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Black hole entropy

Gas with
entropy S

Suppose we throw a box of gas into a black hole

The gas disappears, and we seem to have reduced the
entropy of the Universe

Have we violated the second law of thermodynamics ?



The twist operator
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So we save second law of thermodynamics ...

Suppose we assume that the hole 
has an entropy

Then
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(Bekenstein ’72,
 Hawking ’74)



The entropy puzzle

The black hole has entropy  

Statistical Mechanics says that
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Thus the black hole should have         states
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Solar mass :                  states
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Where are these states ?
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Fix M, look for small distortions of the hole ...

Find NO allowed distortions: 

Black hole geometry completely fixed by 
its conserved quantum numbers: 
mass, charge, angular momentum

This would mean
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Where are the states of the black hole ?

‘Black holes have no hair’ (John Wheeler)
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Where are the states of the black hole ?

‘Black holes have no hair’ (John Wheeler)



A more serious (but related) problem:
        The information paradox



+
_

e+e-

Schwinger pair production process
(interesting, but not a problem !)

State of created quanta is entangled

↑↓ − ↓↑

Sent = ln 2

Entanglement entropy

After      steps 

Sent = N ln 2

N



The information problem

⊗ |0�2|0�2� + |1�2|1�2�

⊗ |0�n|0�n� + |1�n|1�n�

. . .

⊗ |0�1|0�1� + |1�1|1�1�

ΨM

Schwinger process 
in the gravitational 
field



Possibilities

Sent = N ln 2

To have this entanglement, the remnant 
should have at least       internal states 2N

But how can we have an unbounded 
degeneracy for objects with a given 
mass ?

Planck mass 
remnant

Sent = N ln 2

Complete 
evaporation

The radiated quanta are in an entangled 
state, but there is nothing that they are 
entangled with !

They cannot be described by any 
wavefunction, but only by a density matrix

failure of quantum mechanics



The two problems are related ...

A normal body emits radiation 
from its surface, so that the 
radiation depends on the 
microstate. In the black hole the 
radiation is pulled from the 
vacuum

A normal body has visible
microstates, so the entropy
can be found by counting 
them



What do string theorists say ?



The entropy problem :  

                    Does                   represent a count of states ? Sbek =
A

4G

(A) There are 10 - 4 = 6 compact directions in string theory

(B) The coupling constant     is a free modulus that we can varyg

(C) If we look at states with mass = charge, then their number
      does not change with      (supersymmetric protection of BPS 
      states) 

g



g → 0 g large

All charges are obtained by 
wrapping strings, branes etc 
along compact directions

Smicro = 2π
√
n1n2n3

Entropy is given through number 
of intersection points

Expect that gravitational field will 
extend around branes to make a 
black hole 

Find

Sbek ≡ A

4G
= 2π

√
n1n2n3

(Susskind 93, Sen 95, 
Strominger-Vafa 96 ...)

Thus         is a count of states Sbek



The information problem :  What happens to the entanglement ?

⊗ |0�2|0�2� + |1�2|1�2�

⊗ |0�n|0�n� + |1�n|1�n�

. . .

⊗ |0�1|0�1� + |1�1|1�1�

ΨM

String theorists:  String theory is unitary, so there
should be no problem, really

GR folks:  But what is the resolution to the problem?  
Hawking has an explicit computation, and you have not 
shown us what is wrong with it !!



⊗ |0�2|0�2� + |1�2|1�2�

⊗ |0�n|0�n� + |1�n|1�n�

. . .

⊗ |0�1|0�1� + |1�1|1�1�

ΨM

+ δψ1

+ δψ2

+ δψn

There will of course be small corrections to
 the leading order Hawking computation

Small correction to a large number of pairs 
will (hopefully) disentangle the inner and outer quanta

String
theorists



You must think we are such fools.  

We know there will always be small corrections from 
quantum gravity.

If that could remove the entanglement, why would
we be worrying about the information paradox for
35 years ?

⊗ |0�2|0�2� + |1�2|1�2�

⊗ |0�n|0�n� + |1�n|1�n�

. . .

⊗ |0�1|0�1� + |1�1|1�1�

ΨM

+ δψ1

+ δψ2

+ δψn

GR folks



Kip 
Thorne

John 
Preskill

Stephen 
Hawking

In 2005, Stephen Hawking surrendered his bet to John Preskill,
based on such an argument of ‘small corrections’ ...

 (Subleading saddle points in a Euclidean path integral give 
exponentially small corrections to the leading order evaporation 
process)

But Kip Thorne did not agree to 
surrender the bet ...



So who is right ?

+
_

e+e-

entangled
 pairs

1√
2
(↑↓ − ↓↑)⊗ 1√

2
(↑↓ − ↓↑) . . .

+ corrections

Sent ≈ N ln 2

Schwinger process



For               the surface                       is spacelike                   

From (??) we are given that

||ψ2||2 = �ψ2|ψ2� ≡ �21 < �2 (65)

|�ψ1|ψ2�| ≡ �2 < � (66)

S(p) = (�21 − �22) ln
e

(�21 − �22)
+O(�3) < � (67)

SN+1 > SN + ln 2− 2� (68)

ds
2 = − (1− 2M

r
)dt2 +

dr2

(1− 2M
r )

+ r
2(dθ2 + sin2 θdφ2) (69)

r > 2M r < 2M t = constant r = constant (70)
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The black hole is described by the Schwarzschild 
metric

The black hole
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Crucial point about the black hole: 
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r=0 horizon

t=constant

r=constant

We have to draw spacelike slices to foliate spacetime

(no time-independent 
slicing possible)



Entangled pairs

The Hawking process

Stretching of spacetime 
causes field modes to 
get excited



r=0 horizon

correlated pairs

Older quanta move apart

initial matter

Hawking state

E = hν =
hc

λ
(38)

|�ψ�|H|ψ� − �ψ�|Hs.c.|ψ�| ≤ � (39)

lp � λ � Rs (40)

2� (41)

|ξ1� =
1√
2

�
|0�|0�+ |1�|1�

�
(42)

|ξ2� = √
2

�
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�
(43)

SN+1 = SN + ln 2 (44)

S = Ntotal ln 2 (45)

|ψ� → |ψ1�|ξ1�+ |ψ2�|ξ2� (46)

||ψ2|| < � (47)

SN+1 < SN (48)

SN+1 > SN + ln 2− 2� (49)

S(A) = −Tr[ρA ln ρA] (50)

bN+1 cN+1 {b} {c} p = {cN+1 bN+1} (51)

S({b}+ p) > SN − � (52)

S(p) < � (53)

S(cN+1) > ln 2− � (54)

S({b}+ bN+1) + S(p) > S({b}) + S(cN+1) (55)

S(A+B) + S(B + C) ≥ S(A) + S(C) (56)

S({b}+ bN+1) > SN + ln 2− 2� (57)

S(A+B) ≥ |S(A)− S(B)| (58)

lp N
α
lp (59)

SN = S({b}) (60)

A = {b} B = p = {bN+1 + cN+1} (61)

A = {b} B = bN+1 C = cN+1 (62)

S({b}+ bN+1) + S(p) ≥ S({b}) + S(cN+1) (63)

3

10    light years
77

(We will use a discretized 
picture for simplicity; for 
full state see e.g. Giddings-
Nelson)



Hawking’s argument
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3

:  Entanglement entropy 
   after N pairs have 
   been created 

The radiation state (green quanta) are highly entangled with the infalling 
members of the Hawking pairs (red quanta)
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Entangled state

If the black hole 
evaporates away,
we are left in a 
configuration which 
cannot be described 
by a pure state 

(Radiation quanta are 
entangled, but there is 
nothing that they are 
entangled with)

We can get a remnant
with which the radiation
is highly entangled



So what can small corrections do ?

Rules of the game:

(a) The region where pairs are being produced has ‘normal evolution’; 
i.e. vacuum modes evolve as expected upto corrections of order

(b) The stuff inside the hole can be reshuffled in any way we want, but 
the quanta that have left cannot be altered

�

� � 1
Making rigorous the 
statement that 
‘Nothing happens 
at the horizon’

1√
2

�
|0�1|0�1� + |1�1|1�1�

�

+ �
1√
2

�
|0�1|0�1� − |1�1|1�1�

�



Theorem:  Small corrections to Hawking’s leading order 
                computation do NOT remove the entanglement

(SDM 09)
δSent

Sent
< 2�

Bound does not depend on the number of pairs N

A

B C

D
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etc.

Basic tool : Strong Subadditivity (Lieb + Ruskai ’73)



_
In Schwinger process
or in black hole: 
Entanglement rises with
each emission

Cannot resolve the
problem as long as
corrections to low 
energy dynamics are 
small at the horizon

Conclusion:



An order unity correction at the horizon means that we need ‘hair’ ..

Thus we have a conflict between two ‘theorems’: 

(a) The Hawking argument, supplements by the inequality that   
     shows its robustness to small corrections

(b) The ‘no hair theorem’, which encodes our failure to find
     any alternative to the black hole geometry



So, what is the resolution? 

(Avery, Balasubramanian, Bena, Chowdhury, de Boer, 
Gimon, Giusto, Keski-Vakkuri, Levi, Maldacena, Maoz, 
Park, Peet, Potvin, Ross, Ruef, Saxena, Skenderis, 
Srivastava, Taylor,  Turton, Warner ...)



The traditional expectation ...

|n�total = (J−,total
−(2n−2))

n1n5(J−,total
−(2n−4))
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Size of bound states grows with coupling, number of branes ...

(SDM 97)



Start with the simplest microstates:
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wrapped on compact directions

No horizon, no singularity ... so we do not get the traditional hole ...
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Many such constructions have been done ...

General lesson:  Eigenstates in string theory do not have a
                        traditional horizon

That is, there is no smooth region straddling the horizon where 
low energy pair modes evolve as expected on gently curved 
spacetime

Geometry can be different from the traditional hole, or more 
generally, there is no geometry, just a quantum ‘fuzz’
              fuzzballs



Thus we have finally found the ‘hair’ for black holes ...

Nature of the hair: 

Compact directions make
locally nontrivial fibrations over 
the noncompact directions

small compact 
direction circle Angular sphere of 

noncompact directions

eSbek states upon quantization

Thus the hair are fundamentally a nonperturbative construct 
involving the extra dimensions ...
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3 Constructing the gravity duals

In [?] the 2-charge D1-D5 solutions were found by dualizing to the FP system, which has
a fundamental string (F) wrapped on S1 carrying momentum (P) along S1. Metrics for
the vibrating string were constructed, and dualized back to get D1-D5 geometries. The
general geometry was thus parametrized by the vibration profile �F (v) of the F string.
But a 1-parameter subfamily of these D1-D5 geometries had been found earlier [?, ?], by
looking at extremal limits of the general axially symmetric D1-D5 geometry found in [?].

We do not have an analogue of the procedure of [?] for 3-charge systems. We will
follow instead the analogue of [?, ?] and take an extremal limit of the general 3-charge
solution to obtain solutions with D1, D5 and P charges. Taking the limit needs some
care, and it will be important to know in advance the properties of the CFT states for
which we will be finding the duals. The procedure will give us the duals of the states
|n�total which were discussed in the last section. We will find that the dual geometries
are completely smooth, with no horizon and no singularity.

3.1 Spectral flow in the gravity description

In [?, ?] the following 2-charge D1-D5 solution was found (setting Q1 = Q5 = Q for
simplicity)
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Let R >>
√

Q. In the region r <<
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Q the geometry (??) becomes

ds2 = −(r2 + a2 cos2 θ)

Q
(dt2 − dy2) + Q

�
dθ2 +

dr2

r2 + a2

�
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√
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V4LM

∼ ls ∼ lp ∼ (n1n5)αlp

L, V4, g

AdS3 × S3 × T 4

4

Geometry for simple
state (winding =1)

Generic D1D5P CFT state
Simple states: all components the same,
excitations fermionic, spin aligned
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N , and we get a cancellation of the factors r

2
N . We will

see below that in the extremal metric the point rN = 0 acts like an origin of polar
coordinates, so the choice (??) is the correct one to define a coordinate rN with range
(0,∞).

We also find that other terms in the metric and gauge field are finite in the extremal
limit; this can be verified using (??),(??). We get the extremal solution (in the string
frame)
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4.2 Taking the extremal limit

To get the extremal limit we must take

M → 0, δi →∞ (i = 1, 5, p) (4.11)

keeping the Qi fixed. This gives

cosh2 δi =
Qi

M
+

1

2
+ O(M)

sinh2 δi =
Qi

M
− 1

2
+ O(M) (4.12)

We must also take suitable limits of a1, a2 so that the angular momenta are held fixed.
It is useful to invert (??):

a1 = −
√

Q1Q5

M

γ1 cosh δ1 cosh δ5 cosh δp + γ2 sinh δ1 sinh δ5 sinh δp
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γ2 cosh δ1 cosh δ5 cosh δp + γ1 sinh δ1 sinh δ5 sinh δp

cosh2 δ1 cosh2 δ5 cosh2 δp − sinh2 δ1 sinh2 δ5 sinh2 δp

(4.13)

Using (??) we find
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where we have defined the dimensionless combination

η ≡ Q1Q5

Q1Q5 + Q1Qp + Q5Qp
(4.15)

and in the second equalities we have used the specific values for γ1 and γ2 given in (??).
We thus see that for generic values of γ1, γ2 and Qp the parameters a1 and a2 diverge

when M → 0. There are two exceptions:
(a) Qp = 0, which is the case considered in [?, ?]; in this case a1 and a2 go to finite values
when M → 0.
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(Giusto SDM Saxena 04)



How does Hawking radiation arise ?



The Black Hole



Spinning star
causes ‘frame-dragging’

Far away light cones
are close to normal

Close by, light cones tilt so much that 
every object MUST rotate
                           ERGOREGION

A curiousity: 
    Ergoregions



Hawking radiation

Traditional picture

Ergoregion

Actually radiation comes out 
just like from any other 
object, not from the vacuum
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Hawking radiation

Traditional picture

Ergoregion

Actually radiation comes out 
just like from any other 
object, not from the vacuum



Why does semiclassical intuition fail ?



??

Shell collapses to make a black hole ...



Consider the amplitude for the shell to tunnel to a fuzzball state

Amplitude to tunnel is very small

But the number of states that one can tunnel 
to is very large !



Toy model:  Small amplitude to tunnel to a neighboring well, but there
                  are a correspondingly large number of adjacent wells

In a time of order unity, the wavefunction in the central well becomes a 
linear combination of states in all wells  (SDM 07)
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Measure has 
degeneracy of states

Action determines 
classical trajectory

For traditional macroscopic objects the measure is order      while the
action is order unity
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Path integral

But for black holes the 
entropy is so large that the 
two are comparable ...

We have a failure of the 
semiclassical approximation ...
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What happens if someone falls into a black hole ?

(SDM+Pumberg 2011)

(a) Low energy dynamics (E ∼ kT )

No horizon, radiation from ergoregions, so radiation 
like that from any warm body

no information loss since radiation depends on choice 
of microstate 

(b) Correlators in high energy infalling frame (E � kT )

ψk

ψk

Collective oscillations of fuzzball gives Green’s functions that
equal Green’s functions in empty space ....



Summary



(A) The black hole information paradox is a serious problem: It does not
      allow GR to be consistent with quantum unitarity

⊗ |0�2|0�2� + |1�2|1�2�

⊗ |0�n|0�n� + |1�n|1�n�

. . .

⊗ |0�1|0�1� + |1�1|1�1�

ΨM

Inequality shows that there is no way around this problem unless we 
have an order unity change to low energy evolution at the horizon



(B) The problem then is the ‘no hair theorem’ which prevented us from 
     finding any significant change to the evolution at the horizon

(C) In String theory we can now make explicit constructions of the 
      microstates of the black hole. It turns out that they do have ‘hair’;
       in fact a horizon never forms
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(74)

mk ∼
G5

G2
4

∼ D2

G5
(75)
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∼
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∼
√

n1n5 ∼ S

e2π
√
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√

n1np

1 +
Q1

r2

1 +
Qp
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e2π
√
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√

n1n5

w = e−i(t+y)−ikz w̃(r, θ, φ) (10)

B(2)
MN = e−i(t+y)−ikz B̃(2)

MN(r, θ, φ) , (11)

2

weak 
coupling

strong
coupling



(D) One can then ask how semiclassical intuition failed.  
      The reason can be traced to the large entropy of gravitational 
      states of the black hole, which made the measure in the path integral 
      compete with the classical action

λ ∼ R (15)

∆t ∼ R

c
(16)

tevap ∼
G2M3

�c2
(17)

T =
1

8πGM
=

dE

dS
(18)

tevap ∼ 1063 years (19)

eS (20)

S = ln(# states) (21)

101077
(22)

S =
c3

�
A

4G
→ A

4G
(c = � = 1) (23)

S = ln 1 = 0 (24)

Ψ ρ (25)

A ∼ e−Sgrav , Sgrav ∼
1

16πG

�
Rd4x ∼ GM2 (26)

# states ∼ eS , S ∼ GM2 (27)

A = 0 Sbek =
A

4G
= 0 Smicro = ln(1) = 0 (28)

�F (y − ct) (29)

n1 np e4π
√

n1np (30)

Smicro = 4π√n1np Sbek−wald = 4π
√

n1np Smicro = Sbek (31)

Ψf = e−iHtΨi Ψi = eiHtΨf (32)

S ∼ E
3
4 S ∼ E S ∼ E2 S ∼ E

9
2 (33)

H = Hvacuum + O(�) � (34)

Z =
�

D[g]e−
1
� S[g] (35)

2
This should be a basic lesson for the behavior of quantum gravity in general, 
in all situations where we have a sufficiently large density of quanta ...
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?

Radiation

String gas/
brane gas

Fractional brane gas:
The stuff inside
black holes

Matter is also 
crushed to high 
densities in the 
early Universe ...

So these lessons on 
phase space may  
radically change our 
picture of the 
dynamics there ...

(E) Cosmology





The infall problem

    What happens to an object (E >> kT) that falls into the black hole? 
   
     What does an infalling observer ‘feel’ ?

??

Low energy radiation
modes are corrected by 
order unity, no information 
loss in process of creation

Is it possible that the dynamics of high
energy infalling objects can approximated 
by the traditional black hole geometry in 
some way?



Now we know that black hole microstates are fuzzballs. let us see if we can do 
any better ...

Central part of eternal black hole diagram looks like a piece of 
Minkowski spacetime,  Horizons look like Rindler horizons

So complementarity looks as strange as asking that we get destroyed at a 
Rindler horizon, and in a dual description we continue past the horizon



Rindler space:  Accelerated observers see a thermal bath

t = R sinh τ

x = R cosh τ

Minkowski spacetime

Right Rindler
Wedge

Left Rindler
Wedge

R = R0

τ = τ0

t

x

R = R0An observer moving along 
sees a temperature 

T =
1

2πR0

The Minkowski vacuum can be 
written an an entangled sum of 
Rindler states 

|0�M =
�

k

e−
Ek
2π |Ek�L R�Ek|



An observation

If there is a scalar field    ,
then the Rindler states will
have a bath of scalar quanta

φ If      has a        interaction, 
then this bath of scalar quanta
will be interacting

φ φ3

The graviton is a field that is
always present, so we will have
a bath of (interacting) gravitons

Thus expect fully nonlinear 
quantum gravity near Rindler 
horizon



Rindler coordinates ‘end’ at 
the boundary of the wedge

Thus it is logical to expect that the gravity 
solution for Rindler states should also ‘end’

But this is exactly what fuzzball microstates do !

|0�M =
�

k

e−
Ek
2π |Ek�L R�Ek|

=
� ⊗

Thus we expect :



Black Holes : Israel (1976):  The two sides of the eternal black hole 
are the two entangled copies of a thermal system in 
thermo-field-dynamics

Re[t]Im[t]

Maldacena (2001):  This implies that the dual to the 
eternal black hole is two entangled copies of a CFT

Van Raamsdonk (2009):  CFT states are dual to 
gravity solutions ... so we should be able to write 
an entangled sum of CFT states as an entangled 
sum of gravity states ...



�
⊗ =

Thus we can expect that summing over fuzzball microstates will generate the 
eternal black hole spacetime 

(SDM + Plumberg 
                 2011)

Is it reasonable to expect that sums over (disconnected) gravitational 
solutions can be a different (connected) gravitational solution ?

Something like this happens in 2-d Euclidean CFT ...

The fuzzball microstates do not have horizons, but the eternal black 
hole spacetime does ...



ψk ψk

�

k

e−τhk−τ̄ h̄k ⊗ =

‘Sewing’ process in CFT



(a) Low energy dynamics (E ∼ kT )

No horizon, radiation from ergoregions, so radiation 
like that from any warm body

no information loss since radiation depends on choice 
of microstate 

(b) Correlators in high energy infalling frame (E � kT )

ψk

ψk

for generic 
states ψk

�
⊗

m
ψm ψm

�ψk|Ô1Ô2|ψk� ≈
�

m

e
−βEm�ψm|Ô1Ô2|ψm�

≈




