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In this talk: 
!

We have extended the powerful density matrix 
renormalization group (DMRG) to solve continuum 
electronic systems in 1d. 
!

One key application is studying density functional 
theory (DFT)—we can compute the exact functional. 
!

Which limitations of DFT come from approximations? 
!

Which are fundamental? 

DMRG
DFT



Outline: 
!

• DMRG for continuum systems 

• Exact density functional theory with DMRG 

• Applications: 

‣ Gaps in DFT 

‣ Convergence of the Kohn-Sham equations



What is DMRG?

“It is at the moment the closest to an ultimate 
weapon as one can dream of.” — T. Giamarchi

Controlled, essentially exact results

Linear scaling with system size (in 1d)

Full access to wavefunction

Dynamics, finite temperature

Parallelizable*

1d and narrow 2d systems

*Stoudenmire, White, PRB 87 155137, (2013)



How does DMRG work?

Lattice sites

Many-body wavefunction



How does DMRG work?

Freeze out all but a small 
piece of wavefunction

~



Solve Schrodinger 
equation exactly for 
remaining piece

H̃| ̃i = Ẽ| ̃i

~
H

How does DMRG work?



Shift exposed region, keeping only 
the most important states in the basis

~

How does DMRG work?



Shift exposed region, keeping only 
the most important states in the basis

~

How does DMRG work?



Example DMRG Calculation

Video available online: http://youtu.be/0zi4qUnSqe0

http://youtu.be/0zi4qUnSqe0


DMRG for continuum systems



Grid basis

Need discrete degrees of freedom 

Simplest approach is discretize real space:
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Hamiltonian
Want to study ‘uncontrived’ 1d physics
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Hamiltonian
What to choose for        ,                 ?

1d matter:

Also we choose:
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Why hasn’t DMRG been applied to these 
systems before?

• Cost of long-range interactions 

• Poor convergence—separation of energy scales



• Cost of long-range interactions

Normally DMRG scales            , 
with this approach  

/ N

N2 ⇥N = N3/

Disaster for the continuum! (N ⇠ 1000)



• Cost of long-range interactions

Fortunately solution recently proposed: 
!

 By writing Hamiltonian as a product of “transfer 
 matrices”* at each site, can represent arbitrary  
 strings of operators. 
!

    Choosing strings of operator       produces   
 exponentially decaying interactions.

�Î

McCulloch, arxiv:0804.2509 (2008)

* a matrix product operator (MPO)



• Cost of long-range interactions

Bottom line: 
 Cost of exponential interactions can be 
made same as next-neighbor

1
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+ + . . .=

Can approximate power-laws as sum of 
exponentials:

Crosswhite, Doherty, Vidal, PRB 78 035116, (2008)



Why hasn’t DMRG been applied to these 
systems before?

• Poor convergence—separation of energy scales



• Poor convergence—separation of energy scales

At least 3 widely varying energy scales in our 
systems:

Grid kinetic energy (~1/a2)

Density fluctuation (U)

Spin fluctuation (t2/U)
>
>
>

>
>



Unusual situation for DMRG: 
!

Typically concerned about cost of “keeping 
enough states” for good accuracy. 
!

Here number of states ~100 (small) but number 
of sweeps needed can be ~1000 or more.

• Poor convergence—separation of energy scales



Solution: make better initial state.

• Poor convergence—separation of energy scales

From grid point of view, system very dilute:

For small region, only handful of orbitals 
contribute to wavefunction.



Create coarse-graining mapping that projects all 
but these orbitals

• Poor convergence—separation of energy scales

Dolfi, Bauer, et al., PRL 109 020604 (2012)



H0

Apply maps to Hamiltonian

Use DMRG at each scale and apply maps in 
reverse
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Apply maps to Hamiltonian

Use DMRG at each scale and apply maps in 
reverse
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DMRG for continuum systems

Summary: powerful tool to solve broad class of 
continuum 1d systems essentially exactly.

Today: DFT, but exciting possible applications 
for 1d cold atom/molecule experiment.

+ Minimal approximation of Hamiltonian required  

+ Exploit DMRG’s abilities to simulate: 

‣ Real-time dynamics 

‣ Finite T effects

Stoudenmire, Wagner, Burke, White, PRL 109, 056402 (2012)



Application #1:  
   Computing Gaps in DFT



Lightning DFT overview…



Density functional theory (DFT)

Often where “rubber meets the road” in 
condensed matter / materials physics / chemistry.

Recent application:

spin-orbit coupling. As Fig. 2(a) illustrates, the Dirac cones
characteristic of pure graphene indeed remain massless—
despite the reduced translation symmetry, conventional
gapped phases are not stabilized here, consistent with the
intuition developed in the single-adatom case above.
Indium does, however, electron-dope graphene and
shifts the Fermi level EF to 0.95 eV above the Dirac
points. From the adatom’s local density of states (LDOS)
displayed in Fig. 2(a), one can see that indium’s 5p
orbitals lie almost entirely above EF, implying that
the 5p electron in neutral indium nearly completely
transfers to graphene. (The charge of an indium adatom
is þ0:8e from the Bader charge division scheme.)
Note that the relatively diffuse pz LDOS indicates
that this orbital hybridizes more strongly with graphene
compared to the px;y orbitals. Replacing indium with thal-
lium, again without spin-orbit coupling, leads to the band
structure and LDOS shown in Fig. 2(d). Clearly the elec-
tronic structure is modified very little by this substitution;
importantly, the Dirac cones remain massless with thallium
as well.

Thus any gap opening at the Dirac points must originate
from spin-orbit coupling. Figure 2(b) displays the band
structure and LDOS for spin-orbit-coupled indium on gra-
phene. Note the sizable spin-orbit splitting in the LDOS for
the px;y orbitals. More remarkably, a gap !so " 7 meV
now appears at the Dirac points, which already exceeds the
spin-orbit-induced gap in pure graphene [7–11] by several
orders of magnitude. The analogous results for thallium—
whose atomic mass is nearly twice that of indium—are still
more striking. As Fig. 2(e) illustrates, p-orbital splittings
of order 1 eV are now evident in the LDOS, and a gap
!so " 21 meV opens at the Dirac points. We emphasize
that these results apply for adatom coverages of only
6.25%. To explore the dependence of !so on the adatom
coverage, we additionally investigated systems with one
adatom in 5# 5, 7#7, and 10#10 supercells. (For N # N
supercells with N a multiple of 3, the Dirac points reside at
zero momentum and can thus hybridize and gap out even
without spin-orbit coupling. We therefore ignore such
geometries.) The values of !so along with the Fermi
level EF computed for the coverages we studied appear
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FIG. 2. Band structure and the adatom local density of states (LDOS). All data correspond to one adatom in a 4# 4 supercell, with
the upper row corresponding to indium and the lower row corresponding to thallium. The left panels in (a) and (d) correspond to the
band structure and LDOS computed using DFT without spin-orbit coupling. The horizontal dashed red lines indicate the Fermi level
(EF), which shifts due to electron-doping from the adatoms. Insets zoom in on the band structure near the K point within an energy
range $35 to 35 meV, showing that, without spin-orbit interactions, neither indium nor thallium opens a gap at the Dirac points. The
central panels in (b) and (e) are the corresponding DFT results including spin-orbit coupling. Remarkably, in the indium case, a gap of
7 meV opens at the Dirac points, while, with thallium, the gap is larger still at 21 meV. Finally, the right panels in (c) and (f) were
obtained using the tight-binding model described in Sec. III.

WEEKS et al. PHYS. REV. X 1, 021001 (2011)

021001-4

Weeks, Hu, Alicea, Franz, Wu, PRX 1, 021001 (2011)

Enhanced bulk 
topological gap in 
graphene coupled 
to heavy adatoms 



Density functional theory (DFT)

Outputs a band structure, but what does it mean 
for an interacting system?

spin-orbit coupling. As Fig. 2(a) illustrates, the Dirac cones
characteristic of pure graphene indeed remain massless—
despite the reduced translation symmetry, conventional
gapped phases are not stabilized here, consistent with the
intuition developed in the single-adatom case above.
Indium does, however, electron-dope graphene and
shifts the Fermi level EF to 0.95 eV above the Dirac
points. From the adatom’s local density of states (LDOS)
displayed in Fig. 2(a), one can see that indium’s 5p
orbitals lie almost entirely above EF, implying that
the 5p electron in neutral indium nearly completely
transfers to graphene. (The charge of an indium adatom
is þ0:8e from the Bader charge division scheme.)
Note that the relatively diffuse pz LDOS indicates
that this orbital hybridizes more strongly with graphene
compared to the px;y orbitals. Replacing indium with thal-
lium, again without spin-orbit coupling, leads to the band
structure and LDOS shown in Fig. 2(d). Clearly the elec-
tronic structure is modified very little by this substitution;
importantly, the Dirac cones remain massless with thallium
as well.

Thus any gap opening at the Dirac points must originate
from spin-orbit coupling. Figure 2(b) displays the band
structure and LDOS for spin-orbit-coupled indium on gra-
phene. Note the sizable spin-orbit splitting in the LDOS for
the px;y orbitals. More remarkably, a gap !so " 7 meV
now appears at the Dirac points, which already exceeds the
spin-orbit-induced gap in pure graphene [7–11] by several
orders of magnitude. The analogous results for thallium—
whose atomic mass is nearly twice that of indium—are still
more striking. As Fig. 2(e) illustrates, p-orbital splittings
of order 1 eV are now evident in the LDOS, and a gap
!so " 21 meV opens at the Dirac points. We emphasize
that these results apply for adatom coverages of only
6.25%. To explore the dependence of !so on the adatom
coverage, we additionally investigated systems with one
adatom in 5# 5, 7#7, and 10#10 supercells. (For N # N
supercells with N a multiple of 3, the Dirac points reside at
zero momentum and can thus hybridize and gap out even
without spin-orbit coupling. We therefore ignore such
geometries.) The values of !so along with the Fermi
level EF computed for the coverages we studied appear
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FIG. 2. Band structure and the adatom local density of states (LDOS). All data correspond to one adatom in a 4# 4 supercell, with
the upper row corresponding to indium and the lower row corresponding to thallium. The left panels in (a) and (d) correspond to the
band structure and LDOS computed using DFT without spin-orbit coupling. The horizontal dashed red lines indicate the Fermi level
(EF), which shifts due to electron-doping from the adatoms. Insets zoom in on the band structure near the K point within an energy
range $35 to 35 meV, showing that, without spin-orbit interactions, neither indium nor thallium opens a gap at the Dirac points. The
central panels in (b) and (e) are the corresponding DFT results including spin-orbit coupling. Remarkably, in the indium case, a gap of
7 meV opens at the Dirac points, while, with thallium, the gap is larger still at 21 meV. Finally, the right panels in (c) and (f) were
obtained using the tight-binding model described in Sec. III.

WEEKS et al. PHYS. REV. X 1, 021001 (2011)

021001-4



Density functional theory (DFT)

DFT an exact reformulation of quantum 
mechanics using density instead of wavefunction:

E[ ] = h |Ĥ| i

E[n] = min
 !n

h |Ĥ| i

“one of the greatest free lunches ever” — K. Burke



Density functional theory (DFT)

Rigorous foundation is the Hohenberg-Kohn 
theorem:

Ĥ = + +
Z

x

v(x) n̂(x)T̂ V̂ee

v(x)  ({xj}) n(x)
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Density functional theory (DFT)

Rigorous foundation is the Hohenberg-Kohn 
theorem:

Ĥ = + +
Z
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v(x) n̂(x)T̂ V̂ee

v(x)  ({xj}) n(x)

HK ’64



Density functional theory (DFT)

                  mapping holds for each type of 
interaction, including none:

Ĥ = + +
Z

x

v(x) n̂(x)T̂ V̂ee

n(x)
T̂

Non-interacting system called “Kohn-Sham system”. 
Defined to have same density as interacting one.

n(x) ! v(x)

Ĥ
s

= +

Z

x

v
s

(x)n̂(x)
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Easy to find exact Kohn-Sham potential if you 
have exact density already:



1. Start with guessed Kohn-Sham  
    potential and solve non-interacting     
    problem.

2. Compare resulting density to exact  
    (interacting system) density.

3. Update potential: attempt to reduce 

�n(x) = ntrial(x)� n(x)

Here’s how:
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In DFT literature, divide KS potential into 
original          plus correction

v(x)

vs(x) def= v(x) + vHXC(x)

Mean-field-like picture:

Ĥs = T̂ +
Z

x

v(x)n̂(x)
Z

x

vHXC(x)n̂(x)+

Accounts for missing interactions



Is DFT a mean-field theory?

No: exact theory gives exact energy and        
       ground-state density

Yes: using any other properties of KS system  
       is a type of approximation



Eg = I �A

I = EN�1 � EN
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Charge Gap:    Eg = EN+1 - 2EN + EN-1
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Charge Gap:    Eg = EN+1 - 2EN + EN-1
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1. Compute exact density of   
    N-electron system.

2. Obtain (exact) Kohn- 
    Sham potential and 
    read off Kohn-Sham gap

Computing exact KS band gap



Chain of H2 molecules, 
model band insulator

parameter:  
bond length “b”

fixed H2 equil 
length 1.26

Weakly correlated systems: H2 chains
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*Perdew, Parr, Levy, Balduz, PRL 49, 1691 (1982)
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Strong correlated systems: H chains

parameter: bond length “b”

Chain of H atoms, model 
Mott insulator
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H chains Mott insulators, 
one electron per unit cell 
        lowest band of Kohn-Sham system 
        half full
=)

Not failure of DFT per se—taking KS band gap 
an uncontrolled approximation
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But comparing to LDA yields another twist…

(Unrestricted) LDA approx spontaneously 
breaks spin symmetry:

b=4, 10 
atom system

well-known “spin contamination” effect
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Future work on gaps:

• Benchmark gaps with standard approx’s 
(Hybrids, LDA+U) 

• Benchmark newer approx’s (range-separated 
hybrids) 

• Obtain argument for generality of ULDA gap, 
useful approach for more realistic systems?



Application #2:  
   Convergence of KS Equations



Recall last section:

Ĥ = + +
Z

x

v(x) n̂(x)T̂ V̂ee

n(x)

Interacting sys.

Exact density

Exact KS system

Gaps, etc.

T̂Ĥ
s

= +

Z

x

v
s

(x)n̂(x)

“inversion”



But in real DFT applications:

Trial density: nj(x)

nj+1(x)

Replace

New KS system: v(j)s

Kohn-Sham 
Equations



But in real DFT applications:

Trial density: nj(x)

nj+1(x)

Replace

New KS system: v(j)s

Kohn-Sham 
Equations



Trial density: nj(x)

New KS system: v(j)s

?

Recall: vs(x) = v(x) + vHXC(x)

Definition of vHXC(x)
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Obtain KS potential supporting nj(x)
(saw this before)
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NEW



Ĥs = T̂ +
Z

x

v(x)n̂(x)+
Z

x

vHXC[nj

](x)n̂(x)

New Kohn-Sham system:

Solve to get new trial density…

new “mean-field” correction to potential

= �vHXC[ ](x) vs[ ](x)nj njv[ ](x)nj



Only new ingredient is “interacting inversion”, 
requires solving many interacting systems.

Exact functional

Being able to compute both:

Means having the “exact functional”

v[ ](x)

vs[ ](x)n

n



Often discussed as a 
closed-form analytic 
expression:

Exact functional

Our perspective: exact functional is an algorithm



Exact functional

What’s the application?

Learn how DFT behaves with exact functional. 
Any failures are fundamental.  
Otherwise they are failures of approximations.



Convergence

Do the KS equations always converge using the 
exact functional?

Test calculations using DMRG on small chains: 

Guaranteed Convergence of the Kohn-Sham Equations

Lucas O. Wagner,1,2 E.M. Stoudenmire,1 Kieron Burke,1,2 and Steven R. White1

1Department of Physics and Astronomy, University of California, Irvine, California 92697, USA
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A sufficiently damped iteration of the Kohn-Sham (KS) equations with the exact functional is proven to

always converge to the true ground-state density, regardless of the initial density or the strength of electron

correlation, for finite Coulomb systems.We numerically implement the exact functional for one-dimensional

continuum systems and demonstrate convergence of the damped KS algorithm. More strongly correlated

systems converge more slowly.
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Kohn-Sham density functional theory (KS-DFT) [1]
is a widely applied electronic structure method. Standard
approximate functionals yield accurate ground-state energies
and electron densities for many systems of interest [2], but
often failwhen electrons are strongly correlated.Ground-state
properties can be qualitatively incorrect [3], and convergence
can be very slow [4,5]. To remedy this, several popular
schemes augment Kohn-Sham theory, such as LDAþ U
[6]. Others seek to improve approximate functionals [7]
within the original formulation. But what if the exact func-
tional does not exist for strongly correlated systems? Even
if it does, what if the method fails to converge? Either plight
would render KS-DFT useless for strongly correlated sys-
tems, and render fruitless the vast efforts currently underway
to treat, e.g., oxide materials [8], with KS-DFT.

The Kohn-Sham (KS) approach employs a fictitious
system of noninteracting electrons, defined to have the
same density as the interacting system of interest. The
potential characterizing this KS system is unique if it exists
[9]. Because the KS potential is a functional of the density,
in practice one must search for the density and KS potential
together using an iterative, self-consistent scheme [10].
The converged density is in principle the ground-state
density of the original, interacting system, whose ground-
state energy is a functional of this density.

Motivated by concerns of convergence and existence,
we have been performing KS calculations with the exact
functional for one-dimensional (1D) continuum systems
[11,12]. Even when correlations are strong, we never find
a density whose KS potential does not exist, consistent
with the results of Ref. [13]. Nor do we find any system
where the KS scheme does not converge, although con-
vergence can slow by orders of magnitude as correlation is
increased, just as in approximate calculations [4,5].

Exact statements about the unknown density functional
inform the construction of all successful density functional
theory (DFT) approximations [14–17]. More importantly,
they distinguish between what a KS-DFT calculation can
possibly do, and what it cannot. Themost notorious example
is the demonstration that theKS band gap of a semiconductor

does not equal the true charge gap, even when the exact
functional is used [11,18]. Our key result is an analytic proof
that a simple algorithm guarantees convergence of the
KS equations for all systems, weakly or strongly correlated,
independent of the starting point. Thus multiple stationary
points and failures to converge are artifacts of approximate
functionals. Studies of convergence are well known in
applied mathematics, but almost all concern simple approx-
imations, such as LDA [19], Hartree-Fock [20], etc., and not
those in current use in many calculations.
The basic idea lies in a single step of the KS scheme,

which proceeds from an input density to produce an output
density. For a strongly correlated system as in Fig. 1(a),
the output density can differ strongly from the input
density, and be further from the true ground-state density.
Nevertheless, by proving that the initial slope is always
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FIG. 1 (color online). (a) The input and output densities for a
single step of the Kohn-Sham scheme, as well as the exact
density, of a one-dimensional, strongly correlated four atom,
four electron system. (b) The energy of the system which
interpolates between the input and output densities Ev½n!$,
measured from the ground-state energy Egs

v . Also shown is the
linear-response approximation with slope given by Eq. (12).
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A sufficiently damped iteration of the Kohn-Sham (KS) equations with the exact functional is proven to
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continuum systems and demonstrate convergence of the damped KS algorithm. More strongly correlated
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Kohn-Sham density functional theory (KS-DFT) [1]
is a widely applied electronic structure method. Standard
approximate functionals yield accurate ground-state energies
and electron densities for many systems of interest [2], but
often failwhen electrons are strongly correlated.Ground-state
properties can be qualitatively incorrect [3], and convergence
can be very slow [4,5]. To remedy this, several popular
schemes augment Kohn-Sham theory, such as LDAþ U
[6]. Others seek to improve approximate functionals [7]
within the original formulation. But what if the exact func-
tional does not exist for strongly correlated systems? Even
if it does, what if the method fails to converge? Either plight
would render KS-DFT useless for strongly correlated sys-
tems, and render fruitless the vast efforts currently underway
to treat, e.g., oxide materials [8], with KS-DFT.

The Kohn-Sham (KS) approach employs a fictitious
system of noninteracting electrons, defined to have the
same density as the interacting system of interest. The
potential characterizing this KS system is unique if it exists
[9]. Because the KS potential is a functional of the density,
in practice one must search for the density and KS potential
together using an iterative, self-consistent scheme [10].
The converged density is in principle the ground-state
density of the original, interacting system, whose ground-
state energy is a functional of this density.

Motivated by concerns of convergence and existence,
we have been performing KS calculations with the exact
functional for one-dimensional (1D) continuum systems
[11,12]. Even when correlations are strong, we never find
a density whose KS potential does not exist, consistent
with the results of Ref. [13]. Nor do we find any system
where the KS scheme does not converge, although con-
vergence can slow by orders of magnitude as correlation is
increased, just as in approximate calculations [4,5].

Exact statements about the unknown density functional
inform the construction of all successful density functional
theory (DFT) approximations [14–17]. More importantly,
they distinguish between what a KS-DFT calculation can
possibly do, and what it cannot. Themost notorious example
is the demonstration that theKS band gap of a semiconductor

does not equal the true charge gap, even when the exact
functional is used [11,18]. Our key result is an analytic proof
that a simple algorithm guarantees convergence of the
KS equations for all systems, weakly or strongly correlated,
independent of the starting point. Thus multiple stationary
points and failures to converge are artifacts of approximate
functionals. Studies of convergence are well known in
applied mathematics, but almost all concern simple approx-
imations, such as LDA [19], Hartree-Fock [20], etc., and not
those in current use in many calculations.
The basic idea lies in a single step of the KS scheme,

which proceeds from an input density to produce an output
density. For a strongly correlated system as in Fig. 1(a),
the output density can differ strongly from the input
density, and be further from the true ground-state density.
Nevertheless, by proving that the initial slope is always
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FIG. 1 (color online). (a) The input and output densities for a
single step of the Kohn-Sham scheme, as well as the exact
density, of a one-dimensional, strongly correlated four atom,
four electron system. (b) The energy of the system which
interpolates between the input and output densities Ev½n!$,
measured from the ground-state energy Egs

v . Also shown is the
linear-response approximation with slope given by Eq. (12).
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Convergence

One step of the KS equations

Already looks to overshoot… 
Is damping enough to fix?

n�(x) = �nj+1(x) + (1� �)nj(x)



Convergence

ground-state density, as long as the first input density is a
physical density. This is because we can choose each
subsequent input density as a physical density [31], and
the exact ensemble functional [22,33] is convex. The only
stationary point of the exact functional, when considering
physical densities, is the ground-state density [34].

Numerical implementation.—To find the KS energy
functional exactly when there is no degeneracy, we must
find the many-electron wave function!½n" that minimizes
h!jT̂ þ V̂eej!i (the kinetic and electron-electron repul-
sion energies) with density nðrÞ [22,35]. To perform this
very demanding [36] interacting inversion, start with a
guess for the potential ~vðrÞ. Then solve the many-body
system for the ground-state wave function ~! and density
~nðrÞ. Using a quasi-Newton method [37], modify ~vðrÞ and
repeat, minimizing the difference between ~nðrÞ and the
target density nðrÞ. Once converged, the procedure is
repeated for NI electrons. The HXC energy is then

EHXC½n" ¼ h!½n"jT̂ þ V̂eej!½n"i' TS½n"; (13)

and the HXC potential is

vHXC½n"ðrÞ ¼ vS½n"ðrÞ ' v½n"ðrÞ: (14)

We implement these functionals for 1D continuum systems
[11,12], obtaining highly accurate many-body solutions
with the density matrix renormalization group [38,39].
These are the first such inversions for systems with more
than two electrons [40,41]. Because, in one dimension,
degeneracy (beyond spin) does not occur, we find pure
states !½n". More generally, one should invert using an
ensemble "½n" and take a trace in Eq. (13) [22,33].

To illustrate convergence of the damped KS algorithm
using the exact functional, we plot the output densities
and KS potentials for a four-electron, four-atom system
in Fig. 2. We choose the interatomic spacing R ¼ 3 to be

roughly twice the equilibrium spacing of H2 (when the
interaction between nuclei is the same as that between
electrons), making this a moderately correlated system.
Taking ! ¼ 0:30, the algorithm converges to the exact
density (computed separately using DMRG) to "< 10'6

using Eq. (4), within 13 steps.
Consider the KS scheme applied to a simple 1D H2

molecule with bond length R [12]. Initialize the algorithm
with an asymmetric input density, aH' density centered on
the left atom. Of course, no sensible KS calculation starts
with such a density, but we do this to amplify convergence
issues. In Fig. 3, we quantify the convergence of the KS
algorithm using " from Eq. (4) as well as energy differ-
ences from the ground state. For the equilibrium bond
length (R ¼ 1:6), ! may be chosen quite large (( 0:5),
but as the atoms are stretched to R ¼ 3, ! must be & 0:2.
When R ¼ 5, even ! ¼ 0:01 is too large to converge the
calculation (not shown). Thus, as the bond is stretched and
the system develops strong static correlation [12], conver-
gence becomes increasingly difficult. As more atoms are
added to the chain (not shown), such as stretched H4, even
a reasonable initial state converges very slowly.
Consequences for real calculations.—For approximate

XC functionals, the corresponding Ev½n" is not, in general,
convex for every vðrÞ, and our corollaries do not hold.
Consider H2 in the local spin-density approximation.
At and near equilibrium bond lengths, only one stationary
solution exists. The approximate functional may or may
not be convex. But when the bond is stretched beyond the
infamous Coulson-Fischer point [42,43], an unrestricted
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FIG. 2 (color online). KS procedure for a moderately corre-
lated four-electron system (four hydrogen atoms with R ¼ 3),
showing the first few iterations. Using a fixed ! ¼ 0:30, we
converge to "< 10'6 using Eq. (4) within 13 iterations.
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are omitted for clarity, but are like those in (a).
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Convergence

ground-state density, as long as the first input density is a
physical density. This is because we can choose each
subsequent input density as a physical density [31], and
the exact ensemble functional [22,33] is convex. The only
stationary point of the exact functional, when considering
physical densities, is the ground-state density [34].

Numerical implementation.—To find the KS energy
functional exactly when there is no degeneracy, we must
find the many-electron wave function!½n" that minimizes
h!jT̂ þ V̂eej!i (the kinetic and electron-electron repul-
sion energies) with density nðrÞ [22,35]. To perform this
very demanding [36] interacting inversion, start with a
guess for the potential ~vðrÞ. Then solve the many-body
system for the ground-state wave function ~! and density
~nðrÞ. Using a quasi-Newton method [37], modify ~vðrÞ and
repeat, minimizing the difference between ~nðrÞ and the
target density nðrÞ. Once converged, the procedure is
repeated for NI electrons. The HXC energy is then

EHXC½n" ¼ h!½n"jT̂ þ V̂eej!½n"i' TS½n"; (13)

and the HXC potential is

vHXC½n"ðrÞ ¼ vS½n"ðrÞ ' v½n"ðrÞ: (14)

We implement these functionals for 1D continuum systems
[11,12], obtaining highly accurate many-body solutions
with the density matrix renormalization group [38,39].
These are the first such inversions for systems with more
than two electrons [40,41]. Because, in one dimension,
degeneracy (beyond spin) does not occur, we find pure
states !½n". More generally, one should invert using an
ensemble "½n" and take a trace in Eq. (13) [22,33].

To illustrate convergence of the damped KS algorithm
using the exact functional, we plot the output densities
and KS potentials for a four-electron, four-atom system
in Fig. 2. We choose the interatomic spacing R ¼ 3 to be

roughly twice the equilibrium spacing of H2 (when the
interaction between nuclei is the same as that between
electrons), making this a moderately correlated system.
Taking ! ¼ 0:30, the algorithm converges to the exact
density (computed separately using DMRG) to "< 10'6

using Eq. (4), within 13 steps.
Consider the KS scheme applied to a simple 1D H2

molecule with bond length R [12]. Initialize the algorithm
with an asymmetric input density, aH' density centered on
the left atom. Of course, no sensible KS calculation starts
with such a density, but we do this to amplify convergence
issues. In Fig. 3, we quantify the convergence of the KS
algorithm using " from Eq. (4) as well as energy differ-
ences from the ground state. For the equilibrium bond
length (R ¼ 1:6), ! may be chosen quite large (( 0:5),
but as the atoms are stretched to R ¼ 3, ! must be & 0:2.
When R ¼ 5, even ! ¼ 0:01 is too large to converge the
calculation (not shown). Thus, as the bond is stretched and
the system develops strong static correlation [12], conver-
gence becomes increasingly difficult. As more atoms are
added to the chain (not shown), such as stretched H4, even
a reasonable initial state converges very slowly.
Consequences for real calculations.—For approximate

XC functionals, the corresponding Ev½n" is not, in general,
convex for every vðrÞ, and our corollaries do not hold.
Consider H2 in the local spin-density approximation.
At and near equilibrium bond lengths, only one stationary
solution exists. The approximate functional may or may
not be convex. But when the bond is stretched beyond the
infamous Coulson-Fischer point [42,43], an unrestricted
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FIG. 2 (color online). KS procedure for a moderately corre-
lated four-electron system (four hydrogen atoms with R ¼ 3),
showing the first few iterations. Using a fixed ! ¼ 0:30, we
converge to "< 10'6 using Eq. (4) within 13 iterations.
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FIG. 3 (color online). Differences in the density " using
Eq. (4) and the energy with #E ¼ Ev½n0" ' Egs

v , for an H2

molecule with (a) R ¼ 1:6 and (b) R ¼ 3. In (b), the #E curves
are omitted for clarity, but are like those in (a).
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Convergence
Is damping always enough?

Yes! Can prove via linear response that energy 
always goes down for small enough damping.

Wagner, Stoudenmire, Burke, White, PRL 111, 093003 (2013)

Guaranteed Convergence of the Kohn-Sham Equations
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A sufficiently damped iteration of the Kohn-Sham (KS) equations with the exact functional is proven to

always converge to the true ground-state density, regardless of the initial density or the strength of electron

correlation, for finite Coulomb systems.We numerically implement the exact functional for one-dimensional

continuum systems and demonstrate convergence of the damped KS algorithm. More strongly correlated

systems converge more slowly.
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Kohn-Sham density functional theory (KS-DFT) [1]
is a widely applied electronic structure method. Standard
approximate functionals yield accurate ground-state energies
and electron densities for many systems of interest [2], but
often failwhen electrons are strongly correlated.Ground-state
properties can be qualitatively incorrect [3], and convergence
can be very slow [4,5]. To remedy this, several popular
schemes augment Kohn-Sham theory, such as LDAþ U
[6]. Others seek to improve approximate functionals [7]
within the original formulation. But what if the exact func-
tional does not exist for strongly correlated systems? Even
if it does, what if the method fails to converge? Either plight
would render KS-DFT useless for strongly correlated sys-
tems, and render fruitless the vast efforts currently underway
to treat, e.g., oxide materials [8], with KS-DFT.

The Kohn-Sham (KS) approach employs a fictitious
system of noninteracting electrons, defined to have the
same density as the interacting system of interest. The
potential characterizing this KS system is unique if it exists
[9]. Because the KS potential is a functional of the density,
in practice one must search for the density and KS potential
together using an iterative, self-consistent scheme [10].
The converged density is in principle the ground-state
density of the original, interacting system, whose ground-
state energy is a functional of this density.

Motivated by concerns of convergence and existence,
we have been performing KS calculations with the exact
functional for one-dimensional (1D) continuum systems
[11,12]. Even when correlations are strong, we never find
a density whose KS potential does not exist, consistent
with the results of Ref. [13]. Nor do we find any system
where the KS scheme does not converge, although con-
vergence can slow by orders of magnitude as correlation is
increased, just as in approximate calculations [4,5].

Exact statements about the unknown density functional
inform the construction of all successful density functional
theory (DFT) approximations [14–17]. More importantly,
they distinguish between what a KS-DFT calculation can
possibly do, and what it cannot. Themost notorious example
is the demonstration that theKS band gap of a semiconductor

does not equal the true charge gap, even when the exact
functional is used [11,18]. Our key result is an analytic proof
that a simple algorithm guarantees convergence of the
KS equations for all systems, weakly or strongly correlated,
independent of the starting point. Thus multiple stationary
points and failures to converge are artifacts of approximate
functionals. Studies of convergence are well known in
applied mathematics, but almost all concern simple approx-
imations, such as LDA [19], Hartree-Fock [20], etc., and not
those in current use in many calculations.
The basic idea lies in a single step of the KS scheme,

which proceeds from an input density to produce an output
density. For a strongly correlated system as in Fig. 1(a),
the output density can differ strongly from the input
density, and be further from the true ground-state density.
Nevertheless, by proving that the initial slope is always
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FIG. 1 (color online). (a) The input and output densities for a
single step of the Kohn-Sham scheme, as well as the exact
density, of a one-dimensional, strongly correlated four atom,
four electron system. (b) The energy of the system which
interpolates between the input and output densities Ev½n!$,
measured from the ground-state energy Egs

v . Also shown is the
linear-response approximation with slope given by Eq. (12).
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Combined with convexity of exact functional, 
guarantees convergence.



Future Directions



Gaps are an example where exact Kohn-Sham 
system fails to reproduce exact properties.

What about transport?

Bergfield, Liu, Burke, Phys. Rev. Lett 108, 066801 (2012)
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Transport through an Anderson junction (two macroscopic electrodes coupled to an Anderson impurity)

is dominated by a Kondo peak in the spectral function at zero temperature. We show that the single-

particle Kohn-Sham potential of density-functional theory reproduces the linear transport, despite the lack

of a Kondo peak in its spectral function. Using Bethe ansatz techniques, we calculate this potential for all

coupling strengths, including the crossover from mean-field behavior to charge quantization caused by the

derivative discontinuity. A simple and accurate interpolation formula is also given.

DOI: 10.1103/PhysRevLett.108.066801 PACS numbers: 73.63.Rt, 31.15.E!, 71.15.Mb, 72.15.Qm

It is a universally acknowledged truth that many-body
effects in strongly correlated systems are not reproduced
by mean-field theory. Although Kohn-Sham (KS) density-
functional theory (DFT) is formally exact, it is a noninter-
acting theory yielding only the ground-state energy and
density of a system. No other information about the corre-
lated many-body wave function is available. Dynamical
properties, such as excitations and response functions, are
also not predicted by ground-state DFT, even with the
exact functional [1]. The hope is that, for weakly correlated
systems in which ground-state DFT approximations per-
form well for total energies, geometries, etc., the errors in
such calculations are small. Nothing in the theorems of
DFT guarantees that a ground-state KS calculation can
describe transport correctly [2].

Consider transport through an Anderson junction [3,4],
composed of two macroscopic leads coupled to an
Anderson impurity. As an integrable system, the
Anderson model is a paradigm of many-body physics. It
is also an accurate model of the low-energy spectrum of
molecular radical-based junctions [5]. In general, transport
through such an interacting nanostructure cannot be de-
scribed exactly by the Landauer formula [6,7]. However,
for the specific case of the Anderson model, where inter-
actions are included only on the impurity and not in the
leads, the zero-temperature linear-response conductance in
the absence of magnetic field can be computed in the
Landauer approach [4,8,9]. In Fig. 1, we show the zero-
temperature transmission through an Anderson junction as
a function of the energy " of the resonant level using Bethe
ansatz (BA), Kohn-Sham (KS) DFT, and Hartree-Fock
(HF). In the figure, ! is the chemical potential (Fermi
energy) of the metal electrodes. Remarkably, the
KS-DFT treatment of this problem precisely reproduces
the BA transmission, apparently describing the nonpertur-
bative Kondo effect whose spectral peak is the source of
the perfect transmission when " <!< "þU.

The inability to describe sharp steps in transmission is a
well-understood failure of standard density-functional ap-
proximations. In the limit of weak coupling to the leads,
the system is a prototype example where the effects of the
infamous derivative discontinuity is seen [10]. For such a
system, the exchange-correlation (XC) energy of the mole-
cule is strictly linear between integer values, and so the XC
potential, its functional derivative, jumps discontinuously
at such values [10]. This effect has been implicated in
many well-known failures of DFT approximations such
as strongly correlated systems [11], charge-transfer exci-
tations [12], and overestimation of the current in organic
junctions [13].
In this Letter, we (a) solve the Anderson junction using

BA and invert the KS equations to derive the KS potential,
(b) show that the transport calculated within KS-DFT
reproduces the BA results, but only for zero temperature
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FIG. 1 (color online). Zero-temperature transmission of an
Anderson junction as a function of " using Bethe ansatz (BA),
Kohn-Sham DFT (KS), and (spin-restricted) Hartree-Fock (HF).
As U increases, HF misses the sharp structure, but the KS
transport is always the same as that from BA.
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G(k, !)! GKS(k,!)Common approx:

Yields exact transport 
properties of single-
impurity Anderson 
model!

Continuum models?



|1i = |"i|#i|#i|"i

|�1i / e��H/2|1i
thermalize

collapse

h�1|Â|�1i
measure

Combine METTS* algorithm with continuum. 
Test thermal DFT approximations, cold atoms 
systems at finite T.

*White, PRL 102, 190601 (2009)
Stoudenmire, White, NJP 12, 055026 (2010)

- DMRG/QMC hybrid 

- Quantum Monte Carlo with no sign problem 

- (Does have the “DMRG problem”) 



|�1i / e��H/2|1i
thermalize

|2i = |"i|#i|"i|#i collapse

h�1|Â|�1i
measure

Combine METTS* algorithm with continuum. 
Test thermal DFT approximations, cold atoms 
systems at finite T.

*White, PRL 102, 190601 (2009)
Stoudenmire, White, NJP 12, 055026 (2010)

- DMRG/QMC hybrid 

- Quantum Monte Carlo with no sign problem 

- (Does have the “DMRG problem”) 
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Summary 
!

• Can extend DMRG to solve continuum 1d systems. 

• Computing exact quantities appearing in density 
functional gives insight into gaps, KS equations 

• Much more to explore including: 

‣ Quasi-1d cold atom/molecule systems 

‣ Transport approx’s in DFT 

‣ Continuum to lattice mapping


