Support UVa's Physics Department! >>
Click here for a printable version of this page.

Condensed Matter Seminars

ics Condensed Matter
Thursday, April 17, 2014
3:30 PM
Physics Building, Room 204
Note special time.
Note special room.
Stephen Wilson [Host: Seunghun Lee]
Boston College
"Looking beyond the spin-orbit Mott phase"
 Slideshow (PDF)
An unusual manifestation of Mott physics dependent on strong spin-orbit interactions has recently been identified in a growing number of classes of 5d transition metal oxides built from Ir4+ ions. Instead of the naively expected increased itinerancy of these iridates due to the larger orbital extent of their 5d valence electrons, the interplay between the amplified relativistic spin-orbit interaction (intrinsic to large Z iridium cations) and their residual on-site Coulomb interaction U, conspires to stabilize a novel class of spin-orbit assisted Mott insulators with a proposed Jeff=1/2 ground state wavefunction. The identification of this novel spin-orbit Mott state has been the focus of recent interest due to its potential of hosting a variety of new phases driven by correlated electron phenomena (such as high temperature superconductivity or enhanced ferroic behavior) in a strongly spin-orbit coupled setting. Currently, however, there remains very little understanding of how spin-orbit Mott phases respond to carrier doping and, more specifically, how relevant U remains for the charge carriers of a spin-orbit Mott phase once the bandwidth is increased. Here I will present our group’s recent experimental work exploring carrier doping and the resulting electronic phase behavior in one such spin-orbit driven Mott material, Sr3Ir2O7, with the ultimate goal of determining the relevance of U and electron correlation effects within the doped system’s ground state. Our results reveal the stabilization of an electronically phase separated ground state in B-site doped Sr3Ir2O7, suggestive of an extended regime of localization of in-plane doped carriers within the spin-orbit Mott phase. This results in a percolative metal-to-insulator transition with a novel, global, antiferromagnetic order. The electronic response of B-site doping in Sr3Ir2O7 will then be compared with recent results exploring A-site doping of electrons into the system and the resulting electronic phase diagrams discussed.

To add a speaker, send an email to phys-speakers@Virginia.EDU. Please include the seminar type (e.g. Condensed Matter Seminars), date, name of the speaker, title of talk, and an abstract (if available).