

# The Ongoing Radium EDM Experiment

Matt R. Dietrich Physics Division Argonne National Lab

**Supported by DOE Office of Nuclear Physics** 



# **Electric Dipole Moments and Discrete Symmetries**

Electric dipole moment (EDM):

- \* displacement vector from a particle's center of mass to its center of charge.
- \* violates both *P*-parity (spatial inversion) and *T*-time reversal symmetries:



Assuming the combination of *C*-charge conjugation (particle <-> antiparticle), *P*, and *T* is conserved:

- \* T-violation implies CP-violation
- \* EDMs are a very sensitive probe of CP-violation

#### **EDM Sectors**





 $h\nu = \frac{\mu B}{S}$ 







# Schiff Moments and EDMs





Schiff Theorem (1963):

\* Any permanent dipole moment of the nucleus is perfectly shielded by its electron cloud

\* True for point-like nuclei, nonrelativistic electrons

However, the "Schiff moment" is not shielded by this effect

\* Zero for point-like, spherical nuclei

\* Arises from deformations in the nucleus or its constituent nucleons

\* Very large in nuclei with both a quadrupole and octupole deformation

Look for heavy nuclei with large quadrupole and octupole deformations!

# The Seattle EDM Experiment



#### Properties of Hg-199 and experiment

- Stable
- Spin I=½ nucleus (no quadrupole moment)
- Nuclear T2 ~ 100-200 seconds
- High Vapor Pressure, 4\*10^13 cm<sup>-3</sup> at room temperature
- High Z=80
- Nearly spherical nucleus
- Glass cell limits E field to 10 kV/cm
- Leakage current through cell is leading systematic

EDM(Hg-199) < 3 x 10^-29 e cm

If Hg nucleus is size of earth, then this is two charges separated by 220 pm

Griffith et al., Phys Rev Lett (2009)



Unit

EDM

+e

### Candidate Nuclei



#### Candidate Nuclei



# **Enhanced EDM Sensitivity in Ra-225**





A large quadrupole and octupole deformation results In an enhanced Schiff moment – Auerbach, Flambaum & Spevak (1996)

Relativistic atomic structure weakens the Schiff theorem, resulting in a strong enhancement with increasing Z (<sup>225</sup>Ra/<sup>199</sup>Hg ~ 3)

– Dzuba, Flambaum, Ginges, Kozlov (2002)

University of Virginia Nuclear Physics Seminar

55 keV  $\Psi^{-} = (|\alpha\rangle - |\beta\rangle)/\sqrt{2}$ 

 $\Psi^{+} = (|\alpha\rangle + |\beta\rangle)/\sqrt{2}$ A closely spaced parity doublet enhances the appearance of parity violating terms in the underlying Hamiltonian

– Haxton & Henley (1983)

$$S \propto \sum_{i \neq 0} \frac{\left\langle \psi_0 \left| \hat{S}_z \right| \psi_i \right\rangle \left\langle \psi_i \left| \hat{H}_{PT} \right| \psi_0 \right\rangle}{E_i - E_0} + c.c.$$

#### Enhancement Factor: EDM (<sup>225</sup>Ra) / EDM (<sup>199</sup>Hg)

| Skyrme Model | Isoscalar | Isovector | lsotensor |
|--------------|-----------|-----------|-----------|
| SIII         | 300       | 4000      | 700       |
| SkM*         | 300       | 2000      | 500       |
| SLy4         | 700       | 8000      | 1000      |

Schiff moment of <sup>225</sup>Ra, Dobaczewski, Engel (2005) Schiff moment of <sup>199</sup>Hg, Ban, Dobaczewski, Engel, Shukla (2010)

### **Radium Source**



• Up to 30 mCi (750 ng, 2\*10^15 atoms) <sup>225</sup>Ra sources from:

National Isotope Development Center (Oak Ridge, TN)

- Test source: 5 μCi (5 μg, 1.3\*10^16 atoms) <sup>226</sup>Ra
- •Integrated Atomic Beam Flux ~  $10^9$ /s  $^{226}$ Ra,  $10^7 10^8$ /s  $^{225}$ Ra
- •Special Thanks: John Greene, Angel Garcia, Dave Fieramosca
- •Vapor pressure 10^13 cm<sup>-3</sup>... at 450C

# Basic Radium Energy Level Diagram



- Level scheme similar to Sr, Yb
- 1P1 state leaky to metastable D

states

Operate instead on

intercombination line at 714 nm

• 900 mW 714 nm provided by

Ti:Saph, 300 mW 1429 nm provided

by pigtailed diode

- Blackbody repumping
- Tremendous DC Stark shift (10<sup>5</sup>

a.u)

# **Collect Atoms in MOT**



# Apparatus



# **Contradicting Requirements**



# **Contradicting Requirements**







 $U = -\frac{1}{2}\alpha E^2$ 



 $U = -\frac{1}{2}\alpha E^2$  $= -\frac{1}{2} \alpha \left\langle E^2 \right\rangle$ 

 $\propto -I$ 



Y. Arai et al., Nature 399, 446 [1999]

 $U = -\frac{1}{2}\alpha E^2$  $=-rac{1}{2}lpha\left\langle 
ight.$  $E^{2}$  $\propto -I$ 

# Transfer Atoms from MOT to "Bus" ODT



#### "Bus" ODT Atom Transport to Science Chamber



# **Unsuitability of Traveling Wave ODT**

**5 mm** 



B Field inhomogeneities Reduced Coherence



DC Stark Shift Atom Clumping/Shifting

# **Unsuitability of Traveling Wave ODT**

5 mm



B Field inhomogeneities Reduced Coherence

- $\epsilon$  ODT E Field Polarization
- b ODT B Field Polarization

Static E Field

#### $\sigma$ Atom Spin

 $\frac{(\epsilon \cdot \sigma)(E \cdot b)}{(E \cdot \epsilon)(b \cdot \sigma)}$ 



DC Stark Shift Atom Clumping/Shifting

Stark Interference

- ODT electric field interferes with the static E field to produce an EDM like signal
- Effect is suppressed with standing wave
- M. V. Romalis and N.
   Fortson, PRA 59, 6 4547 (1999)

# **Unsuitability of Traveling Wave ODT**

5 mm



B Field inhomogeneities Reduced Coherence

- $\epsilon$  ODT E Field Polarization
- b ODT B Field Polarization

Static E Field

 $\sigma$  Atom Spin

 $(\epsilon \cdot \sigma)(E \cdot b)$  $(E \cdot \epsilon)(b \cdot \sigma)$ 

Solution: Standing Wave ODT



DC Stark Shift Atom Clumping/Shifting

Stark Interference

- ODT electric field interferes with the static E field to produce an EDM like signal
- Effect is suppressed with standing wave
- M. V. Romalis and N.
   Fortson, PRA 59, 6 4547 (1999)

# **Standing and Traveling Wave**



# Standing and Traveling Wave





Traveling Wave "Bus" ODT





**HV Electrodes** 





# **Ra-225 Trapping and Transport**



~100-200 Ra-225 Atoms in Bus ODT

# **Ra-225 Trapping and Transport**



~100-200 Ra-225 Atoms in Bus ODT

~50-100 Ra-225 Atoms in Holding ODT

















# **Optical Pumping and State Detection**



# **Optical Pumping and State Detection**





#### University of Virginia Nuclear Physics Seminar

Fluorescence (a.u.)

# **Precession of Radium 225**



#### And for our final trick...



# **Status at Time of Precession**

$$\sigma_d^{\text{stat}} \ge \frac{\hbar}{2E\sqrt{\varepsilon N\tau T}}$$

7

| parameter                         | During last Ra-<br>225 Run | near term goal<br>for Ra-225 | comments                                         |
|-----------------------------------|----------------------------|------------------------------|--------------------------------------------------|
| <i>E</i> , electric field (kV/cm) | 0                          | 100                          | Install Completed HV System                      |
| au, storage time (s)              | 7                          | 100                          | Vacuum Upgrade                                   |
| N, # of atoms                     | 10 <sup>2</sup>            | 10 <sup>3</sup>              | Vacuum upgrade, increased activity, extra repump |
| <i>ɛ</i> , efficiency             | ~0.003                     | 0.1                          | STIRAP, increased atom number                    |
| T, integration time (days)        | ~3                         | 10                           | Improve data collection procedures               |

#### Phase 1 goal of $3*10^{-26} e$ cm (1 $\sigma$ ) is competitive with the best limits from Hg-199

### Vacuum Upgrade



~ 5 x 10^-11 Torr



100 kV/cm University of Virginia Nuclear Physics Seminar

#### **Present Status**

| $\sigma^{\text{stat}} > -$ | $\hbar$                       |  |
|----------------------------|-------------------------------|--|
| $d \stackrel{\sim}{=} 2$   | $E\sqrt{\varepsilon N\tau T}$ |  |

| parameter                         | During last Ra-<br>225 Run | near term goal<br>for Ra-225 | comments                                         |
|-----------------------------------|----------------------------|------------------------------|--------------------------------------------------|
| <i>E</i> , electric field (kV/cm) | <b>1</b> 00                | 100                          | Install Completed HV System                      |
| au, storage time (s)              | >50                        | 100<br>s MOT                 | Vacuum Upgrade                                   |
| N, # of atoms                     | х8 g                       | 10 <sup>3</sup>              | Vacuum upgrade, increased activity, extra repump |
| <i>ɛ</i> , efficiency             | ~0.003                     | 0.1                          | STIRAP, increased atom number                    |
| T, integration time (days)        | ~3                         | 10                           | Improve data collection procedures               |

#### Phase 1 goal of $3*10^{-26} e$ cm (1 $\sigma$ ) is competitive with the best limits from Hg-199



# Phase 0 Measurement

- Using current parameters, move ahead with a demonstration run in the next few months
- Likely to result in an EDM limit near 10<sup>-24</sup> e cm
- Due to synergy with other experiments, even measurements in the 10<sup>-25</sup> to 10<sup>-24</sup> e cm range puts pressure on some regions of phase space (T. Chupp)
- After this, implement upgrades to reach Phase I goals

|             | Phase 0    | Phase I  | Phase II |
|-------------|------------|----------|----------|
| Goal (e cm) | 10^-24 (?) | 3*10^-26 | 10^-27   |

# Projections

| Limiting Effect         | Phase I (e cm) | Phase II w/Comagnetometer<br>(e cm) |
|-------------------------|----------------|-------------------------------------|
| Statistics              | 3*10^-26       | 10^-27                              |
| Leakage Current (10 pA) | 3*10^-27       | 5*10^-30                            |
| Stark Interference      | 5*10^-27       | 5*10^-30                            |
| Exv Effects             | < 2*10^-27     | 5*10^-30                            |
| Geometric Phase         | 10^-35         | 10^-35                              |





I.C. Gomes, J. Nolen et al. Project X workshop, July 2012

Protons on thorium target: 1 mA x 1000 MeV = 1 MW

Predicted yields of some important isotopes:

 Radon:
  $^{211}$ Rn >10<sup>13</sup>
  $^{223}$ Rn ~10<sup>11</sup> /s

 Francium:
  $^{213}$ Fr
 >10<sup>13</sup>
  $^{221}$ Fr >10<sup>14</sup>
  $^{223}$ Fr >10<sup>12</sup> /s

 Radium:
  $^{223}$ Ra >10<sup>13</sup>
  $^{225}$ Ra >10<sup>13</sup> /s

 Actinium:
  $^{225-229}$ Ac >10<sup>14</sup> /s
 Compare 10<sup>8</sup> /s Today

### **Atoms Trappers @ Argonne**



# **STIRAP**

- For an EDM measurement, the free precession time is 100 seconds, and so the data cycle is very long. Thus our statistics need to be dramatically improved.
- Electron shelving technique allows us to increase number of photons from 3 to 1000 per atom, thereby overcoming this limitation



# **STIRAP**

- For an EDM measurement, the free precession time is 100 seconds, and so the data cycle is very long. Thus our statistics need to be dramatically improved.
- Electron shelving technique allows us to increase number of photons from 3 to 1000 per atom, thereby overcoming this limitation



# **ODT Lifetime**



- Our ODT lifetime now seems to be limited by laser noise, rather than vacuum
- May need to stabilize ODT power to achieve design lifetimes

# Fluorescence Collection System for Precession Measurement





- 60 mm focal length, 2" diameter singlet
- Solid Angle 4%
- Total Efficiency: 1e-3 (later 3e-4)

# **Shadow Imaging**

$$\mathrm{SNR} \approx \mathrm{N}^{1/2} \left(\frac{\sigma}{\mathrm{A}}\right)^{1/2} \frac{\mathrm{n}}{\sqrt{\mathrm{s}+1}}$$

• Achieve shot noise limit by careful background subtraction, not careful stabilization

• Effective collection efficiency at 1000 atoms: 1%



# Yields of Enhancer Isotopes: Ra, Rn, Fr

#### **Presently available**

- Decay daughters of <sup>229</sup>Th, National Isotope Development Center, ORNL
  - <sup>225</sup>Ra: 10<sup>8</sup>/s

#### Projected rates at FRIB (B. Sherrill, MSU)

- Beam dump recovery with a <sup>238</sup>U beam
  - Parasitic operation, available ~ 150 days per year
  - <sup>225</sup>Ra: 6 x 10<sup>9</sup> /s ; <sup>223</sup>Rn: 8 x 10<sup>7</sup> /s; <sup>208-220</sup>Fr: 10<sup>9</sup> -10<sup>10</sup> /s.
- Dedicated running with a <sup>232</sup>Th beam
  - <sup>225</sup>Ra: 5 x 10<sup>10</sup> /s ; <sup>223</sup>Rn: 1 x 10<sup>9</sup> /s; <sup>208-220</sup>Fr: 10<sup>10</sup> /s;

FRIB will produce isotopes with enhanced sensitivity to fundamental symmetries, and provide opportunities for discovering physics beyond the Standard Model.

# Zerodur Cavity Block



- Expected 1 MHz/K temperature drift
- Lock up to 6 lasers
- Suspended in standard 5 way cross with dowel pins

# **Rapid Interrogation Scheme**

- Each detection pulse is also a state preparation pulse
- Therefore, a rapid sequence of pulses can be used to collect many data points from a single batch of atoms
- Requires a high magnetic field, set precession frequency to ~ 6 kHz
- Increase data collection rate by x40



### Basic Radium Energy Level Diagram

