes (interference, single-site imaging...)
- New parameter space
 - Bosons, Bose-Fermi mixtures, unitary Fermi gases



Drawbacks

- Short-lived systems
 - "Slow" dynamics harder
 - Destructive measurement (time-of-flight imaging)
- Fewer probes
 - Transport, spectroscopy hard
- System size, inhomogeneity
 Nevertheless, worth seeing what one can realize...



Weitenberg et al. 2011

What Hamiltonians are realizable?

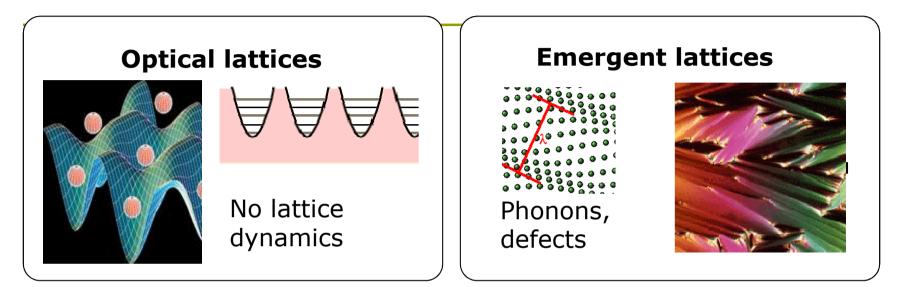
Standard (effective) Hamiltonian:

$$H = \text{K.E.} + \sum_{\alpha\beta} \int d^d x V_{\alpha\beta} n_\alpha(\mathbf{x}) n_\beta(\mathbf{x})$$

K.E. tunable via lattices, gauge fields, etc.

- V characterized by tunable scattering length(s)
 - Less tunable structure; always delta-function pseudopotential
 - Adequate as systems are dilute
 - Cf. structured potentials such as Lennard-Jones, RKKY, etc.
 - One consequence: no roton minimum in atomic BEC's
 - Generally: no tendency towards spatial ordering (except FFLO)
- How to move beyond this
 - Intrinsic methods: Use strong dipole-dipole interactions (e.g., Cr, Dy, Rydberg atoms, molecules...)
 - Extrinsic methods: Light-mediated interactions (cavity QED), bipolarons with auxiliary atomic species, etc.

Optical vs. emergent lattices



The physics of emergent spatial ordering

- Liquid crystals, glasses, soft matter
- Supersolidity
- Topological defects, domains
- Electron-phonon coupling, polarons, superconductors

Our objective: to realize these phenomena in cold-atom physics

Outline

Preliminaries

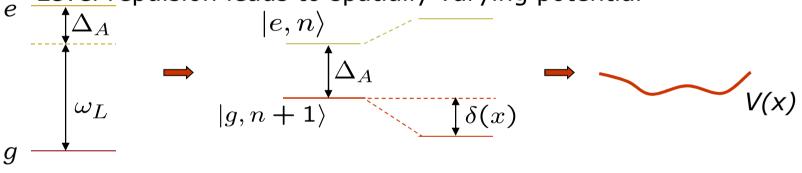
- Atom-light interactions and cavity QED
- Many atoms in a single-mode cavity
- What are multimode cavities?
- Single atom in a multimode cavity
- Crystallization of a BEC in a multimode cavity
 - Setup and approximations
 - Structure of effective low-energy theory
 - Character of phase transition
- Properties of ordered states
 - Excitations, supersolidity
- Extensions and prospects
 - Glassiness
 - Magnetism

Preliminaries

One atom, one mode Many atoms, one mode One atom, many modes

Atom-light interactions

- a.c. Stark shift/dipole force [~ intensity / detuning]:
 - Assume two-level atoms, red-detuned laser
 - Rotating-wave approximation ($\omega_L >> \Delta_A$), atom and field can be described as a two-level system in the "dressed-state" picture
 - Level repulsion leads to spatially varying potential

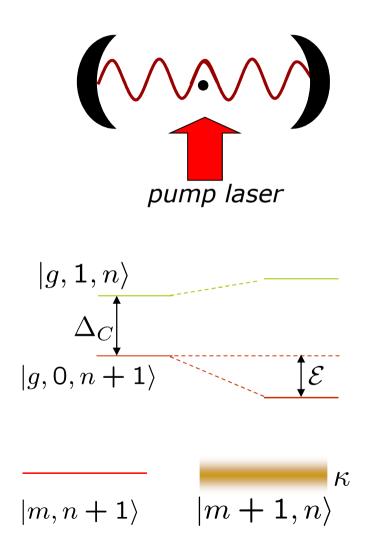


Scattering force [~ linewidth x intensity / (detuning)²]

$$\ket{g,n+1}$$
 $\ket{e,n}$

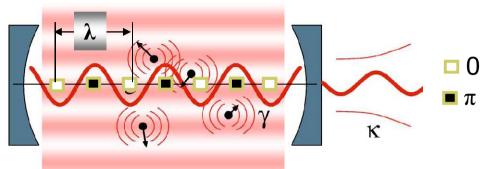
- Coupling to continuum leads to decoherence, heating (sets experiment lifetime)
- Less important at large detunings

Laser-atom-cavity systems



- Consider a high-finesse cavity
- Usually only one relevant mode
- Polarizable atom scatters light coherently, generates laser-cavity matrix element
- Make rotating-wave approximation in laser-cavity space
- Two aspects to resulting force
 - 1. Level repulsion (max. for atom at antinode) \sim 1 / $\Delta_{\rm C}$
 - 2. Scattering force due to cavity photon leakage ~ 1 / $\Delta_{\rm C}^2$
- Mobile atom (1) drawn to antinode, (2) given random kicks
- Reinforces high-field-seeking [total field intensity ~ $(E_L + E_C)^2$]
- **•** At large Δ_{C} , ignore decay

Many atoms, self-organization



Domokos, Ritsch (PRL, 2002)

- Scattering from multiple atoms adds coherently [black white]
- Hence, effective matrix element $\sim \int dx \, n(x) \cos(Kx), K \equiv 2\pi/\lambda$

• Optical energy gain:
$$\mathcal{E} \sim \text{const.} - \left[\int dx \, n(x) \cos(Kx)\right]^2$$

- Cavity mediates infinite-range interatomic interaction
- Interaction tends to localize atoms at even/odd sites and break discrete even/odd symmetry
- $\hfill\square$ Competes with atomic K.E., repulsion, etc. \rightarrow phase transition

Phase transition for a BEC

Consider the Hamiltonian:

$$H = \int dk \, k^2 \psi_k^{\dagger} \psi_k - \gamma \left[\int dk \, \psi_k^{\dagger} (\psi_{k+K} + \psi_{k-K}) \right]^2$$

Can solve in Bogoliubov approximation for mode K (hybridized with -K)

$$E_K \sim \sqrt{K^2(K^2 - 2\gamma)}$$

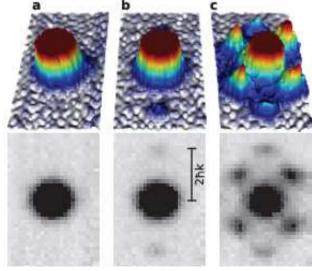
- Excitation of wavenumber K goes soft at sufficient γ; phase transition
- Spontaneous breaking of Z₂ symmetry
 - Inadequate if one wants to model crystallization
- Analogous to Dicke model, second-order quantum phase transition

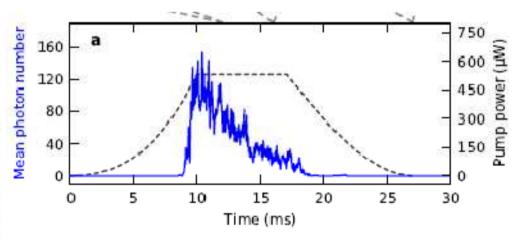
Nonequilibrium aspects

- Prima facie a damped driven system
- Appearances are deceptive:
 - If laser detuned from cavity and atoms, *and* loss rates low, few real transitions occur [need: $γ << Δ_A$ κ << $Δ_C$]
 - Adiabatic switching holds, equilibrium path integral works
 - This can be shown via Schwinger-Keldysh
 - More intuitively: cavity decay is analogous to spontaneous emission in standard AMO experiments
- Equivalent ground-state problem
 - Diagonalize H in manifold of fixed total photon number
 - For laser red-detuned from cavity, noninteracting ground state in this manifold is all photons in laser
 - Treat laser as a BEC of photons
- Analyze phase structure in this approximation, introduce departures from equilibrium afterwards
 - Cavity photon decay sets an effective temperature

Experimental realization

- Experimental realization: Baumann et al., Nature 464, 1301 (2010) [see also: Physics Today (July 2010)]
- Satellite Bragg peaks in time-of-flight demonstrate: (a) emergence of lattice, (b) phase coherence
- Experimental lifetime **now** ~1 sec. (limited by atom loss)

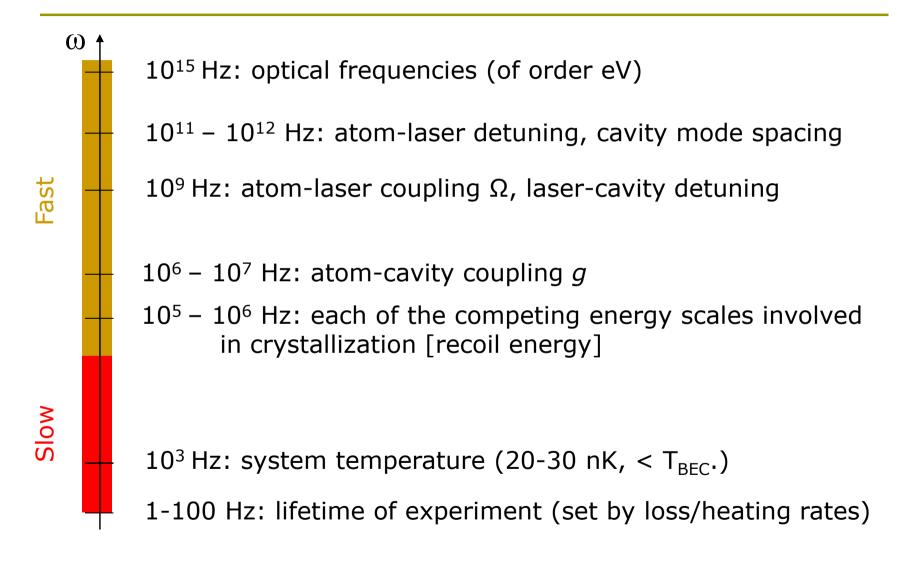




Baumann et al., Nature 464, 1301 (2010)

Momentum distributions (time-of-flight)

Relevant energy scales

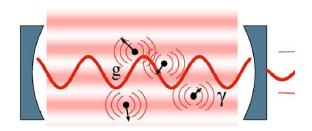


Self-organization (II)

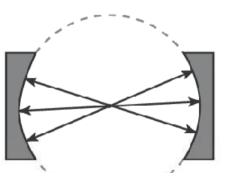
P.E. ~
$$\int dx V(x)n(x) \sim -\left[\int dx n(x)\cos(kx)\right]^2$$

- P.E. favors atoms being one wavelength apart, and "digging themselves into wells"
- □ Symmetry under $n(x) \rightarrow n(x + \frac{1}{2}\lambda)$
 - i.e., under moving atoms from even to odd antinodes
 - Thus, this term tends to spontaneously break even-odd symmetry
 - P.E. maximal when atoms localized precisely at antinodes
- Competes with thermal effects, kinetic energy, and/or interactions
 - All these effects favor spreading out of atoms
 - Thus, have phase transition as one increases laser strength
- Limitations: mean-field, infinite-range interaction
 - Also: discrete symmetry; would prefer continuous

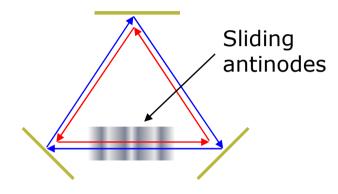
Single- and multi-mode cavities



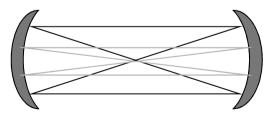
Single-mode cavity Standing wave between two mirrors All modes non-degenerate



Concentric cavity Rotational invariance Many degenerate modes

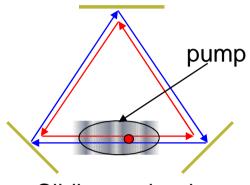


Ring cavity Two counter-propagating modes Translational symmetry



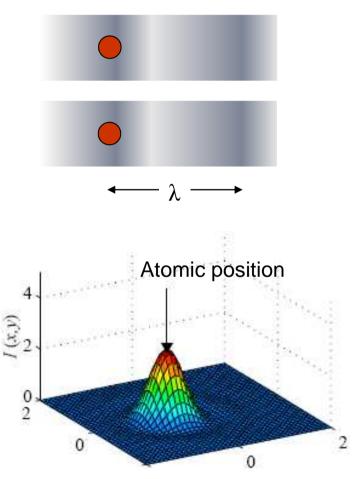
Confocal cavity All even TEM modes degenerate

Atomic motion in multimode cavities



Sliding antinodes

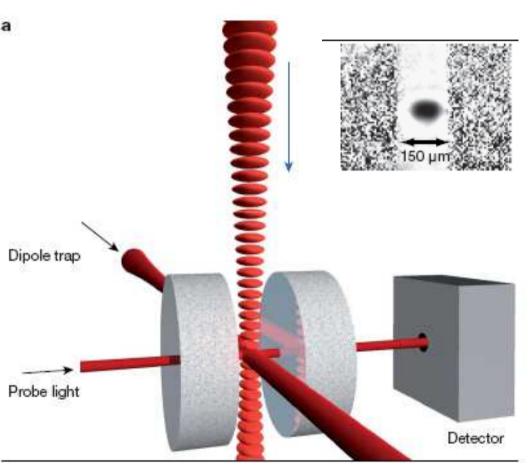
- Atom scatters light from pump to cavity
- High-field-seeking atom(s)
- Antinode forms near atom
- Atom drags antinode with it
- Different characteristic speeds
- More "local" coupling with many modes (i.e., can build wavepackets)
- Atom, intensity bump constitute "polaron"



Salzburger et al, 2002

Loading a BEC into a cavity

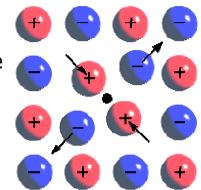
- Cool atoms elsewhere
- Optical lattice "conveyor belt" two lasers at slightly different frequencies
- Potential maxima drift downwards
- Reflectivity for probe light changes when the BEC lands in the cavity
- Turn off conveyor belt at this point



Brennecke et al, Nature (2007)

Connection with polarons

- Polarons are slow electrons in ionic crystals
 - Electron dressed by lattice distortion
 - Strong coupling, perturbation theory inapplicable
 - Variational approaches (Feynman, Lee/Pines)
- Cavity QED problem maps onto polaron
 - Eliminate excited state; effective Hamiltonian:



$$H_{\rm eff} = \frac{\mathbf{p}^2}{2m} + \hbar\omega_C \sum_{\alpha} a_{\alpha}^{\dagger} a_{\alpha} + \frac{\Omega e^{i\omega_L t}}{\Delta_A} \sum_{\alpha} \hbar g_{\alpha}(\mathbf{x}) a_{\alpha} + \text{h.c.} + \dots$$

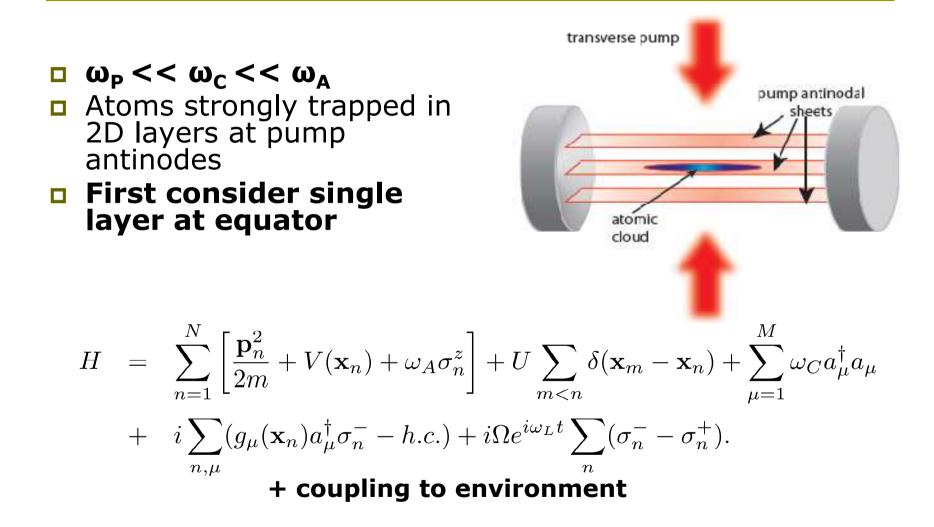
- Cross-โนเนาะอนบา อนเพ็นา นา เนนโกกุนีนอ, กาว องอเนาอ
- E.g. variational effective masses at strong coupling:

D Can also tor
$$\frac{m^*}{m} \sim \Omega^4 g^4$$
, ility, terminal veloc $\frac{m^*}{m} \sim \Omega^8 g^8$ pping etc.

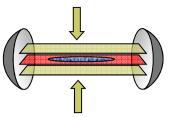
Crystallization of a BEC in a <u>multimode</u> cavity

Microscopic model Coarse-grained action Theory of the crystallization transition

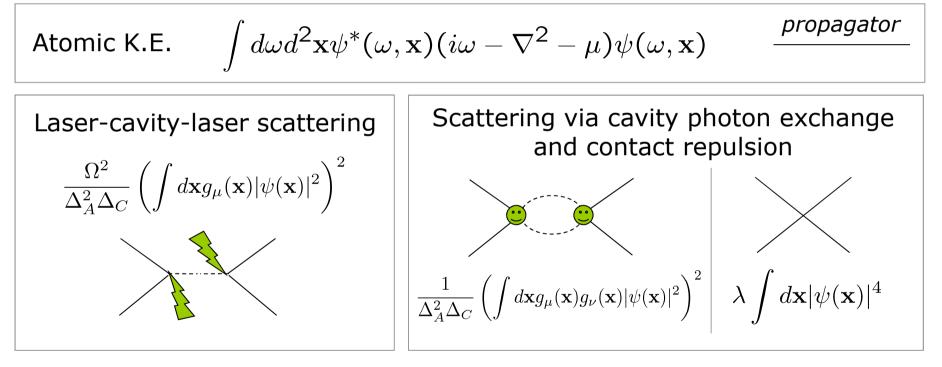
Model - Setup and Assumptions



Effective action (I)



Integrate out atomic excited state, all photon states
 Derive action in terms of atomic motional states

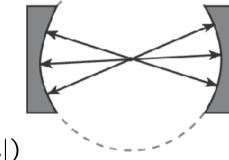


To proceed, must exploit cavity mode structure...

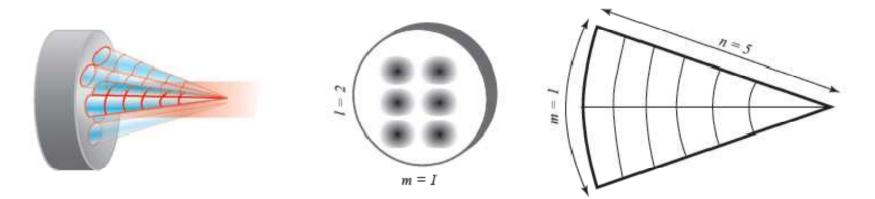
Cavity Mode Structure

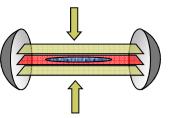
- Specialize to concentric cavity
- Laser breaks spherical symmetry
- 2D rotation symmetry in-plane
- **Dirichlet b.c. on** r and θ (approximate!)
- Mode functions [a = (m,n)]:

 $g_{\alpha}(r,\theta) \sim f(l) J_m(nr/R) \cos(m\theta), \omega_{\alpha} \sim (|m|+|n|)$



- High-m modes have diffractive losses so truncate at (say) m < n/5
- **Treat** f(l) as peaked at some value of l



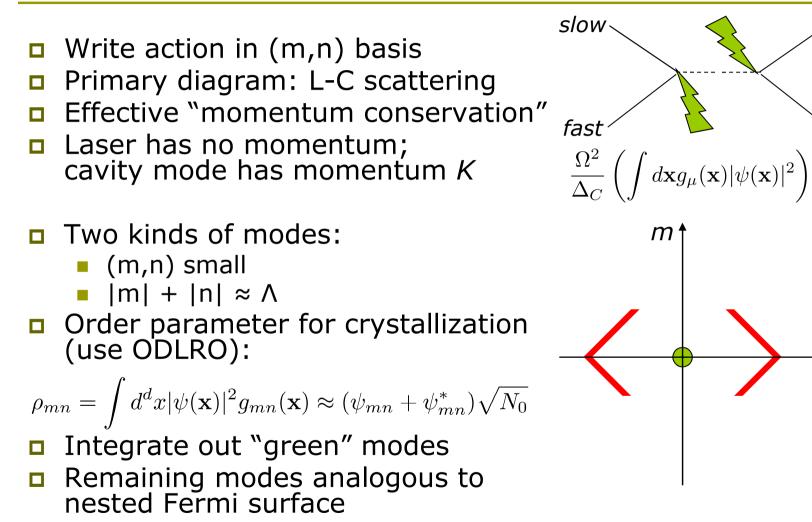


Induced Atomic Mode Structure

fast

slow

n



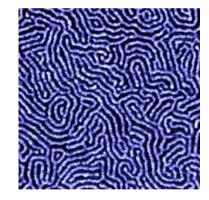
Effective Action

■ Effective free energy/action (T > 0):

$$S_{\text{eff}} = \sum_{mn} \left[\mathcal{R} + \chi \left[m + n - K_0 R \right]^2 \right] \rho_{mn} \rho_{-mn} \\ + \mathcal{U} \sum_{m_i, n_i} \rho_{m_1 n_1} \rho_{m_2 n_2} \rho_{m_3 n_3} \rho_{m_4 n_4} \, \delta_{\sum m_i} \delta_{\sum n_i} \right]$$

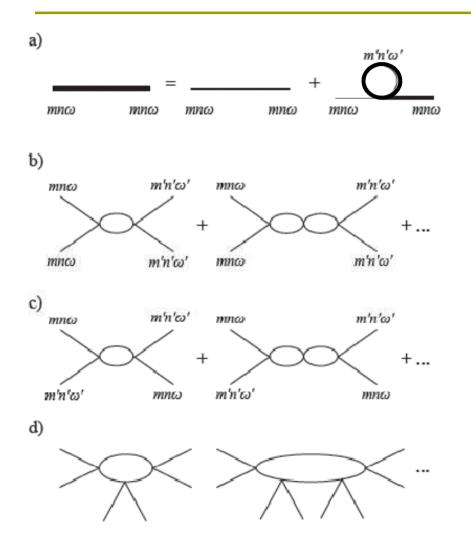
- **\square** *m* < *n* constraint \rightarrow **no cubic term**
- Realizes Brazovskii's (1975) model (common in soft matter) [modulo nesting-related subtleties]
- MF: 2nd order transition when τ = 0 (physically: K.E. + repulsion = optical potential energy)
- Fluctuation-driven 1st order transition
- At T = 0: z = 1, action acquires ω^2 term
 - Physics qualitatively similar to T > 0 case

Convection



Diblock copolymers

Brazovskii's transition



Self-consistent 1-loop, T > 0

Self-energy r:

$$renormalized \xrightarrow{r} \alpha K_0 u / \sqrt{r}$$

- Always positive: no criticality
- Generic vertex correction (b)

 $u = \mathcal{U}/[1 + \alpha \mathcal{U}/r^{3/2}]$

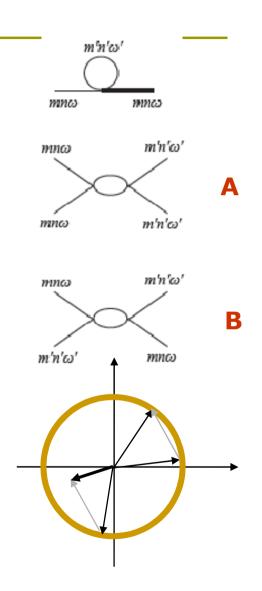
 Vertex correction when (mn) = (m'n') [sum both (b) and (c)]

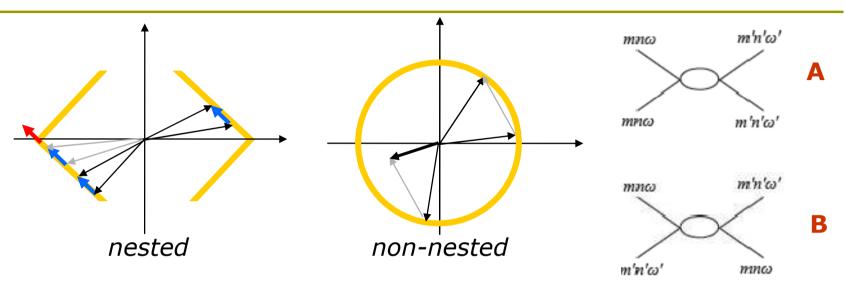
$$u' = \mathcal{U} \frac{1 - \alpha \mathcal{U}/r^{3/2}}{1 + \alpha \mathcal{U}/r^{3/2}}$$

- Changes sign: hence 1st order transition
- Stabilizing higher-order terms
- Consistent with 1-loop RG

Brazovskii's transition (II)

- Ignore nesting
- Interactions only couple sets of opposite pairs of momenta
- Diagram A is O(n) invariant if n = number of Fermi surface directions (or modes)
- Analogy with O(n) model in 1 or (1+1) dimensions
- Renormalization of 2-point fn. by A prevents instability
- Diagram B breaks O(n) symmetry but does not renormalize 2-point fn. (only important in 1/n cases)
 - More generally, the O(n) symmetric part of the theory has a closed RG flow to leading order.
- However, the four-point fn changes sign when all four modes are the same
- □ Therefore, can have a first-order transition

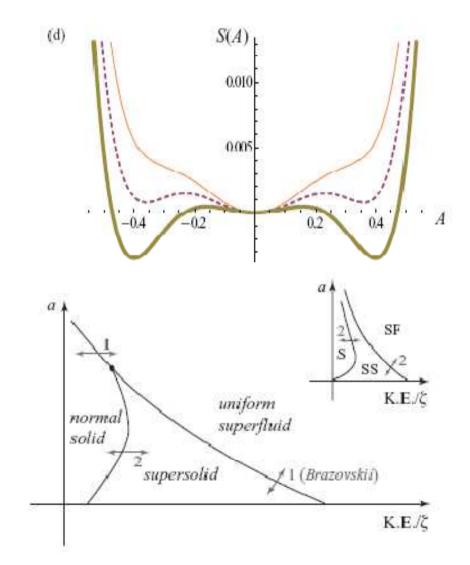


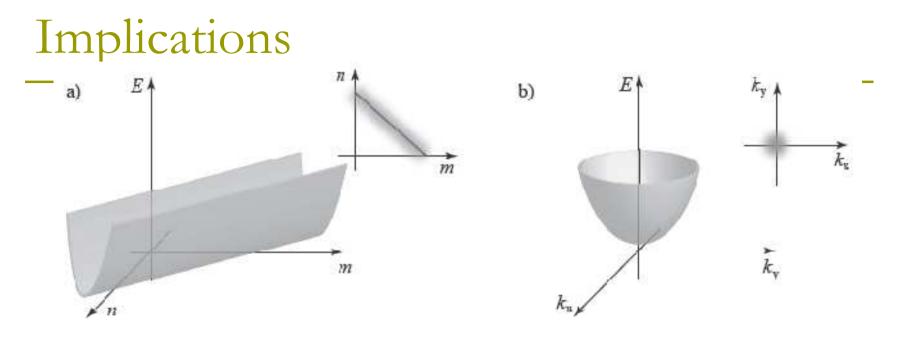


- Diagram B triggers first-order transition
- Without nesting (circle): momenta *must* be equal, opposite
 - Diagram A outweighs diagram B by a factor = # of modes
 - Diagram B only contributes when all four modes are the same
- With nesting (lines): all four modes must lie on manifold
 - Diagram B contributes less as length (m m', n n') increases
 - Diagram B always contributes, but most when all modes the same
- Instability still first arises in channel with four equal momenta

Structure of coarse-grained theory

- Integrating RG equations gives coarse-grained couplings
- Can use these to plot coarse-grained free-energy landscape as a function of bare R (i.e., laser strength)
- Overall phase structure
 - Near transition, lattice weak enough to preserve ODLRO
 - Deep in ordered state, transition into Mott state
- Discontinuous jump in lattice depth permits coincident Mott and Brazovskii transitions





- Large phase space for fluctuations
- Fluctuations change order of phase transition (2nd in MF, 1st with fluctuations) and threshold

$$\Omega_{\rm th}^2 - \Omega_{\rm mf}^2 \sim \left[\frac{g^2 \Delta_C}{\Delta_A^2 (\Delta_C^2 + \kappa^2)} \frac{\Omega_{\rm th}^8 M R^2}{\hbar N \chi} \right]^{\frac{1}{3}}$$

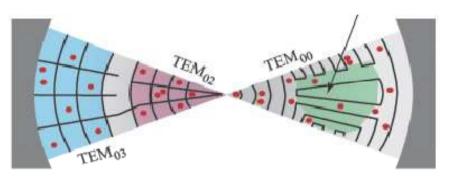
■ At T = 0: quantum Brazovskii transition

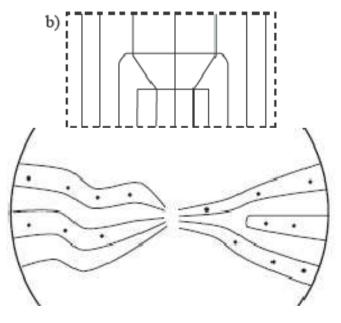
Properties of the ordered states

Excitations and defects Supersolidity

Ripple and splay modes

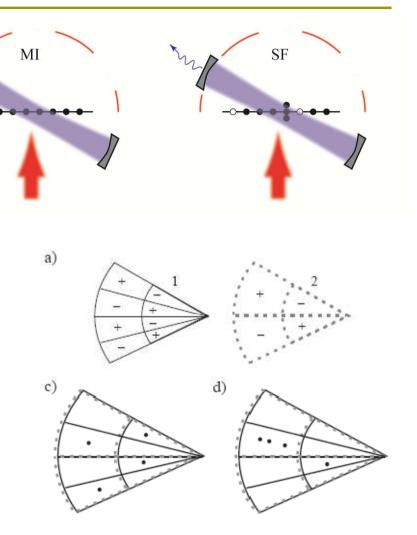
- Types of symmetrybreaking
 - Large mirrors: phase between ±m modes
 - Always: choice of modes (analogous to rotation)
- Two Goldstone-like modes
 - "Ripple" mode
 - "Splay" mode
- Two classes of defects
 - Edge dislocations
 - Closed lamellae
- Domain wall-like defects possible, not topological
- Hints of nucleation seen in simulations (Ritsch)
- Mermin-Wagner effects?





Detecting supersolidity

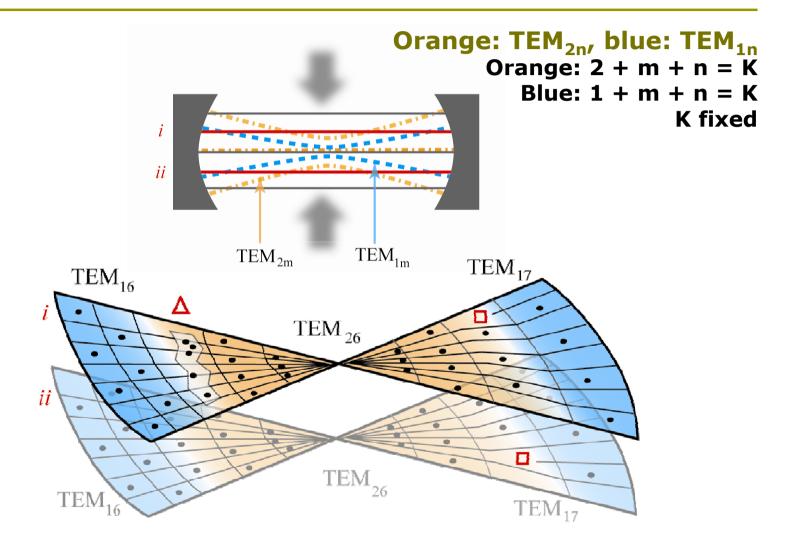
- Idea (Mekhov et al, 2007):
 - Consider Bragg scattering off "crystal"
 - Deep in MI: site occupation fixed, well-defined Bragg minima
 - Deep in SF: occupation fluctuates, transmission at minima
- Adaptation to present context:
 - Consider transmission into higher-order modes along z
 - Same principle applies
- Spatially resolved probe of supersolidity



Extensions

Glassiness Magnetism

Multilayered systems, frustration

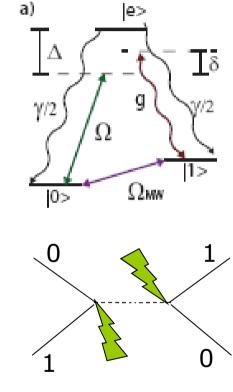


Magnetism in cavities

- Idea: use 3-level atoms with two ground states, ring cavity
- State-selective dressing
 - Couple laser to 0 e transition
 - Couple cavity to 1 e transition
 - Scattering photons from laser to cavity changes internal state
- Integrating out excited state, cavity modes generates long-range statedependent coupling
- In the spin language, effective Hamiltonian for stationary atoms:

$$H_{\rm spin} \sim \sum_{i} \sigma_x^i + \sum_{ij} g_{ij} \sigma_+^i \sigma_-^j$$

 Possible application: mean-field spin glasses, Sherrington-Kirkpatrick model



$$g_{ij} = g\cos[k(x_i - x_j)]$$

Summary

- Cavity photons can be used to mediate interatomic interactions
 - Infinite-ranged in the case of a single-mode cavity
 - More local for a multimode cavity
 - Interactions favor atoms integer cavity wavelengths apart, cause crystallization
- Crystallization occurs via a Brazovskii transition
 - Fluctuation-driven first-order transition both at T = 0 (quantum) and T > 0 (thermal)
 - Low-energy physics described by surface of excitations
- Prospects for further work
 - Structural glassiness
 - Magnetism via atoms with internal structure
 - Fermions (superconductivity?)

Acknowledgments

Helpful discussions

- UIUC: Brian DeMarco, David McKay, Matt Pasienski
- UCSB: Leon Balents, Cenke Xu, SungBin Lee
- UVA: Austen Lamacraft
- Other: Helmut Ritsch, Maciek Lewenstein, Ehud Altman, Giovanna Morigi, Ferdinand Brennecke, Tobias Donner

Funding

- DOE DMR Award No. DE-FG02-07ER46453
- UIUC Graduate College