ics Special Colloquium

Wednesday, February 7, 2018
3:30 PM
Physics Building, Room 204
Note special date.
Norbert Linke [Host: Bob Jones]
Joint Quantum Institute, University of Maryland, and NIST
"A programmable quantum computer based on trapped ions"

Quantum computers can solve certain problems more efficiently than any classical computer. Trapped ions are a promising candidate for realizing such a system. We present a modular quantum computing architecture comprised of a chain of 171Yb+ ions with individual Raman beam addressing and individual readout [1]. We use the transverse modes of motion in the chain to produce entangling gates between any qubit pair. This creates a fully connected system which can be configured to run any sequence of single- and two-qubit gates, making it in effect an arbitrarily programmable quantum computer that does not suffer any swap-gate overhead [2].
Recent results from different quantum algorithms on five and seven ions will be presented [3,4], including a quantum error detection protocol that fault-tolerantly encodes a logical qubit [5]. I will also discuss current work and ideas to scale up this architecture.

[1] S. Debnath et al., Nature 563:63 (2016).
[2] NML et al., PNAS 114 13:3305 (2017).
[3] C. Figgatt et al., Nat. Communs. 8, 1918 (2017).
[4] NML et al., arXiv:1712.08581 (2017)
[5] NML et al., Sci. Adv. 3, 10 (2017).


To add a speaker, send an email to phys-speakers@Virginia.EDU. Please include the seminar type (e.g. Colloquia), date, name of the speaker, title of talk, and an abstract (if available).