Superradiance in Cold ^{85}Rb Atoms

JIANING HAN AND T. F. GALLAGHER

University of Virginia

Supported by: the Air Force Office of Scientific Research
Outline

• Motivation
• Superradiance
• Superradiance observation
• Some features about superradiance
• Conclusion
• Acknowledgment
Motivation

Cold Rydberg atoms
- Automatically evolve into plasma
- Artificial amorphous solids

Superradiance
- Microwave source
- Leads to ionization
Quantum mechanical explanation

\[\Psi_1 = \psi_1 e^{-iE_1 t} \]

\[\Psi_2 = \psi_2 e^{-iE_2 t} \]
Superradiance

Key features:

- Peak intensity $\propto N^2$
- Threshold
- Delay
Superradiance[1]

- Inverted pendulum

Radiation from N dipoles with spontaneous emission lifetime t
Experimental setup

Ion gauge
Ion pump
Valve
Sorption pump
Rods
MOT
MCP detector
Selective Field Ionization (SFI)
Energy diagram and Timing

Energy diagram

- $5p_{3/2}$
- $\sim 480\text{nm}$
- $(n+2)d_{5/2}$
- n^f
- $j = 5/2\rightarrow 7/2$
- Decay

Timing

- 480nm dye laser pulse
- Field ionization ramp
- Delay time $t = 4\mu s$
Experimental data
Data Analysis

![Graphs showing data analysis results](image-url)
Radiation density

- Intensity of output radiation:

\[I \propto \frac{dN}{dt} \]

\[I \propto N^2 \]
Suppression due to the electric field

![Graph showing suppression due to electric field](image)
Two decay channels

- Multimode decay: different modes have the same threshold
- Cascade decay: there is a saturation effect
Multimode decay

- Energy levels

![Graph showing energy levels and population distribution over time and total number of atoms]
Cascade decay

- Energy levels
Principle quantum number n dependence

• Superradiance threshold density decrease with n
• Higher n states, superradiance occurs earlier
• The amount of superradiance decreases.

![Graph showing number of atoms in (n-2)f state against total number of Rydberg atoms.](image)

Delay: 2μs
Why does Superradiance decline at high n?

Decrease in the radiative rate

\[\frac{1}{\tau} = \mu^2 \omega^3 \propto \frac{1}{n^5} \]

Dipole-dipole interaction

\[V_\mu = \frac{\mu}{R} \left(\frac{2\pi}{\lambda} \sin \omega t + \frac{1}{R} \cos \omega t \right) \]

\[23d-21f \quad \lambda = 2.3 \text{ mm} \]
\[34d-32f \quad \lambda = 0.6 \text{ mm} \]
Superradiance and Ionization

nd nd laser excitation to the repulsive curve

superradiance

nd (n-1)f

motion on the attractive curve resulting in ionization
Conclusion

• Superradiance is observed in cold Rydberg atoms
• Superradiance is an effective way to transfer the atoms from low angular momentum states to high angular momentum states.
Acknowledgment

Haruka Maeda
Don Norum
Paul Tanner
Ed Shuman
Xiaodong Zhang
Joshua Gurian
Jirakan Nunkaew.