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A particle of massi and energ¥ moving in one dimension comes in from and
encounters the repulsive potential:

Uo

U9 = cosit ax

whereUp anda are given parameters, and the particle ené&gylU, > 0.

Compute the delay time for this potential. Inesttvords, how much longer will it take
for the particle to travel from = —o to X = +00 as compared to the travel time for free
motion at the same energy? (The travel time fatefin may be defined as the time it
takes to travel fromi=to H.. Find an expression for this with and without pogential,
and then find the limit of the timdifference asL — .)

State what happens to the delay time as the |gaetimergyE approaches (Yo and (ii)
infinity, and explain the physics behind these tywmes of behavior.

(You might need the following integral:

j%dx=ln‘2x+b+ 2\/x2+bx+c‘+ cons))
X“+bx+c

A particle of masm is attached to one end of an ideal massless spithgspring
constank and relaxed length The other end of the spring is attached to alfixe

support, and the assembly hangs in a uniform gamnal field of acceleratiog.

(a) Write down the Lagrangian and the equatainmaotion for the particle in three
dimensions.

(b) Find the length of the spring and the arfigden vertical that are required in
order for the particle to execute uniform circutzotion about the vertical axis
at frequency).

(c) Determine the range of frequendieshat can be physically supported, and
qualitatively describe the motion of the sys@s@® approaches the extremes of
this range.

(d) If the particle is displaced slightly frotmet equilibrium of (b), it will undergo
small oscillations. How many distinct frequencial normally be observed in
this motion? No calculation is required here, ¢huexplain the reasoning for
your answetr.
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3. A particle of masmis confined to the surface of a torus as showrothérwise is free.
The points on the torus surface can be represégtadgair of anglegs andé such that

x=(a+bcosd) cogy
y=(a+bcosd) siny
z=bsing

Herea andb are parameterg,> b, such thath — b and a + b are the radii of the
innermost and outermost equatorial circles, respdyg. The angleg/andéd are

oriented as shown, with= 0 andé = 77 corresponding to the outermost and innermost
equatorial circles, respectively.

Problem #3

(a) Usingy and@as generalized coordinates, write down the Lagaangnd find
all the constants of motion.

(b) Given the particle enerdgyand thez-component of its angular momentuv,
find a condition for the motion in the varialffeto be bounded. Explain what
happens when the condition under question doelsaid.

(c) When the motion in the variabfeis bounded, provide explicit expressions for
its turning points. Explain qualitatively howetimotion changes as the energy
increases from small to large values (for fikégl.

(d) Find thed(t) dependence as well as the equation of trajectp(y) . Your

answers should be of the fotm [ of some function oBandy = | of some
function of @, respectively.Do not attempt to explicitly evaluate these
integrals.

4, A particle of masm is constrained to move on the surface of a tasabd thick ring),
shown below, but otherwise moves freely. (Themoigravity in this problem. The torus
is floating somewhere in intergalactic space.) Boam the surface can be represented by

a pair of anglesy, 6) such that
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x =(a+bcosd) cogy

y=(a+bcosd) siny

z=bsing
wherea > b.
The particle is initially traveling around the eunost equatorial circled= 0) with
velocityv. But then it is given a very, very tiny impulsetire &direction, so that it starts

to oscillate while it continues to transverse thaatorial circle (as shown by the wiggling
line on the torus below). Find the frequency okthescillations irg, treatingdas small.

[Hint helpful for certain derivations: If you find any equation of motion of the form
d[“something”]/dt = O, then note that “something” is a constantefinotion.]

Top View

Side View Cross—Section

Problem #4

5. Two thin, identical wheels are joined by an axléenfgthL. The wheels can spin
independently of each other but are always perpendicular ta#e. Each wheel has
massM and radiusg. The axle has negligible mass. The two wheelsvlout slipping,
but one happens to be rolling faster than the p#tethat the system travels in a circle as
shown below. Letr and be the angular speeds of the two wheels aboutdisedefined
by the axle. Let; be the moment of inertia of a single wheel aboytdiameter of that
wheel, and let; be the moment of a single wheel about the axineefy the axle (that
is, the axis perpendicular to the wheel). Giveranida for the total kinetic energy of the
system interms of, 5, M, a, L, |1, andls.

Technical point: Assume that the wheels have g thickness, so that pivoting of the
wheels’ direction as they roll in the circles showalow dissipates negligible energy and
does not count as “slipping” in this problem.
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Problem #5 T
6. Consider a uniform solid cylinder of madslengthL, and radiu®, as shown in Fig. A.

Let P denote the point at the center of the top face,camsider some poiQ which is

on the side of the cylinder a distariRérom the top (wher® is the radius of the cylinder
and you may assunte> R). A narrow hole is drilled through the cylindeoad the line
PQ, and this hole is then slipped over a greaseavtadh is fixed to be horizontal, as
shown in Fig. B below. Find the frequency of snaaitillations of the cylinder about this
rod, assuming it oscillates without friction, angeessing your answer in termsgyf\,

L, andR.

[Hint: One way to do this problem is to first compute tomponents of the moment of
inertia tensor about some conveniently chosenrofgate clearly what origin you
choose) with some convenient choice of the thrée@fxyour coordinate system. Then
find the moment of inertia about the al® that goes throughR andQ. Then use that to
find the frequency of small oscillations.]

P
I R fixed
) Q horizontal
\ rod
—
R gravity

Fig. A Fig. B

Problem #6

7.  Consider the system of two planar pendulums shwsve, where the pendulums and all
motion of the system lie within the same vertidaihe—that of the paper in the figure
below. Each pendulum consists of a massless raghgth ¢ and point-like bob of mass,
suspended from the horizontal ceiling. The pivanisoof the rod are spaced a distaace
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apart. The two bobs are connected by a massleagg synose equilibrium length is also
and whose spring constankiga) Find all the frequencies of small oscillasaf this
system. (b) Describe clearly (in words or equatidhs corresponding normal modes of the
system, clearly identifying which mode correspota#hich frequency.

—
A a R

pivot pivot

m SAMAMANG®
k

Problem #7

Protons, mags and charge, are given (nonrelativistic) energyand sent as a beam to
scatter from much heavier nuclei of chadge The experiment shows that the differential
cross section agrees with the Rutherford crossosefdr scattering angles less than some
critical angle@,, but departs rapidly from it for larger anglesisTis due to the presence

of a strong force between the incoming proton &ednucleus from which it scatters; this
force is of short range and effectively only conme play when the proton touches the
nucleus. Assuming that the nucleus is spheriaad, ifis effective radius in terms of the
given parametersHint: The equation for the orbit of a particle of masand angular
momenturrL moving under the influence of a central force afgmitudek/r? is

1 mk 2EL2
= 1+ codé-6)+ 1
r Lz[ mk 2 S ) J

where@’is an arbitrary constant that specifies the oagom of the orbit.]

9. A bead of mass can slide without friction along a horizontal rfixed in place inside a
large box. The bead is connected to the walls@btix by two large identical massless
springs of spring constakias sketched in the figure, and the entire bogrteted about a
vertical axis through its center with angular speed
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10.
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Problem #9

(a) Write down the Lagrangian using the distanfrem the bead to the center of
the rod as a generalized coordinate.

(b) What is the condition for the bead to be iniguium off the center of the rod?
Please comment on whether this equilibrium is staiutral, or unstable.

(c) Compute the time dependence of the radial ipostf the bead(t) assuming
thatr(0) =1 (still within the box) andir(0)/dt = O (the bead starts at a given
value ofr with no initial radial velocity). Note that theage two possible
regimes, so please state precisely the correspgedimditions of validity.

A pendulum consists of a thin rod of lengtland

massm suspended from a piv8  in the figure to the Y

right. The bob is a cube of sitleand mas#/, attached '\

to the rod so that the line of the rod extendsubho
the center of the cube, from one corner to the
diametrically opposite corner (dashed line).

(a) Locate the distance of the center of mass
from the point of support.

(b) Find the moment of inertibof the (entire)
pendulum about the pivot point.

(Hint: obviously it is too hard to find the
moment of inertia of a uniform cube about an
arbitrary axis through its center of mass by
integrating directly, so there must be some sinmx&...) Problem #10

(c) Write down the equation of motion in termsl @nd any
other relevant parameters.

(d) Find the frequency of small oscillations.
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11.

12.

13.

14.

15.

Under the influence of gravity, a bead of nrasdides without friction down a wire that
has the form of a simple curve in a vertical plarsay thexz-plane. The bead starts at the
point (X, z) = (a, h) and ends at the point,(z) = (b, 0). Find the curve joining these
points (brachistochrone) for which the bead reathe£nd point in the least time,
starting from rest at the initial point.

A space station orbits Earth on a circular trajgctdt some moment the captain decides
to change the trajectory by turning on the rockefiree for a very short period of time.
During the time the engine was on, it acceleratedstation in its direction of motion. As
a result, the station speed increased by a fattar Brovide the conditions, in terms af
that the new trajectory is elliptic, parabolic gpkrbolic. Justify your answers.

A particle of mass, total energye, and angular momentulmis moving in a central
potential of the form

wherea andf are positive constants. What is the conditiorttierparticle motion to be
bounded? For the case that the motion is bounde&apuate the angular
displacemenf\g between two subsequent passages of the peril{gtiempoint

I =rmn). What is the most general condition in termsroff, m, E, andL for the particle
trajectory to be closed? (A trajectory is said éoclosed if the radius-vector of the
particle visits its original position more than eric

An Earth satellite of mass m is placed in autar orbit. Due to the fact that space is not
an ideal vacuum, the satellite is subject to aradxictional forceF, which we assume is
linear in the satellite velocity, i.e.F = -Av whereA is a constant. This force dissipates
the satellite energy so that eventually the spadelits the ground, which determines its
lifetime (in reality the drag constaAtis a function of altitude and satellites oftenrbur
upper layers of atmosphere, but we will ignore)thikssuming that the energy dissipated
by friction during one full revolution is much srtelthan the total energy, compute the
lifetime of the satellite. Assume the Earth camimzleled by a sphere, the initial radius
of the orbit is 10 times as big as the Earth rachunsl the satellite is much lighter than the
Earth.

Two identical point massesare connected by a spring of constaahd unstretched/
uncompressed length

(a) Write the Lagrangian of the system in termthef3-dimensional coordinates of
the masses.
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(b) Transform the Lagrangian to an appropriatetgeneralized coordinates.

(c) List the conserved quantities, giving definexgpressions.

(d) If the system has large internal angular mommantvhat is the equilibrium

separation between the masses?
(e) Find the frequency of small oscillations abibig equilibrium in the limit of

large angular momentum.

16. A thin uniform rod of length a and mass m
slides without friction with its two ends in
contact with the inside of a vertical hoop of
diameter d (a<d) in the gravitational field
of the earth.

vertical
up

(a) Write the Lagrangian.

(b) What is the angular frequency for small
oscillations about equilibrium? How
does it behave as a/® and as a/d 1?

Problem #16

17.  Afree uniform disk lying on a frictionless mntal surface is rotating about its
(vertical) symmetry axis with angular velociy Its center of mass is at rest. Suddenly a
point on its circumference is fixed. Calculate sadsequent angular velocity.

18. A spacecratft is in a circular low-Earth oudiitectly above the Equator, mean altitude 300
Km above the Earth's surface. The orbit mustesformed to a circular
geosynchronous orbit (that is, one that keeps the spacecrafttiyrabove the same point

on the Equator).
(a) What is the radius of the geosynchronous orbit?

(b) The pilot wishes to attain the orbit changevay applications of the rockets
(the minimum possible). What sort of intermediatieit will the spacecraft be

in, after the first period of acceleration?

(c) What is the change-of velocity that must beliedpo transform the initial
circular orbit to the intermediate orbit? Thatvidyat change of speed is

necessary and in what direction?
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(d) What is the change-of-velocity necessary todfarm the intermediate orbit into
the final circular geosynchronous orbit? (Agaiedfy change-of-speed and
direction.)

You may, if you wish, assume the periods of aaegion have the form of instantaneous
impulses.

19. A spherical pendulum consists of a point nrma$sing by a massless string of lengh
from a fixed point on a ceiling? is the angle the string makes from the vertawalere @
=0 is down, and anglgis the azimuthal angle of the string about theicair

(a) Write the Lagrangian for the motion of the magsu may assume that the
string is always taut.

(b) With what velocity and in what direction musetmass be set in motion to
make a circular orbit witl#= 30°?

(c) If the mass is launched with a slight error @rabcillates abou® = 3C°, what is
the angular frequency of the oscillationdr?

20. A bead of magwmis free to slide along a smooth wire making adrigjircle of radiuRR
(see the figure). The circle is oriented with ilsn@ in the vertical and rotates with a
constant angular velociigabout the vertical diameter, and the bead candisthble
equilibrium position as a result.

SN

bead

Problem #20

(a)For sufficiently largecy the bead has a point of stable equilibrium thabtsat
the bottom. How big musbbe so that there is such a stable equilibriumt@oin
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(b) The condition for an off-bottom stable equilibriyint is satisfied. Consider a
small displacement from that position and obtaend¢bndition for, and
frequency of, simple harmonic motion about it.

21. A square lamina, sideg,2nasam, is lying on a table when struck on a corner lyket
of massm with velocityv parallel to one of the edges of the lamina (irtedasFind the

subsequent angular velocity of the lamina.

22. Two rings of equal mads and radiusk are rigidly fastened together at a point on their
periphery so that their diameters form an angldf they are free to swing as a pendulum
in a vertical plane, find the torqag tending to change the angidor small motion

about the position of equilibrium

o

Problem #22

23. A solid cylinder of radiuls has acylindrical hole of radiu$/+/2 cut out of it. The hole
is centered at a distancérom the center of the cylinder. This cylindeaisrest on top
of a large perfectly rough, fixed cylinder of ia&lR as shown. For what values®is
the equilibrium position shown stable, and wivdt be the frequency of small
oscillationsabout this equilibrium position?

_’04_
—
|

R

Problem #23
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24. A particle of masmis placed in a smooth uniform tube of mikand length/. The
tube is free to rotate about its center wedtical plane. The system is started from rest
with the tube horizontal and the particle a distagcfrom the center of the tube.

For what length of the tube will the particle leahe tube whe® = w is a maximum
and® = 6,7 Your answer should be in termswénd 6, .

1
1
1
1
1
l
1
1
L.
.

Problem #24

25.  Two particles of equal massinteract according to a (three-dimensional) splaémvell

potential,
0, r>a
vir)=|
-V,, r<a

whereV, is positive. Initially the particles are separabgdsome distance greater tren
with one at rest and the other moving with speealculate the differential cross-
section for scattering.

26. (a) State Euler's equations of motion, defrah terms precisely.

(b) Define Euler's angles for rigid body motion amgbress the body components
of angular velocity in terms of them.

(c) A symmetrical top, (the moments of inertia &e& |, | ;#Zl ) of massv

spins with one point fixed in the earth's grauitaal field. Its center of mass is
a distancé from the fixed point. Express Euler's equatiarstiie top in terms
of Euler's angles and impose the solution of &oamly precessing top without
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nutation, i.e. the angle between the figure arts the vertical direction remains
constant. Substituting this solution into the egues of motion, obtain a
condition between, 1 ;,M ,b, @,¢ and & for this solution to be valid.

27. A double pendulum has equal lengths, but gpeumass is much greater than the lower.
Obtain the exact Lagrangian for motion in a vettipdane, and then make the
approximation of small motion. What are the reswrisequencies of the system? What
is the resultant motion if the system initiallyrast is subjected at timte= 0 to a small
impulsive force applied horizontally to the uppeaiss?

28. (&) In terms of its relationship to the kioetinergy, derive an expression for the
inertia tensor of a rigid body relative to an aidmy Cartesian coordinate
system. Show how to diagonalize this matrix andverthe reality of the
eigenvalues and eigenvectors obtained.

(b) What is the moment of inertia about the diagoha homogeneous cube?

29. Consider a classical treatment of the smalllagons of the atoms in a linear triatomic
molecule. Two of the masses are equal and at bguitn are located a distanadrom
the third. Making a reasonable assumption abaufuthctional form of the potential for
small motions, obtain the eigenfrequencies of vibraand describe the mode of
vibration for each eigenfrequency. You need owolysider motion along the molecular

axis.
m M m
—@ o
<—r><—r>
Problem #29

30. A particle of mass1 moves in a central force field in a circular orsitradiusro with

angular speed
(a) State the relation betweemro, «y andoV/or, whereV(r) is the potential.

(b) Consider small radial perturbations from thewar orbit, and describe them

by defining variable® andgso that the polar coordinates of the particle are
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r=ro+pandf= a + @ Expand the potential function in a Taylor serrep
and write the Lagrangian, ignoring terms highenteacond order in the

perturbationg and@and their time derivatives.

(c) Derive the equations of motion and make ugeadf (a) to show that stable
oscillations ino will result if

Y,

ar?

3v

>0
fo Or '

fo

fo

31.  Arrigid body rotates freely about its centenadss. There are no torques. Show by
means of Euler’'s equations that if all three ppatimoments of inertia are different, then
the body will rotate stably about either the aXigm@atest moment of inertia or the axis
of least moment of inertia, but that rotation abibwxt axis of intermediate moment of
inertia is unstable.

32. If a particle is projected vertically upward frarpoint on the earth's surface at northern

latitude A, show that it strikes the ground at a pa#iBw cosi./ 8°/g to the west
(neglect air resistance and consider only smatlcadrheights).

33. A thin hoop of radiuR and mas#/ is allowed to oscillate in its own plane (a veatic
plane) with one point of the hoop fixed. Attachiedhe hoop is a small mass M which is
constrained to move (in a frictionless manner) gltihre hoop. Consider only small
oscillations and show that the eigen frequencies ar

w=V2o/R w,= 2 [g/R

34. Show that the angular deviatienf a plumb line from the true vertical at a pawntthe
earth's surface at latitudiels

. r,&’ sinA cosi
g-r,af cos’ A

wherer, is the radius of the earth.
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35. Two discs of radiuR and mas# are connected by an axle of radiuand massn. A
pendulum of lengthy with a bob of masg is suspended from the midpoint of the axle. If
the wheels and the axle can roll without changhegy length of the pendulum, find the
equations of motion of the system if it rolls doa/slope of angler.

36. Two bodies of equal massare connected by a smooth, fixed-length stringctvipasses
through a hole in a table. One body can slide witHigction on the table; the other hangs
below the hole and moves only along a vertical threugh the hole. Using polar
coordinatesr(, ) for the body on the table, write the Lagrangeatipns for the system,
reduce them to a single second-order differentjgbéion, and integrate this equation
once to obtain an energy equation. Find the equatimose roots yield the maximum and
minimum values of. Imagine the string is long enough, and the Idghetable tall
enough, so that the hanging body hits neither the ihor the floor.

37. A bar of length 2, massm, slides without friction on a horizontal plands Velocity is
perpendicular to the axis of the bar. It makesilly flastic impact (energy conserved)
with a fixed peg at a distance a from the centdhefbar. Using conservation of energy,
momentum and angular momentum, find the final vigfaxf the center of mass.

38. A uniform hoop of madd and radius can roll without slipping on a horizontal floor.
A small particle of massis constrained to slide without friction on theiote rim of
the hoop.

(@) Introduce two coordinates that specify tregantaneous state of the system
and calculate the Lagrangian in terms o$¢hcoordinates. One of the
coordinates should be chosen so that grig when the particle is at floor
level.

(b) Assuming that the particle never rises farto# floor, write down the
equations of motion and show that the gémaodion consists of an
oscillation of period

2M 1/2
T= 27{E J

g2M +m

superimposed on a uniform translation.
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