# AdS/CFT and Consistent Massive Truncations of IIB Supergravity 

Phillip Szepietowski

University of Virginia
October 12, 2011 - UVA HEP Seminar

```
1003.5374, 1009.4210 [Liu, PS, Zhao] and 1103.0029 [Liu, PS]
```


## Outline

"Real World" Motivations - gauge/gravity duality

Theoretical Motivations - (for this work)

Consistent Truncations of IIB Supergravity on Sasaki-Einstein Manifolds

Final Comments

## About Me

## Phillip Szepietowski (can call me Phil, but not Dr. Phil)

- Graduated May 2011 - University of Michigan, advisor - Jim Liu
- Started at UVA: last month!


## Research Interests

Gauge/gravity duality - both applications and conceptual questions

## My Work

- Higher derivative corrections in the AdS/CFT correspondence
- Consistent truncations of IIB supergravity $\leftarrow$ most of this talk


## Outline

"Real World" Motivations - gauge/gravity duality

Theoretical Motivations - (for this work)

Consistent Truncations of IIB Supergravity on Sasaki-Einstein Manifolds

## Final Comments

## Strongly Coupled Field Theories

## Strongly Coupled Field Theories

## Examples of Strongly Coupled Systems

- QCD near $\Lambda_{Q C D} \sim 200 \mathrm{MeV}$
- Various condensed matter models have tunable parameters/couplings


## Strongly Coupled Field Theories

## Examples of Strongly Coupled Systems

- QCD near $\Lambda_{Q C D} \sim 200 \mathrm{MeV}$
- Various condensed matter models have tunable parameters/couplings

What's a theorist to do when coupling constants get large?

- Perturbative expansion in Feynman diagrams breaks down
- How to compute?
- Lattice? non-perturbative methods? How does one extract dynamics?


## A modern technique - The AdS/CFT Correspondence

## A modern technique - The AdS/CFT Correspondence

Best known example:
String Theory on $A d S_{5} \times S^{5} \cong \mathcal{N}=4 \mathrm{SU}(\mathrm{N})$ Super Yang-Mills theory

## A modern technique - The AdS/CFT Correspondence

Best known example:
String Theory on $A d S_{5} \times S^{5} \cong \mathcal{N}=4 \mathrm{SU}(\mathrm{N})$ Super Yang-Mills theory
Simplified by taking two limits:

## A modern technique - The AdS/CFT Correspondence

Best known example:
String Theory on $A d S_{5} \times S^{5} \cong \mathcal{N}=4 \mathrm{SU}(\mathrm{N})$ Super Yang-Mills theory
Simplified by taking two limits:

1. $g_{s} \rightarrow 0$ with $g_{s} N$ held fixed - large number of colors, $N \gg 1$ (suppresses string loop expansion, so supergravity description valid)

## A modern technique - The AdS/CFT Correspondence

Best known example:
String Theory on $A d S_{5} \times S^{5} \cong \mathcal{N}=4 \mathrm{SU}(\mathrm{N})$ Super Yang-Mills theory
Simplified by taking two limits:

1. $g_{s} \rightarrow 0$ with $g_{s} N$ held fixed - large number of colors, $N \gg 1$ (suppresses string loop expansion, so supergravity description valid)
2. Large 't Hooft coupling $\lambda=g_{s} N \gg 1$ (suppresses higher derivative terms within supergravity)

## A modern technique - The AdS/CFT Correspondence

Best known example:
String Theory on $A d S_{5} \times S^{5} \cong \mathcal{N}=4 \mathrm{SU}(\mathrm{N})$ Super Yang-Mills theory
Simplified by taking two limits:

1. $g_{s} \rightarrow 0$ with $g_{s} N$ held fixed - large number of colors, $N \gg 1$ (suppresses string loop expansion, so supergravity description valid)
2. Large 't Hooft coupling $\lambda=g_{s} N \gg 1$ (suppresses higher derivative terms within supergravity)

In these particular limits the duality becomes a weak/strong duality:

$$
A d S_{5} \cong C F T_{4}
$$

## A modern technique - The AdS/CFT Correspondence

Best known example:
String Theory on $A d S_{5} \times S^{5} \cong \mathcal{N}=4 \mathrm{SU}(\mathrm{N})$ Super Yang-Mills theory
Simplified by taking two limits:

1. $g_{s} \rightarrow 0$ with $g_{s} N$ held fixed - large number of colors, $N \gg 1$ (suppresses string loop expansion, so supergravity description valid)
2. Large 't Hooft coupling $\lambda=g_{s} N \gg 1$ (suppresses higher derivative terms within supergravity)

In these particular limits the duality becomes a weak/strong duality:

$$
A d S_{5} \cong C F T_{4}
$$

Other examples exist, present feeling is that $A d S_{d+1} \cong C F T_{d}$ - how general is this?

## Pictorial View of Holography


[image from Scientific American (Alfred T. Kamajian)]
"Experimental" Successes 1 - Hydrodynamics at Strong Coupling

## "Experimental" Successes 1 - Hydrodynamics at Strong

## Coupling

By placing a black hole in AdS can use AdS/CFT techniques to study thermal/hydrodynamic properties of a strongly coupled plasma:

## "Experimental" Successes 1 - Hydrodynamics at Strong

## Coupling

By placing a black hole in AdS can use AdS/CFT techniques to study thermal/hydrodynamic properties of a strongly coupled plasma:

KSS Bound [Kovtun, Son, and Starinets]

$$
\eta / s \geq 1 / 4 \pi
$$

## "Experimental" Successes 1 - Hydrodynamics at Strong Coupling

By placing a black hole in AdS can use AdS/CFT techniques to study thermal/hydrodynamic properties of a strongly coupled plasma:
KSS Bound [Kovtun, Son, and Starinets]

$$
\eta / s \geq 1 / 4 \pi
$$

- Bound saturated for any system with an Einstein gravity dual [Buchel, Liu]
- Perhaps a "universal" feature of strongly coupled plasmas
- Higher curvature terms known to violate bound $\eta / s=1 / 4 \pi[1-8 \alpha]$ for Gauss-Bonnet corrections
- Computed perturbative effects of addition of $U(1)$ chemical potential - charged black hole - in higher derivative gauged supergravity: [Cremonini, Hanaki, Liu, PS]

$$
\eta / s=1 / 4 \pi[1-8 \alpha(1+q)]
$$

"Experimental" Successes 1 - Hydrodynamics at Strong Coupling

## "Experimental" Successes 1 - Hydrodynamics at Strong Coupling

What is $\eta / s$ for usual fluids?

## "Experimental" Successes 1 - Hydrodynamics at Strong

 CouplingWhat is $\eta / s$ for usual fluids?
[Kovtun, Son, Starinets]


## "Experimental" Successes 1 - Hydrodynamics at Strong

 CouplingWhat is $\eta / s$ for usual fluids?
[Kovtun, Son, Starinets]


What is measured at RHIC? $(\sqrt{s}=200 \mathrm{GeV})$

## "Experimental" Successes 1 - Hydrodynamics at Strong Coupling



What is measured at RHIC? $(\sqrt{s}=200 \mathrm{GeV})$ [Luzum and Romatschke]



## "Experimental" Successes 2 - Condensed Matter Phenomena

Holographic Superconductors
Perhaps a descriptions of high $T_{c}$ superconductors?
Systems with non-relativistic scaling
Low temperature phase of some condensed matter systems exhibit a non-relativistic scaling symmetry, this has been realized in holographic examples as well.

Non-Fermi Metals
Progress towards understanding so-called non-Fermi liquids (Fermi liquid theory of electrons/holes breaks down) in terms of a dual system

## Outline

## "Real World" Motivations - gauge/gravity duality

Theoretical Motivations - (for this work)

Consistent Truncations of IIB Supergravity on Sasaki-Einstein Manifolds

## Final Comments

## Supersymmetric Generalizations of $A d S_{5} \times S^{5}$

Will consider reductions of IIB supergravity on five-dimensional Sasaki-Einstein manifolds

- Truncations presented will be generic for any $S E_{5}$ which includes $S^{5}, T^{1,1}, Y^{p, q}$, etc...
- $A d S_{5} \times S E_{5}$ is a solution of IIB - convenient to consider an effective five-dimensional theory which has $A d S_{5}$ solutions
- From AdS/CFT perspective these reductions generically have less supersymmetry than $S^{5}$ reduction
- Nice to have a consistent five-dimensional theory containing matter fields for AdS/CFT applications


## Motivation - Applied AdS/CFT

Provide further effective theories to explore holographic techniques
Window into quantum gravity?
Potential applications for phenomenology?
Descriptions of strongly coupled SCFTS?

## Motivation - Applied AdS/CFT

Provide further effective theories to explore holographic techniques
Window into quantum gravity?
Potential applications for phenomenology?
Descriptions of strongly coupled SCFTS?

## AdS/CMT (Condensed Matter Theory)

- Holographic techniques provide insight into strongly coupled regimes of certain condensed-matter like systems
- Holographic superconductors - charged bulk scalar acquires vacuum expectation value in thermal background
- Non-relativistic geometries - bulk metric has anisotropic scaling symmetry $-(t, x) \sim\left(\lambda^{z} t, \lambda x\right)$
- Including fermions provide a potential description of non-Fermi metals


## HOWEVER

- AdS/CMT typically takes phenomenological approach - take mass, charge, etc of matter fields as free parameters but require specific ranges for desired effects.


## HOWEVER

- AdS/CMT typically takes phenomenological approach - take mass, charge, etc of matter fields as free parameters but require specific ranges for desired effects.
- How can we be sure these models have well defined holographic duals?


## HOWEVER

- AdS/CMT typically takes phenomenological approach - take mass, charge, etc of matter fields as free parameters but require specific ranges for desired effects.
- How can we be sure these models have well defined holographic duals?
- Useful and instructive to embed these into string theory where:

1. The dual theory is precisely known and the duality is "under control"
2. Can systematically include "stringy"/quantum effects
3. Gain insight as to in what sense gauge/gravity duality persists beyond $A d S_{5} \times S^{5}$

## Outline

> "Real World" Motivations - gauge/gravity duality

> Theoretical Motivations - (for this work)

Consistent Truncations of IIB Supergravity on Sasaki-Einstein Manifolds

## Final Comments

## IIB Supergravity

## Bosonic Sector of IIB supergravity

Described by the following (pseudo) action:

$$
\begin{array}{r}
\mathcal{L}_{\mathrm{IIB}}=\frac{1}{16 \pi \kappa^{2}} \int d^{10} \times\left(R * 1-\frac{1}{2 \tau_{2}^{2}} d \tau \wedge * d \bar{\tau}-\frac{1}{2} \mathcal{M}_{i j} F_{3}^{i} \wedge * F_{3}^{j}\right. \\
\left.-\frac{1}{4} \widetilde{F}_{5} \wedge * \widetilde{F}_{5}-\frac{1}{4} \epsilon_{i j} C_{4} \wedge F_{3}^{i} \wedge F_{3}^{j}\right),
\end{array}
$$

supplemented with the self-duality constraint:

$$
* \widetilde{F}_{5}=\widetilde{F}_{5}
$$

$\tau=C_{0}+i e^{-\phi}-$ axi-dilaton (complex scalar),
$F_{3}^{i}-S L(2, \mathbb{R})$ doublet of three-forms.

## Fermionic Sector of IIB Supergravity

Supersymmetry variations:

$$
\begin{aligned}
\delta \lambda= & \frac{i}{2 \tau_{2}} \Gamma^{A} \partial_{A} \tau \epsilon^{c}-\frac{i}{24} \Gamma^{A B C} v_{v_{i}} F_{A B C}^{i} \epsilon, \\
\delta \Psi_{M}= & \mathcal{D}_{M} \epsilon \equiv\left(\nabla_{M}+\frac{i}{4 \tau_{2}} \partial_{M} \tau_{1}+\frac{i}{16 \cdot 5!} \Gamma^{A B C D E} \widetilde{F}_{A B C D E} \Gamma_{M}\right) \epsilon \\
& +\frac{i}{96}\left(\Gamma_{M}{ }^{A B C}-9 \delta_{M}^{A} \Gamma^{B C}\right) v_{i} F_{A B C}^{i} \epsilon^{c}
\end{aligned}
$$

Equations of motion:

$$
\begin{aligned}
& 0=\Gamma^{M} \mathcal{D}_{M} \lambda-\frac{i}{8 \cdot 5!} \Gamma^{M N P Q R} F_{M N P Q R} \lambda, \\
& 0=\Gamma^{M N P} \mathcal{D}_{N} \Psi_{P}+\frac{i}{48} \Gamma^{N P Q} \Gamma^{M} v_{i}^{*} F_{N P Q}^{i *} \lambda-\frac{i}{4 \tau_{2}} \Gamma^{N} \Gamma^{M} \partial_{N} \tau \lambda^{c}
\end{aligned}
$$

$\lambda$ - dilatino, $\Psi_{M}$ - gravitino
All Weyl spinors - $\Gamma_{11} \epsilon=\epsilon$

## $A d S_{5} \times S^{5}$ Solution of IIB supergravity

$A d S_{5} \times S^{5}$ is a solution to the equations of motion of IIB supergravity:

$$
\begin{gathered}
d s_{10}^{2}=\frac{r^{2}}{L^{2}} \eta_{\mu \nu} d x^{\mu} d x^{\nu}+\frac{L^{2}}{r^{2}} d r^{2}+L^{2} d \Omega_{5}^{2} \\
\widetilde{F}_{5}=\frac{4}{L}(1+*) \operatorname{vol}\left(S^{5}\right)
\end{gathered}
$$

- Recall - this shows up as near horizon region of the black 3-brane.
- Can replace $S^{5}$ with any Einstein space - in particular $S E_{5}$.
- $S E_{5}$ nice - well defined killing spinors - preserves $1 / 4$ SUSY in $A d S_{5}$ vacuum


## Sasaki-Einstein Manifolds

Defined such that the cone metric over $d s^{2}\left(S E_{5}\right)$ is that of a Calabi-Yau-cone

$$
d s^{2}\left(C Y_{6}\right)=d r^{2}+r^{2} d s^{2}\left(S E_{5}\right)
$$

## Sasaki-Einstein Manifolds

Defined such that the cone metric over $d s^{2}\left(S E_{5}\right)$ is that of a Calabi-Yau-cone

$$
d s^{2}\left(C Y_{6}\right)=d r^{2}+r^{2} d s^{2}\left(S E_{5}\right)
$$

Just as for $S^{5}, S E_{5}$ can be realized as a $U(1)$ fibration over a Kahler-Einstein base $B$ :

$$
d s^{2}\left(S E_{5}\right)=d s^{2}(B)+(d \psi+\mathcal{A})^{2}, \quad d \mathcal{A}=2 J
$$

## Sasaki-Einstein Manifolds

Defined such that the cone metric over $d s^{2}\left(S E_{5}\right)$ is that of a Calabi-Yau-cone

$$
d s^{2}\left(C Y_{6}\right)=d r^{2}+r^{2} d s^{2}\left(S E_{5}\right)
$$

Just as for $S^{5}, S E_{5}$ can be realized as a $U(1)$ fibration over a Kahler-Einstein base $B$ :

$$
d s^{2}\left(S E_{5}\right)=d s^{2}(B)+(d \psi+\mathcal{A})^{2}, \quad d \mathcal{A}=2 J
$$

Also $S U(2)$ structure exists on $S E_{5}$ defined by holomorphic (2,0)-form $\Omega$ and (1,1)-Kahler form $J$ on $B$ which satisfy:

$$
\begin{gathered}
J \wedge \Omega=0, \quad \Omega \wedge \bar{\Omega}=2 J \wedge J=4 *_{4} 1, \\
*_{4} J=J, \quad *_{4} \Omega=\Omega, \\
d J=0, \quad d \Omega=3 i(d \psi+\mathcal{A}) \wedge \Omega .
\end{gathered}
$$

## Dimensional Reduction

## Philosophy

- Instead of simply analyzing the $A d S_{5} \times S E_{5}$ solution, dimensionally reduce theory on $S E_{5}$ to produce an effective five-dimensional theory - i.e. an effective Lagrangian.
- Replace $d s^{2}\left(A d S_{5}\right) \rightarrow d s_{5}^{2}$ and reduce field content on $S E_{5}$.
- Obvious method - Kaluza-Klein reduction.


## Kaluza-Klein Reduction

Expand 10-dimensional fields along complete set of harmonics on internal space.

$$
\Phi(x, y)=\sum_{n}^{\infty} \phi_{n}(x) Y_{n}(y), \quad Y_{n}(y)=\text { internal harmonic }
$$

- Reduced theory is equivalent to the higher dimensional theory
- Effective theory contains infinite tower of massive states
- In simple cases (circle or torus reductions) can completely decouple massive modes by taking compact dimension to be small:

$$
m \sim 1 / L \rightarrow \infty
$$

how general is this? - relies on existence of mass-gap between zero modes and KK-modes

Note: theory after decoupling is no longer equivalent to original higher dimensional theory.

## Consistent truncation

A non-linear reduction of original theory such that solutions of lower dimensional equations of motion necessarily solve the original equations of motion

- This can be difficult - want to retain only a finite set of fields in Kaluza-Klein tower
- One can always truncate to singlets on internal space $\Phi(x, y)=\phi_{0}(x)-$ e.g. massless modes of circle reductions
- Furthermore, it is consistent to truncate to singlets under a transitively acting subgroup of the isometry group of the internal manifold
e.g. for $S^{5}$, take singlets under $S U(3) \times U(1) \subset S U(4) \cong S O(6)$


## KK reduction of IIB on $S^{5}$

[Kim, Romans, van Nieuwenhuizen]


FIG. 2. Mass spectrum of scalars


FIG. 1. Mass spectrum of vectors.


FIG. 3. Mass spectrum of antisymmetric tensors.

## KK reduction of IIB on $S^{5}$

[Kim, Romans, van Nieuwenhuizen]


FIG. 2. Mass spectrum of scalars


FIG. 1. Mass spectrum of vectors.


FIG. 3. Mass spectrum of antisymmetric tensors.

- Lowest modes not massless - mass due to non-zero curvature of $S^{5}$


## KK reduction of IIB on $S^{5}$

[Kim, Romans, van Nieuwenhuizen]


FIG. 2. Mass spectrum of scalars


FIG. 1. Mass spectrum of vectors.


FIG. 3. Mass spectrum of antisymmetric tensors.

- Lowest modes not massless - mass due to non-zero curvature of $S^{5}$
- Many KK towers - not trivial to see consistent truncation


## KK reduction of IIB on $S^{5}$

[Kim, Romans, van Nieuwenhuizen]


FIG. 2. Mass spectrum of scalars.


FIG. 1. Mass spectrum of vectors.


FIG. 3. Mass spectrum of antisymmetric tensors.

- Lowest modes not massless - mass due to non-zero curvature of $S^{5}$
- Many KK towers - not trivial to see consistent truncation
- Even truncation to maximal $\mathcal{N}=8$ supergravity not obvious although various sub-truncations have been worked out explicitly
[Cvetic,Lu,Pope,Sadrzadeh,Tran]


## KK reduction of IIB on $S^{5}$

[Kim, Romans, van Nieuwenhuizen]


FIG. 2. Mass spectrum of scalars.


FIG. 1. Mass spectrum of vectors.


FIG. 3. Mass spectrum of antisymmetric tensors.

- Lowest modes not massless - mass due to non-zero curvature of $S^{5}$
- Many KK towers - not trivial to see consistent truncation
- Even truncation to maximal $\mathcal{N}=8$ supergravity not obvious although various sub-truncations have been worked out explicitly [Cvetic,Lu,Pope,Sadrzadeh, Tran]
- Truncation presented will correspond to keeping a subset of the lowest modes of KK tower


## Reduction of Bosonic fields on Sasaki-Einstein Manifolds

Metric: Gauge $U(1)$-fiber add $A_{1}$ - graviphoton [Buchel,Liu]

$$
d s_{10}^{2}=d s_{5}^{2}+d s^{2}(B)+(\underbrace{d \psi+\mathcal{A}}_{\eta}+A_{1})^{2}
$$

## Reduction of Bosonic fields on Sasaki-Einstein Manifolds

Metric: Gauge $U(1)$-fiber add $A_{1}$ - graviphoton [Buchel,Liu] also - add "breathing" and "squashing" modes, $\rho, \sigma$ [Bremer,Duff,Lu,Pope,Stelle]

$$
d s_{10}^{2}=e^{-10 \rho / 3} d s_{5}^{2}+e^{2 \rho}[e^{\sigma} d s^{2}(B)+e^{-4 \sigma}(\underbrace{d \psi+\mathcal{A}}+A_{1})^{2}]
$$

## Reduction of Bosonic fields on Sasaki-Einstein Manifolds

Metric: Gauge $U(1)$-fiber add $A_{1}$ - graviphoton [Buchel,Liu] also - add "breathing" and "squashing" modes, $\rho, \sigma$ [Bremer,Duff,Lu,Pope,Stelle]

$$
d s_{10}^{2}=e^{-10 \rho / 3} d s_{5}^{2}+e^{2 \rho}[e^{\sigma} d s^{2}(B)+e^{-4 \sigma}(\underbrace{d \psi+\mathcal{A}}+A_{1})^{2}]
$$

$\eta$

Form Fields - expand using $S U(2)$-structure

$$
\begin{aligned}
& B_{2}^{i}=b_{2}^{i}+b_{1}^{i} \wedge\left(\eta+A_{1}\right)+b_{0}^{i} \Omega+\bar{b}_{0}^{i} \bar{\Omega}, \quad F_{3}^{i}=d B_{2}^{i} \\
& \widetilde{F}_{5}=(1+*)\left[\left(4+\phi_{0}\right) *_{4} 1 \wedge\left(\eta+A_{1}\right)+\mathbb{A}_{1} \wedge *_{4} 1\right. \\
&\left.+p_{2} \wedge J \wedge\left(\eta+A_{1}\right)+q_{2} \wedge \Omega \wedge\left(\eta+A_{1}\right)+\text { h.c. }\right]
\end{aligned}
$$

## Reduction of Bosonic fields on Sasaki-Einstein Manifolds

Metric: Gauge $U(1)$-fiber add $A_{1}$ - graviphoton [Buchel,Liu] also - add "breathing" and "squashing" modes, $\rho, \sigma$ [Bremer,Duff,Lu,Pope,Stelle]

$$
d s_{10}^{2}=e^{-10 \rho / 3} d s_{5}^{2}+e^{2 \rho}[e^{\sigma} d s^{2}(B)+e^{-4 \sigma}(\underbrace{d \psi+\mathcal{A}}+A_{1})^{2}]
$$

$\eta$

Form Fields - expand using $S U(2)$-structure

$$
\begin{aligned}
& B_{2}^{i}=b_{2}^{i}+b_{1}^{i} \wedge\left(\eta+A_{1}\right)+b_{0}^{i} \Omega+\bar{b}_{0}^{i} \bar{\Omega}, \quad F_{3}^{i}=d B_{2}^{i} \\
& \widetilde{F}_{5}=(1+*)\left[\left(4+\phi_{0}\right) *_{4} 1 \wedge\left(\eta+A_{1}\right)+\mathbb{A}_{1} \wedge *_{4} 1\right. \\
& \\
& \left.\quad+p_{2} \wedge J \wedge\left(\eta+A_{1}\right)+q_{2} \wedge \Omega \wedge\left(\eta+A_{1}\right)+\text { h.c. }\right]
\end{aligned}
$$

Expanding only along $S U(2)$-structure guarantees consistency, recall:

$$
\begin{gathered}
J \wedge \Omega=0, \quad \Omega \wedge \bar{\Omega}=2 J \wedge J=4 *_{4} 1, \\
*_{4} J=J, \quad *_{4} \Omega=\Omega \\
d J=0, \quad d \Omega=3 i \eta \wedge \Omega
\end{gathered}
$$

## Reduction of IIB Fermions

Decompose IIB spinors along killing spinor on Sasaki-Einstein, $\eta$, and its charge conjugate, $\eta^{c}$ :

$$
\begin{aligned}
\psi_{\alpha} & =e^{-A / 2} \psi_{\alpha} \otimes \eta \otimes\left[\begin{array}{l}
1 \\
0
\end{array}\right]+e^{-A / 2} \psi_{\alpha}^{\prime} \otimes \eta^{c} \otimes\left[\begin{array}{l}
1 \\
0
\end{array}\right], \\
\psi_{a} & =e^{-A / 2} \psi \otimes \tau_{a} \eta \otimes\left[\begin{array}{l}
1 \\
0
\end{array}\right]+e^{-A / 2} \psi^{\prime} \otimes \tau_{a} \eta^{c} \otimes\left[\begin{array}{l}
1 \\
0
\end{array}\right], \\
\lambda & =e^{-A / 2} \lambda \otimes \eta \otimes\left[\begin{array}{l}
0 \\
1
\end{array}\right]+e^{-A / 2} \lambda^{\prime} \otimes \eta^{c} \otimes\left[\begin{array}{l}
0 \\
1
\end{array}\right],
\end{aligned}
$$

## Reduction of IIB Fermions

Decompose IIB spinors along killing spinor on Sasaki-Einstein, $\eta$, and its charge conjugate, $\eta^{c}$ :

$$
\begin{aligned}
\Psi_{\alpha} & =e^{-A / 2} \psi_{\alpha} \otimes \eta \otimes\left[\begin{array}{l}
1 \\
0
\end{array}\right]+e^{-A / 2} \psi_{\alpha}^{\prime} \otimes \eta^{c} \otimes\left[\begin{array}{l}
1 \\
0
\end{array}\right], \\
\psi_{a} & =e^{-A / 2} \psi \otimes \tau_{a} \eta \otimes\left[\begin{array}{l}
1 \\
0
\end{array}\right]+e^{-A / 2} \psi^{\prime} \otimes \tau_{a} \eta^{c} \otimes\left[\begin{array}{l}
1 \\
0
\end{array}\right], \\
\lambda & =e^{-A / 2} \lambda \otimes \eta \otimes\left[\begin{array}{l}
0 \\
1
\end{array}\right]+e^{-A / 2} \lambda^{\prime} \otimes \eta^{c} \otimes\left[\begin{array}{l}
0 \\
1
\end{array}\right],
\end{aligned}
$$

IIB susy parameter - appropriate for $\mathcal{N}=2$ supersymmetry:

$$
\epsilon=e^{A / 2} \varepsilon \otimes \eta \otimes\left[\begin{array}{l}
1 \\
0
\end{array}\right]
$$

## Reduction of IIB Fermions

Decompose IIB spinors along killing spinor on Sasaki-Einstein, $\eta$, and its charge conjugate, $\eta^{c}$ :

$$
\begin{aligned}
\Psi_{\alpha} & =e^{-A / 2} \psi_{\alpha} \otimes \eta \otimes\left[\begin{array}{l}
1 \\
0
\end{array}\right]+e^{-A / 2} \psi_{\alpha}^{\prime} \otimes \eta^{c} \otimes\left[\begin{array}{l}
1 \\
0
\end{array}\right], \\
\psi_{a} & =e^{-A / 2} \psi \otimes \tau_{a} \eta \otimes\left[\begin{array}{l}
1 \\
0
\end{array}\right]+e^{-A / 2} \psi^{\prime} \otimes \tau_{a} \eta^{c} \otimes\left[\begin{array}{l}
1 \\
0
\end{array}\right], \\
\lambda & =e^{-A / 2} \lambda \otimes \eta \otimes\left[\begin{array}{l}
0 \\
1
\end{array}\right]+e^{-A / 2} \lambda^{\prime} \otimes \eta^{c} \otimes\left[\begin{array}{l}
0 \\
1
\end{array}\right],
\end{aligned}
$$

IIB susy parameter - appropriate for $\mathcal{N}=2$ supersymmetry:

$$
\epsilon=e^{A / 2} \varepsilon \otimes \eta \otimes\left[\begin{array}{l}
1 \\
0
\end{array}\right]
$$

Again $S U(2)$ structure helps:

$$
\begin{gathered}
\partial_{\psi} \eta=\frac{3 i}{2} \eta, \quad \tau^{9} \eta=-\eta, \quad \tau^{b} J_{a b} \eta=i \tau_{a} \eta, \\
\tau^{b} \Omega_{a b} \eta=0, \quad \tau^{b} \bar{\Omega}_{a b} \eta=2 \tau_{a} \eta^{c} .
\end{gathered}
$$

## Five-dimensional multiplet structure

| n | Multiplet | State | Field |
| :---: | :---: | :---: | :---: |
| 0 | supergraviton | $\begin{aligned} & D(4,1,1)_{0} \\ & D\left(3 \frac{1}{2}, 1, \frac{1}{2}\right)_{-1}+D\left(3 \frac{1}{2}, \frac{1}{2}, 1\right)_{1} \\ & D\left(3, \frac{1}{2}, \frac{1}{2}\right)_{0} \end{aligned}$ | $\begin{aligned} & g_{\mu \nu} \\ & \hat{\psi}_{\mu} \\ & A_{1}+\frac{1}{6} \mathrm{~A}_{1} \\ & \hline \end{aligned}$ |
| 0 | LH + RH chiral | $\begin{aligned} & D(3,0,0)_{ \pm 2} \\ & D\left(3 \frac{1}{2}, \frac{1}{2}, 0\right)_{1}+D\left(3 \frac{1}{2}, 0, \frac{1}{2}\right)_{-1} \\ & D(4,0,0)_{0}+D(4,0,0)_{0} \end{aligned}$ | $\begin{aligned} & b^{m^{2}=-3} \\ & \lambda^{\prime} \\ & \tau \end{aligned}$ |
| 1 | LH +RH massive gravitino | $\begin{aligned} & D\left(5 \frac{1}{2}, \frac{1}{2}, 1\right)_{1}+D\left(5 \frac{1}{2}, 1, \frac{1}{2}\right)_{-1} \\ & D\left(5, \frac{1}{2}, \frac{1}{2}\right)_{0}+D\left(5, \frac{1}{2}, \frac{1}{2}\right)_{0} \\ & D(5,0,1)_{2}+D(5,1,0)_{-2} \\ & D(6,0,1)_{0}+D(6,1,0)_{0} \\ & D\left(4 \frac{1}{2}, 0, \frac{1}{2}\right)_{1}+D\left(4 \frac{1}{2}, \frac{1}{2}, 0\right)_{-1} \\ & D\left(5 \frac{1}{2}, 0, \frac{1}{2}\right)_{-1}+D\left(5 \frac{1}{2}, \frac{1}{2}, 0\right)_{1} \end{aligned}$ | $\begin{aligned} & \hat{\psi}_{\mu}^{\prime} \\ & b_{1}^{i} \\ & q_{2} \\ & b_{2}^{i} \\ & \psi^{\prime / m=5 / 2} \\ & \lambda \end{aligned}$ |
| 2 | massive vector | $\begin{aligned} & D\left(7, \frac{1}{2}, \frac{1}{2}\right)_{0} \\ & D\left(6 \frac{1}{2}, \frac{1}{2}, 0\right)_{-1}+D\left(6 \frac{1}{2}, 0, \frac{1}{2}\right)_{1} \\ & D\left(7 \frac{1}{2}, 0, \frac{1}{2}\right)_{-1}+D\left(7 \frac{1}{2}, \frac{1}{2}, 0\right)_{1} \\ & D(6,0,0)_{0} \\ & D(7,0,0)_{ \pm 2} \\ & D(8,0,0)_{0} \end{aligned}$ | $\begin{aligned} & \mathbb{A}_{1} \\ & \psi^{m=-9 / 2} \\ & \psi^{m=11 / 2} \\ & \sigma \\ & b^{m^{2}=21} \\ & \rho \end{aligned}$ |

[^0]
## Five-dimensional multiplet structure

| n | Multiplet | State | Field |
| :---: | :---: | :---: | :---: |
| 0 | supergraviton | $\begin{aligned} & D(4,1,1)_{0} \\ & D\left(3 \frac{1}{2}, 1, \frac{1}{2}\right)_{-1}+D\left(3 \frac{1}{2}, \frac{1}{2}, 1\right)_{1} \\ & D\left(3, \frac{1}{2}, \frac{1}{2}\right)_{0} \end{aligned}$ | $\begin{aligned} & g_{\mu \nu} \\ & \hat{\psi}_{\mu} \\ & A_{1}+\frac{1}{6} \mathrm{~A}_{1} \end{aligned}$ |
| 0 | LH+RH chiral | $\begin{aligned} & D(3,0,0)_{ \pm 2} \\ & D\left(3 \frac{1}{2}, \frac{1}{2}, 0\right)_{1}+D\left(3 \frac{1}{2}, 0, \frac{1}{2}\right)_{-1} \\ & D(4,0,0)_{0}+D(4,0,0)_{0} \end{aligned}$ | $\begin{aligned} & b^{m^{2}=-3} \\ & \lambda^{\prime} \\ & \tau \end{aligned}$ |
| 1 | LH+RH massive gravitino | $\begin{aligned} & D\left(5 \frac{1}{2}, \frac{1}{2}, 1\right)_{1}+D\left(5 \frac{1}{2}, 1, \frac{1}{2}\right)_{-1} \\ & D\left(5, \frac{1}{2}, \frac{1}{2}\right)_{0}+D\left(5, \frac{1}{2}, \frac{1}{2}\right)_{0} \\ & D(5,0,1)_{2}+D(5,1,0)_{-2} \\ & D(6,0,1)_{0}+D(6,1,0)_{0} \\ & D\left(4 \frac{1}{2}, 0, \frac{1}{2}\right)_{1}+D\left(4 \frac{1}{2}, \frac{1}{2}, 0\right)_{-1} \\ & D\left(5 \frac{1}{2}, 0, \frac{1}{2}\right)_{-1}+D\left(5 \frac{1}{2}, \frac{1}{2}, 0\right)_{1} \\ & \hline \end{aligned}$ | $\begin{aligned} & \hat{\psi}_{\mu}^{\prime} \\ & b_{1}^{i} \\ & q_{2} \\ & b_{2}^{i} \\ & \psi^{\prime m}=5 / 2 \\ & \lambda \\ & \hline \end{aligned}$ |
| 2 | massive vector | $\left\|\begin{array}{l} D\left(7, \frac{1}{2}, \frac{1}{2}\right)_{0} \\ D\left(6 \frac{1}{2}, \frac{1}{2}, 0\right)_{-1}+D\left(6 \frac{1}{2}, 0, \frac{1}{2}\right)_{1} \\ D\left(7 \frac{1}{2}, 0, \frac{1}{2}\right)_{-1}+D\left(7 \frac{1}{2}, \frac{1}{2}, 0\right)_{1} \\ D(6,0,0)_{0} \\ D(7,0,0)_{ \pm 2} \\ D(8,0,0)_{0} \end{array}\right\|$ | $\begin{aligned} & \mathbb{A}_{1} \\ & \psi^{m=-9 / 2} \\ & \psi^{m=11 / 2} \\ & \sigma \\ & b^{m^{2}=21} \\ & \rho \end{aligned}$ |

- Reducing equations of motion yields consistent truncation
[Cassani, Dall'Agata, Faedo; Gauntlett, Varela; Bah, Faraggi, Jottar, Leigh, Pando Zayas]


## Five-dimensional multiplet structure

| n | Multiplet | State | Field |
| :---: | :---: | :---: | :---: |
| 0 | supergraviton | $\begin{aligned} & D(4,1,1)_{0} \\ & D\left(3 \frac{1}{2}, 1, \frac{1}{2}\right)_{-1}+D\left(3 \frac{1}{2}, \frac{1}{2}, 1\right)_{1} \\ & D\left(3, \frac{1}{2}, \frac{1}{2}\right)_{0} \end{aligned}$ | $\begin{aligned} & g_{\mu \nu} \\ & \hat{\psi}_{\mu} \\ & A_{1}+\frac{1}{6} \mathrm{~A}_{1} \end{aligned}$ |
| 0 | LH+RH chiral | $\left\lvert\, \begin{aligned} & D(3,0,0)_{ \pm 2} \\ & D\left(3 \frac{1}{2}, \frac{1}{2}, 0\right)_{1}+D\left(3 \frac{1}{2}, 0, \frac{1}{2}\right)_{-1} \\ & D(4,0,0)_{0}+D(4,0,0)_{0} \end{aligned}\right.$ | $\begin{aligned} & b^{m^{2}=-3} \\ & \lambda^{\prime} \\ & \tau \\ & \tau \end{aligned}$ |
| 1 | LH+RH massive gravitino | $\begin{aligned} & D\left(5 \frac{1}{2}, \frac{1}{2}, 1\right)_{1}+D\left(5 \frac{1}{2}, 1, \frac{1}{2}\right)_{-1} \\ & D\left(5, \frac{1}{2}, \frac{1}{2}\right)_{0}+D\left(5, \frac{1}{2}, \frac{1}{2}\right)_{0} \\ & D(5,0,1)_{2}+D(5,1,0)_{-2} \\ & D(6,0,1)_{0}+D(6,1,0)_{0} \\ & D\left(4 \frac{1}{2}, 0, \frac{1}{2}\right)_{1}+D\left(4 \frac{1}{2}, \frac{1}{2}, 0\right)_{-1} \\ & D\left(5 \frac{1}{2}, 0, \frac{1}{2}\right)_{-1}+D\left(5 \frac{1}{2}, \frac{1}{2}, 0\right)_{1} \\ & \hline \end{aligned}$ | $\begin{aligned} & \hat{\psi}_{\mu}^{\prime} \\ & b_{1}^{i} \\ & q_{2} \\ & b_{2}^{i} \\ & \psi^{\prime m=5 / 2} \\ & \lambda \end{aligned}$ |
| 2 | massive vector | $\left\|\begin{array}{l} D\left(7, \frac{1}{2}, \frac{1}{2}\right)_{0} \\ D\left(6 \frac{1}{2}, \frac{1}{2}, 0\right)_{-1}+D\left(6 \frac{1}{2}, 0, \frac{1}{2}\right)_{1} \\ D\left(7 \frac{1}{2}, 0, \frac{1}{2}\right)_{-1}+D\left(7 \frac{1}{2}, \frac{1}{2}, 0\right)_{1} \\ D(6,0,0)_{0} \\ D(7,0,0)_{ \pm 2} \\ D(8,0,0)_{0} \end{array}\right\|$ | $\begin{aligned} & \mathbb{A}_{1} \\ & \psi^{m=-9 / 2} \\ & \psi^{m=11 / 2} \\ & \sigma \\ & b^{m^{2}=21} \\ & \rho \end{aligned}$ |

- Reducing equations of motion yields consistent truncation
- Lagrangian too long to show explicitly


## Five-dimensional multiplet structure

| n | Multiplet | State | d |
| :---: | :---: | :---: | :---: |
| 0 | supergraviton | $\begin{aligned} & D(4,1,1)_{0} \\ & D\left(3 \frac{1}{2}, 1, \frac{1}{2}\right)_{-1}+D\left(3 \frac{1}{2}, \frac{1}{2}, 1\right)_{1} \\ & D\left(3, \frac{1}{2}, \frac{1}{2}\right)_{0} \end{aligned}$ | $\left\{\begin{array}{l} g_{\mu \nu} \\ \hat{\psi}_{\mu} \\ A_{1}+\frac{1}{6} \mathrm{~A}_{1} \end{array}\right.$ |
| 0 | LH+RH chiral | $\left\|\begin{array}{l} D(3,0,0)_{ \pm 2} \\ D\left(3 \frac{1}{2}, \frac{1}{2}, 0\right)_{1}+D\left(3 \frac{1}{2}, 0, \frac{1}{2}\right)_{-1} \\ D(4,0,0)_{0}+D(4,0,0)_{0} \end{array}\right\|$ | $\begin{aligned} & b^{m^{2}=-3} \\ & x^{\prime} \\ & \tau \end{aligned}$ |
|  | LH+RH massive gravitino | $\begin{aligned} & D\left(5 \frac{1}{2}, \frac{1}{2}, 1\right)_{1}+D\left(5 \frac{1}{2}, 1, \frac{1}{2}\right)_{-1} \\ & D\left(5, \frac{1}{2}, \frac{1}{2}\right)_{0}+D\left(5, \frac{1}{2}, \frac{1}{2}\right)_{0} \\ & D(5,0,1)_{2}+D(5,1,0)_{-2} \\ & D(6,0,1)_{0}+D(6,1,0)_{0} \\ & D\left(4 \frac{1}{2}, 0, \frac{1}{2}\right)_{1}+D\left(4 \frac{1}{2}, \frac{1}{2}, 0\right)_{-1} \\ & D\left(5 \frac{1}{2}, 0, \frac{1}{2}\right)_{-1}+D\left(5 \frac{1}{2}, \frac{1}{2}, 0\right)_{1} \end{aligned}$ | $\begin{aligned} & \hat{\psi}_{\mu}^{\prime} \\ & b_{1}^{i} \\ & q_{2} \\ & b_{2}^{i} \\ & \psi^{\prime m=5 / 2} \\ & \lambda \end{aligned}$ |
| 2 | massive vector | $\begin{aligned} & D\left(7, \frac{1}{2}, \frac{1}{2}\right)_{0} \\ & D\left(6 \frac{1}{2}, \frac{1}{2}, 0\right)_{-1}+D\left(6 \frac{1}{2}, 0, \frac{1}{2}\right)_{1} \\ & D\left(7 \frac{1}{2}, 0, \frac{1}{2}\right)_{-1}+D\left(7 \frac{1}{2}, \frac{1}{2}, 0\right)_{1} \\ & D(6,0,0)_{0} \\ & D(7,0,0)_{ \pm 2} \\ & D(8,0,0)_{0} \end{aligned}$ | $\begin{aligned} & \mathbb{A}_{1} \\ & \psi^{m=-9 / 2} \\ & \psi^{m=11 / 2} \\ & \sigma \\ & b^{m^{2}=21} \\ & \rho \end{aligned}$ |

- Reducing equations of motion yields consistent truncation
- Lagrangian too long to show explicitly
- Five-dimensional $\mathcal{N}=2$
gauged supergravity coupled to various multiplets


## Five-dimensional multiplet structure

| n | Multiplet | State | Field |
| :---: | :---: | :---: | :---: |
| 0 | supergraviton | $\begin{array}{\|l\|} D(4,1,1)_{0} \\ D\left(3 \frac{1}{2}, 1, \frac{1}{2}\right)_{-1}+D\left(3 \frac{1}{2}, \frac{1}{2}, 1\right)_{1} \\ D\left(3, \frac{1}{2}, \frac{1}{2}\right)_{0} \end{array}$ | $\begin{aligned} & g_{\mu \nu} \\ & \hat{\psi}_{\mu} \\ & A_{1}+\frac{1}{6} \mathrm{~A}_{1} \end{aligned}$ |
| 0 | LH+RH chiral | $\begin{aligned} & D(3,0,0)_{ \pm 2} \\ & D\left(3 \frac{1}{2}, \frac{1}{2}, 0\right)_{1}+D\left(3 \frac{1}{2}, 0, \frac{1}{2}\right)_{-1} \\ & D(4,0,0)_{0}+D(4,0,0)_{0} \end{aligned}$ | $\begin{aligned} & b^{\mathrm{m}^{2}=-3} \\ & \lambda^{\prime} \\ & \tau \end{aligned}$ |
| 1 | LH + RH massive gravitino | $D\left(5 \frac{1}{2}, \frac{1}{2}, 1\right)_{1}+D\left(5 \frac{1}{2}, 1, \frac{1}{2}\right)_{-1}$ $D\left(5, \frac{1}{2}, \frac{1}{2}\right)_{0}+D\left(5, \frac{1}{2}, \frac{1}{2}\right)_{0}$ $D(5,0,1)_{2}+D(5,1,0)_{-2}$ $D(6,0,1)_{0}+D(6,1,0)_{0}$ $D\left(4 \frac{1}{2}, 0, \frac{1}{2}\right)_{1}+D\left(4 \frac{1}{2}, \frac{1}{2}, 0\right)_{-1}$ $D\left(5 \frac{1}{2}, 0, \frac{1}{2}\right)_{-1}+D\left(5 \frac{1}{2}, \frac{1}{2}, 0\right)_{1}$ | $\hat{\psi}_{\mu}^{\prime}$ $b_{1}^{i}$ $q_{2}$ $b_{2}^{i}$ $\psi^{\prime m=5 / 2}$ $\lambda$ |
| 2 | massive vector | $\begin{aligned} & D\left(7, \frac{1}{2}, \frac{1}{2}\right)_{0} \\ & D\left(6 \frac{1}{2}, \frac{1}{2}, 0\right)_{-1}+D\left(6 \frac{1}{2}, 0, \frac{1}{2}\right)_{1} \\ & D\left(7 \frac{1}{2}, 0, \frac{1}{2}\right)_{-1}+D\left(7 \frac{1}{2}, \frac{1}{2}, 0\right)_{1} \\ & D(6,0,0)_{0} \\ & D(7,0,0)_{ \pm 2} \\ & D(8,0,0)_{0} \end{aligned}$ | $\begin{aligned} & \mathbb{A}_{1} \\ & \psi^{m=-9 / 2} \\ & \psi^{m=11 / 2} \\ & \sigma \\ & b^{m^{2}=21} \\ & \rho \end{aligned}$ |

- Reducing equations of motion yields consistent truncation
- Lagrangian too long to show explicitly
- Five-dimensional $\mathcal{N}=2$ gauged supergravity coupled to various multiplets
- Various further truncations exist - in particular can truncate out massive gravitino multiplet


## Recall KK reduction of IIB on $S^{5}$

[Kim, Romans, van Nieuwenhuizen]


FIG. 2. Mass spectrum of scalars


FIG. 1. Mass spectrum of vectors.


FIG. 3. Mass spectrum of antisymmetric tensors.

## Recall KK reduction of IIB on $S^{5}$

[Kim, Romans, van Nieuwenhuizen]


FIG. 2. Mass spectrum of scalars.


FIG. 1. Mass spectrum of vectors.


FIG. 3. Mass spectrum of antisymmetric tensors.

- Perform linearized analysis to determine masses and identify spectrum


## Recall KK reduction of IIB on $S^{5}$

[Kim, Romans, van Nieuwenhuizen]



FIG. 1. Mass spectrum of vectors.


FIG. 3. Mass spectrum of antisymmetric tensors.

- Perform linearized analysis to determine masses and identify spectrum
- All modes in consistent truncation lie at bottom of KK-towers


## Recall KK reduction of IIB on $S^{5}$

[Kim, Romans, van Nieuwenhuizen]



FIG. 1. Mass spectrum of vectors.


FIG. 3. Mass spectrum of antisymmetric tensors.

- Perform linearized analysis to determine masses and identify spectrum
- All modes in consistent truncation lie at bottom of KK-towers
- All belong to $S U(4)$ reps containing singlets under $S U(3) \subset S U(4)$


## Recall KK reduction of IIB on $S^{5}$

[Kim, Romans, van Nieuwenhuizen]


FIG. 2. Mass spectrum of scalars.

FIG. 1. Mass spectrum of vectors.


FIG. 3. Mass spectrum of antisymmetric tensors.

- Perform linearized analysis to determine masses and identify spectrum
- All modes in consistent truncation lie at bottom of KK-towers
- All belong to $S U(4)$ reps containing singlets under $S U(3) \subset S U(4)$
- Note that much of the massless $\mathcal{N}=8$ multiplet does not include an $S U(3)$ singlet.


## Applications

## A holographic supersymmetric superconductor?

$$
\begin{aligned}
& \mathcal{L}=\mathcal{L}_{b}+\mathcal{L}_{f} \\
& \mathcal{L}_{b}= R * 1+\frac{6(2-3 \chi)}{(1-\chi)^{2}}-\frac{d \chi \wedge * d \chi}{2(1-\chi)^{2}} * 1-\frac{(1+\chi) d \tau \wedge * d \bar{\tau}}{2(1-\chi) \tau_{2}^{2}}-\frac{3}{2} F_{2} \wedge * F_{2}-\frac{\mathbb{A}_{1} \wedge * \mathbb{A}_{1}}{2(1-\chi)^{2}} \\
&-\frac{8 \tau_{2} D b \wedge * D \bar{b}}{1-\chi}-\frac{2 i}{1-\chi}(\bar{b} D b \wedge * d \bar{\tau}-b D \bar{b} \wedge * d \tau)-A_{1} \wedge F_{2} \wedge F_{2} \\
& e^{-1} \mathcal{L}_{f} \\
&= \bar{\psi}_{\alpha} \gamma^{\alpha \beta \sigma} D_{\beta} \psi_{\sigma}+\frac{3 i}{8} \bar{\psi}_{\alpha}\left(\gamma^{\alpha \beta \rho \sigma}+2 g^{\alpha \beta} g^{\rho \sigma}\right) F_{\beta \rho} \psi_{\sigma}+\frac{1}{2} \bar{\lambda} \gamma^{\alpha} D_{\alpha} \lambda+\frac{3 i}{16} \bar{\lambda} \gamma^{\mu \nu} F_{\mu \nu} \lambda \\
&+\frac{1}{2} e^{-4 B}\left(3 \tau_{2}\left(b D_{\mu} \bar{b}-\bar{b} D_{\mu} b\right) \bar{\lambda} \gamma^{\mu} \lambda+\frac{3}{2}\left(1+8 \tau_{2}|b|^{2}\right) \bar{\lambda} \lambda\right) \\
&+e^{-4 B}\left(-\frac{3}{2} \bar{\psi}_{\alpha} \gamma^{\alpha \sigma} \psi_{\sigma}+\tau_{2}\left(\bar{b} D_{\beta} b-b D_{\beta} \bar{b}\right) \bar{\psi}_{\alpha} \gamma^{\alpha \beta \sigma} \psi_{\sigma}\right) \\
&+\tau_{2}^{1 / 2} e^{-4 B}\left(D_{\mu} b \bar{\psi}_{\alpha} \gamma^{\mu} \gamma^{\alpha} \lambda+3 b \bar{\psi}_{\alpha} \gamma^{\alpha} \lambda+h . c .\right) \\
&+\frac{e^{-2 B}}{\tau_{2}^{1 / 2}\left(-b \bar{\psi}_{\alpha} \gamma^{\alpha \beta \sigma} \partial_{\beta} \tau \psi_{\sigma}^{c}+\tau_{2}^{1 / 2} \bar{\psi}_{\alpha} \gamma^{\mu} \partial_{\mu} \tau \gamma^{\alpha} \lambda^{c}+h . c .\right),} \begin{array}{l}
e^{4 B}=1-4 \tau_{2}|b|^{2}
\end{array}
\end{aligned}
$$

Embedded a holographic superconductor model into $\mathcal{N}=2$ supergravity
[Gubser, Herzog, Pufu, Tesileanu]

## Outline

> "Real World" Motivations - gauge/gravity duality

> Theoretical Motivations - (for this work)

> Consistent Truncations of IIB Supergravity on Sasaki-Einstein Manifolds

Final Comments

## Useful for other types of compactifications?

Can "pull-in" radial coordinate and relate these truncations to cone compactifications:

$$
d s_{10}^{2}=\underbrace{e^{2 Y(r)} h_{\mu \nu}(x) d x^{\mu} d x^{\nu}+e^{2 X(r)}\left[d r^{2}\right.}_{d s_{5}^{2}}+e^{2 Z(r)} d s^{2}\left(S E_{5}^{\text {squashed }}\right)]
$$

## Useful for other types of compactifications?

Can "pull-in" radial coordinate and relate these truncations to cone compactifications:

$$
d s_{10}^{2}=\underbrace{e^{2 Y(r)} h_{\mu \nu}(x) d x^{\mu} d x^{\nu}+e^{2 X(r)}\left[d r^{2}\right.}_{d s_{5}^{2}}+e^{2 Z(r)} d s^{2}\left(S E_{5}^{\text {squashed }}\right)]
$$

Allows for relation to some classes of flux compactifications

- For $S E_{5}=T^{1,1}$ can reproduce the Klebanov-Strassler solution


## Useful for other types of compactifications?

Can "pull-in" radial coordinate and relate these truncations to cone compactifications:

$$
d s_{10}^{2}=\underbrace{e^{2 Y(r)} h_{\mu \nu}(x) d x^{\mu} d x^{\nu}+e^{2 X(r)}\left[d r^{2}\right.}_{d s_{5}^{2}}+e^{2 Z(r)} d s^{2}\left(S E_{5}^{\text {squashed }}\right)]
$$

Allows for relation to some classes of flux compactifications

- For $S E_{5}=T^{1,1}$ can reproduce the Klebanov-Strassler solution
- Perhaps these truncations can be utilized to find other such solutions?


## Useful for other types of compactifications?

Can "pull-in" radial coordinate and relate these truncations to cone compactifications:

$$
d s_{10}^{2}=\underbrace{e^{2 Y(r)} h_{\mu \nu}(x) d x^{\mu} d x^{\nu}+e^{2 X(r)}\left[d r^{2}\right.}_{d s_{5}^{2}}+e^{2 Z(r)} d s^{2}\left(S E_{5}^{\text {squashed }}\right)]
$$

Allows for relation to some classes of flux compactifications

- For $S E_{5}=T^{1,1}$ can reproduce the Klebanov-Strassler solution
- Perhaps these truncations can be utilized to find other such solutions?
- Application is somewhat limited - can only describe dependence on radial "cone" coordinate - r.


## Some loose ends and future work...

## What about stability of these truncations?

- Should analyze spectrum of fluctuations of these truncations about vacuum solutions $-A d S_{5} \times S^{5}$ vacuum is stable - what about other solutions?


## Some loose ends and future work...

## What about stability of these truncations?

- Should analyze spectrum of fluctuations of these truncations about vacuum solutions - $A d S_{5} \times S^{5}$ vacuum is stable - what about other solutions?
- Similar non-supersymmetric solutions of truncations in M-theory found to be unstable [Bobev, Halmagyi, Pilch, Warner]


## Some loose ends and future work...

## What about stability of these truncations?

- Should analyze spectrum of fluctuations of these truncations about vacuum solutions - $A d S_{5} \times S^{5}$ vacuum is stable - what about other solutions?
- Similar non-supersymmetric solutions of truncations in M-theory found to be unstable [Bobev, Halmagyi, Pich, Warner]
- Maybe supersymmetric solutions stable?


## Some loose ends and future work...

## What about stability of these truncations?

- Should analyze spectrum of fluctuations of these truncations about vacuum solutions $-A d S_{5} \times S^{5}$ vacuum is stable - what about other solutions?
- Similar non-supersymmetric solutions of truncations in M-theory found to be unstable [Bobev, Halmagyi; Pilch, Warner]
- Maybe supersymmetric solutions stable?
- Perhaps analyzing superpotentials could lead to new supersymmetric solutions?


## Some loose ends and future work...

What about stability of these truncations?

- Should analyze spectrum of fluctuations of these truncations about vacuum solutions - $A d S_{5} \times S^{5}$ vacuum is stable - what about other solutions?
- Similar non-supersymmetric solutions of truncations in M-theory found to be unstable [Bobev, Halmagyi, Pich, Warner]
- Maybe supersymmetric solutions stable?
- Perhaps analyzing superpotentials could lead to new supersymmetric solutions?

Constructing non-relativistic solutions

- There has been work relating these truncations and similar constructions to non-relativistic geometries [Narayan, Balasubramanian; Gauntlett, Donos; Kraus, Perlmutter; Cassani, Faedo; Halmagyi, Petrini, Zaffaroni]


## Some loose ends and future work...

Truncations on the five-sphere?
Given the relative ease of these constructions can one consider going back to $S^{5}$ and working out consistent truncation to the full massless sector of the $\mathcal{N}=8$ theory?

## Some loose ends and future work...

Truncations on the five-sphere?
Given the relative ease of these constructions can one consider going back to $S^{5}$ and working out consistent truncation to the full massless sector of the $\mathcal{N}=8$ theory?

- Truncation to $\mathbf{2 0}$ ' scalars and $\mathbf{1 5}$ vectors known [Cvetič,Lü,Pope,Sadrzadeh,Tran]
- $\mathbf{1}+\overline{\mathbf{1}}$ scalars from axi-dilaton
- $\mathbf{1 0}+\overline{\mathbf{1 0}}$ scalars and $\mathbf{6}+\overline{\mathbf{6}}$ tensors come from 3-forms
- Keeping entire massless sector of $\mathcal{N}=8$ perhaps not as bad as anticipated?

Thank you!


[^0]:    [Cassani, Dall'Agata, Faedo; Gauntlett, Varela; Bah, Faraggi, Jottar, Leigh, Pando Zayas]

