The Quest for the Higgs

Sabine Lammers
Columbia University
• Introduction to SM Higgs Physics
• Experimental Apparatus
• Higgs Searches at the Tevatron
• WH and Combination
• Higgs Searches at the LHC
• Vector Boson Fusion (VBF) Higgs
• VBF at the Tevatron
Standard Model

The SM is a Quantum Field Theory: fusion of Special Relativity and Quantum Mechanics

There are 3 main ingredients:

- Forces
 - Electromagnetism(γ), Weak(W±,Z), Strong(g)
- Matter
 - 6 quarks, 6 leptons in 3 generations
- Spontaneous Symmetry Breaking
 - Higgs Mechanism
Higgs Phenomenology

- Higgs field is a complex scalar field introduced to break electroweak symmetry and to introduce mass terms in the Standard Model (SM) Lagrangian.

- Neutral, spin 0 Higgs Boson must be found to complete SM picture.

- Higgs mass is a parameter of the theory.
Indirect Constraints on Higgs mass

- Precision Fit of electroweak precision data, including top quark and W masses
- best fit Higgs mass = 76 + 33 - 24 GeV
 ➞ light Higgs is preferred
LEP Direct Searches

- **LEP direct search** result: combination from four experiments found hint of a signal at $m_H \sim 118$ GeV, but could be fluctuation

- LEP technique for deriving limits
 - Ratio of Poisson Likelihoods
 - Comparison of signal+background and background only hypotheses to data
 - Probability densities determined using toy MC experiments whose event makeup vary according to statistical and systematic uncertainties

\[
\sqrt{s} - M_Z = 206.7 - 91.2 = 115.5 \text{GeV}
\]

\[m_H \geq 114.4 \text{ GeV @ 95\% CL}\]
Experiments
Tevatron and LHC

- Tevatron - energy frontier accelerator for nearly 2 decades
 - $p\bar{p}$ collisions at $\sqrt{s} = 1.96$ TeV

- LHC - will probe Terascale phenomena as energy frontier machine for the next decades
 - pp collisions at $\sqrt{s} = 14$ TeV
Tevatron Detectors: DØ and CDF

- **DØ** - Liquid Argon and Uranium Scintillator sampling calorimeter
- Silicon Microstrip and Fiber tracking
- Good muon coverage $|\eta| < 2$
- 2T magnetic field

$$\eta = -\ln(\tan(\theta/2))$$

- **CDF** - Lead Scintillator sampling calorimeter
- Large tracking volume + silicon
- Muon coverage $|\eta| < 1.5$
- 1.5 T magnetic field
LHC Detectors: CMS and ATLAS

CMS

- Lead Tungstate crystal EM calorimeter
- full silicon tracking

ATLAS

- liquid Argon calorimeter
- muon coverage to |η|<2.5
Tevatron Performance

- DZero RunIIB upgrades: L1Cal/L1CalTrack trigger and new silicon layer added to inner tracking detector

Trigger upgrades ensure high trigger efficiency at high instantaneous lumi
Silicon upgrade provides better b-tagging
L1Cal2b Upgrade

- Upgraded trigger electronics provide better digitization and allows for sophisticated hardware (sliding window) algorithms including clustering at Level 1.

- New features include triggers for jets, taus, isolated electrons, missing E_T, and topological triggers, e.g. acoplanar jets or back-to-back electrons.

Improved L1Cal2b algorithms allows us to run at higher instantaneous luminosity with no degradation (enhancement in some cases) in trigger efficiency.

Nucl. Instrum. and Methods, A 584/1, 75-97 (2007)
Higgs Searches at the Tevatron
Higgs Production

Dominant production by (a,c) gluon fusion; also (b) Higgsstrahlung, (d) Vector Boson Fusion

\[\sqrt{s} = 1.96 \text{TeV} \]

For maximal signal significance:
- Higgsstrahlung or “associated production” searches at low mass
- gluon fusion searches at high mass
Higgs Decay

- Higgs decays to pairs of fermions or bosons
- Couplings to fermions are proportional to the masses
- Selection depends on available phase space to produce real particles
- Dominant decay
 - b-quark pairs when $m_H < 135$ GeV
 - W pairs when $m_H > 135$ GeV
WH Channel

Analysis Ingredients

- Selection of phase space
 - want high acceptance, reconstruction and trigger efficiency for Higgs events
- Reconstruction of final state particles
- Simulation of background processes
- Normalizing the backgrounds and K-factors
 - good modeling of the data needed for further analysis
- Analyzing the data with multivariate techniques
- In the absence of signal, extracting limits
Phase Space and Reconstruction

- **Event Selection:**
 - electron, muon $p_T > 15$ GeV
 - electron, muon $|\eta| < 1.1, 2$
 - missing $E_T > 20$ GeV
 - scalar sum of jet energies > 60 GeV
 - 2 jets with $p_T > 20$ GeV, $|\eta| < 2.5$
 - 1 jet with $p_T > 25$ GeV, $|\eta| < 2.5$
 - single or double b-tagging

- **Electron Reconstruction**
 - EM fraction > 0.9
 - shower shape requirement
 - cone isolation requirements
 - EM deposit matched to 5 GeV track
 - likelihood requirement

- **Muon Reconstruction**
 - hits in all layers of muon system
 - scintillator hits
 - track matching between central tracking and muon systems
 - isolation requirements

- **B Jet Tagging**
 - NN algorithm based on 7 lifetime observables

$WH \rightarrow l\nu b\bar{b}$, $l = e, \mu$
Backgrounds

- **W+jets** - any process that produces a W and light flavor jets
 - dominant background before requiring b-tagging

- **Wbb, Wcc** - production of W and the heavier charm and bottom jets
 - dominant background after b-tagging

- **tt** - direct production of top pairs which decay to Wb
 - dominant background at high dijet mass

- **QCD** - pure jet events in which one jet mimics lepton signature

- Additional contributions from single top, diboson and others
QCD instrumental backgrounds

• Jets mimic signature of electrons or muons
 • electrons: jet has high electromagnetic fraction
 • muon: semi-leptonic quark decay is mis-identified as being isolation
• Fake jet contribution can be reduced by requiring “lepton” to be well separated from other jets in the event \(\Delta R_{\text{lepton-jet}} > 0.5 \)
• Independent analysis performed on QCD-enriched data sample to determine probability that jets pass lepton identification criteria.
• QCD shape estimated separately for each distribution
Results

- Backgrounds modeled by MC, normalisation scaled to NLO cross sections when available; W+jets normalized to data; QCD background determined with data.
- Data binned by number of jets, number of b-tags. Most sensitive in 2 jet, 2 b-tag sample.
- Signal to background ratio still very small after all cuts.

Results after b-tagging

Good modeling of background
Event Yields

<table>
<thead>
<tr>
<th></th>
<th>(W + 2) jets</th>
<th>(W + 2) jets</th>
<th>(W + 2) jets</th>
<th>(W + 3) jets</th>
<th>(W + 3) jets</th>
<th>(W + 3) jets</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(1) b jet</td>
<td>(2) b jets</td>
<td>(1 b jet)</td>
<td>(2 b jets)</td>
<td>(1 b jet)</td>
<td>(2 b jets)</td>
</tr>
<tr>
<td>(WH)</td>
<td>9.92 ± 1.44</td>
<td>3.94 ± 0.63</td>
<td>2.32 ± 0.44</td>
<td>2.43 ± 0.42</td>
<td>0.95 ± 0.18</td>
<td>0.59 ± 0.12</td>
</tr>
<tr>
<td>(WZ)</td>
<td>645 ± 90</td>
<td>38 ± 6</td>
<td>7.6 ± 1.34</td>
<td>153 ± 24</td>
<td>10 ± 2</td>
<td>2.4 ± 0.5</td>
</tr>
<tr>
<td>(Wbb)</td>
<td>1352 ± 346</td>
<td>441 ± 117</td>
<td>91.7 ± 26.0</td>
<td>433 ± 118</td>
<td>137 ± 39</td>
<td>33.9 ± 10.0</td>
</tr>
<tr>
<td>(t\bar{t})</td>
<td>348 ± 83</td>
<td>139 ± 34</td>
<td>53.8 ± 14.3</td>
<td>596 ± 152</td>
<td>238 ± 63</td>
<td>122.4 ± 34.3</td>
</tr>
<tr>
<td>Single top</td>
<td>189 ± 37</td>
<td>78 ± 16</td>
<td>19.4 ± 4.4</td>
<td>62 ± 13</td>
<td>25 ± 6</td>
<td>10.1 ± 2.5</td>
</tr>
<tr>
<td>QCD Multijet</td>
<td>2908 ± 436</td>
<td>193 ± 36</td>
<td>10.8 ± 3.3</td>
<td>1051 ± 158</td>
<td>87 ± 16</td>
<td>12.2 ± 4.7</td>
</tr>
<tr>
<td>(W+) jets (light,c)</td>
<td>28013 ± 3181</td>
<td>470 ± 137</td>
<td>20.9 ± 6.9</td>
<td>5332 ± 836</td>
<td>132 ± 41</td>
<td>11.5 ± 4.0</td>
</tr>
<tr>
<td>Total expectation</td>
<td>33458 (n.t.d.)</td>
<td>1360 ± 187</td>
<td>204.1 ± 31.0</td>
<td>7627 (n.t.d.)</td>
<td>630 ± 86</td>
<td>192.5 ± 36.3</td>
</tr>
<tr>
<td>Observed Events</td>
<td>33458</td>
<td>1403</td>
<td>193</td>
<td>7627</td>
<td>570</td>
<td>173</td>
</tr>
</tbody>
</table>

- Table summarizes the number of expected events for Higgs events and all background processes given all cuts in different jet/btag bins.
- \(W+2\) jets samples used for analysis, \(W+3\) jets samples used for control.
- In most sensitive bin, \(\frac{S}{\sqrt{S+B}} = 2.32 / \sqrt{204.1} = .162 \)
Multivariate Techniques

• Neural Networks
 • exploits correlations between kinematic properties of event objects
 • “trained” on reconstructed variables in signal and background MC samples to find correlations
 • run on data to identify events with high signal probability

• Matrix Element Discriminant
 • use LO matrix elements to calculate event probabilities
 • for each event and process, integrate ME over phase space including efficiency and resolution functions

• Decision Trees
 • similar to neural networks, classifies events as more signal-like or background like

Different techniques usually give comparable improvement in sensitivity
NN applied to WH

- Neural net discriminant tuned to further enhance signal and background separation
 - Event variables are inputs:
 - NN trained on subset of background samples, but run on all backgrounds
- Systematics
 - luminosity and normalisation
 - QCD background estimation
 - input background cross-sections
 - jet energy scale, dijet mass resolution
 - b-tagging, lepton-id
- Final result determined from fit to NN output
Final Result

\[WH \rightarrow l\nu b\bar{b}, \ l = e, \mu \]

Result: Limit/SM expectation ~10 for \(m_H = 115 \text{ GeV} \)
Summary of all Modes

<table>
<thead>
<tr>
<th>Channel</th>
<th>Lumi /Technique</th>
<th>Final state</th>
<th>#chan.</th>
</tr>
</thead>
<tbody>
<tr>
<td>WH→lν bb</td>
<td>1.7 fb⁻¹ / NN</td>
<td>e/μ, 1b/2b</td>
<td>2*(2+2)</td>
</tr>
<tr>
<td>ZH→lν bb</td>
<td>1.1 fb⁻¹ / NN</td>
<td>e/μ, 1b/2b</td>
<td>2+2</td>
</tr>
<tr>
<td>ZH→vv bb</td>
<td>0.9 fb⁻¹ / NN</td>
<td>Z→vv, W→lν (2b)</td>
<td>2</td>
</tr>
<tr>
<td>H→WW⁺</td>
<td>1.7 fb⁻¹ / NN</td>
<td>ee, eμ, μμ</td>
<td>2*3</td>
</tr>
<tr>
<td>WH→WWW⁺</td>
<td>1 fb⁻¹ / 2D LHood</td>
<td>ee, eμ, μμ</td>
<td>3</td>
</tr>
</tbody>
</table>

Total of 23 DØ channels combined (tau-channels not included yet)
Combinations & Higgs Sensitivity

- Current state-of-the-art limits on Higgs production for $m_H < 200$ GeV per experiment

CDF

DØ
Latest Higgs Results from Tevatron

- Nearly at required sensitivity for \(m_H = 160 \text{ GeV} \)! Look for tantalizing results at upcoming conferences (maybe even Moriond '08).

- D0 and CDF sensitivities are largely similar, differences can appear as each experiment updates their analyses.

Observed limit @ \(m_H = 160 \text{ GeV} \)
- 1.4 times SM expectation
• Including data taking efficiency, projected full data set will be
 • 5.5 fb⁻¹ by end of 2009
 • 6.8 fb⁻¹ by end of 2010

• Assumption: projected sensitivity for \(m_{H} = 115 \) GeV will be factor x2 higher than current for full dataset
 • Improvement from 2005 -> 2007 was factor 1.7

• Several possibilities for improvement:
 • Better b-tagging with Layer 0
 • dedicated group studying dijet mass resolution
 • many gains to be made in acceptance
 • implementation of multivariate techniques
Higgs Searches at the LHC
Higgs Production at the LHC

- All cross sections go up by 1-2 orders of magnitude (backgrounds go up as well)
- Still dominated by gluon fusion
- Relative Vector Boson Fusion rate much higher than at the Tevatron
Higgs Sensitivity at LHC

- Highest sensitivity at ATLAS is for VBF production in the tau channel for $m_H < 130$ GeV and in the W channel for $m_H > 130$ GeV.

- CMS has better sensitivity in $H \rightarrow \gamma\gamma$, and excellent sensitivity in $H \rightarrow ZZ$ except for the window with $2m_W < m_H < 2m_Z$. Analyses are not directly comparable.
Vector Boson Fusion at LHC

- W or Z radiated from each of the incoming quarks, produces a central Higgs
- Topological feature of quark jets produced very forward increases sensitivity
- Introduces possibility to veto on jet activity in the central region to reduce backgrounds
Vector Boson Fusion at the Tevatron
VBF at the Tevatron

- Production of W, Z or Higgs by weak boson fusion process (i.e. not gluon induced)
- Testbed for VBF search methodology being employed by LHC searches
- Validation of VBF-produced W, Z standard model cross sections
- Currently studying W production, where dominant process is $W \gamma$ fusion.
- Event signature is similar to t-channel single top or WH production, but no b-tagging.

new analysis at Tevatron
Analysis Ingredients

- Phase Space Selection
 - muon $p_T > 15$ GeV
 - muon $|\eta| < 2$
 - missing $E_T > 20$ GeV
 - 2 jets with $p_T > 20$ GeV

- Similar backgrounds to WH

 W+jets - dominant
 Wbb, Wcc
 tt and single top
 Z-$\mu\mu$

Diboson
QCD

muon channel
only so far
Signal Monte Carlo

- NLO production cross section ~2.4 pb
- VBF can be simulated with Herwig, Sherpa, VBFNLO
- VBFNLO fully flexible MC that generates event files at LO, cross sections at NLO. Has very good control over theoretical uncertainties.
VBF - W production

- Several topological features which distinguish VBF from SM backgrounds:
 - Forward jets \(\Rightarrow\) large \(\Delta \eta\)
 - Forward jets \(\Rightarrow\) large dijet mass
 - Harder jet \(p_T\) spectra

\(\Delta \eta\)

\(\text{VBF} --- \text{SM Backgrounds}\)

\(\text{dijet mass}\)

\(\text{second jet } p_T\)

\(\text{Missing } E_T\)
Neural Network Discriminant

- Shape spectra differences between WBF and other SM processes make VBF ideally suited for multivariate approach
- NN trained on all simulated background samples and VBFNLO signal sample
- Currently being studied/optimized

\[\Delta \eta_{\text{jets}} \]
\[\text{Mass}_{\text{dijet}} \]
\[p_{T}^{\text{jet1}} \]
\[p_{T}^{\text{jet2}} \]
\[\eta^{\text{jet1}} \]
\[\Delta \phi_{\text{jets}} \]
\[M_{WTr} \]
\[p_{T}^{\mu} \]
[missing E_{T}]

--- VBF
--- SM Backgrounds

NN output
Generator issues

VBF very sensitive to correct modeling of jet emission angle
Different generators show non-negligible variation in jet η.

Alpgen
- most common MC used at TeV for modeling backgrounds
- employs MLM matching

Sherpa
- can simulate VBF
- uses CKKW matching
- being studied at LHC

Crucial to understand for VBF measurement!
Ongoing investigations

- Neural network optimization for separating signal and background
 - adding observables
 - optimizing background samples for training

- Forward jet description difficult for LO generators
 - Correct inclusion of all diagrams by chosen generator?
 - Color connection between forward jets and proton remnant can get hairy
 - Different parton showering schemes
 - Scheme chosen for matching matrix elements and parton showers

- Validation of forward jet tagging and mini-jet veto. VBF Higgs searches at LHC rely heavily on this method.
Summary and Conclusion

- Higgs Searches at the Tevatron and LHC are among the most exciting work being done in HEP today.

- Tevatron sensitivity is improving faster than the increase in luminosity due to intensified efforts in improving reconstruction efficiencies, triggering, jet resolutions, b-tagging algorithms, and more.

- LHC is the only place that will unequivocally discover the SM Higgs Boson (if it is there!), but the Tevatron may get a glimpse of it first.

- Tevatron is a good testbed for search techniques employed at LHC.

- Many important lessons to take from the Tevatron
 - QCD can be very difficult to model accurately
 - Multivariate techniques for object ID (like b-tagging) and event selection perform extremely well.
 - Choose multivariate techniques that are complementary
 - Understanding VBF physics at the Tevatron will be useful for validating LHC Higgs searches.
Backup
Deriving Limits

- Limits derived using semi-frequentist CLs method where test statistic is $\text{LLR} = -2\log Q = -2\log [P(s+b)/P(b)]$
 - P are probability distribution functions for the signal+background and background only hypotheses
 - P are populated via random Poisson trials with mean values given by the expected number of events in each hypothesis.
 - Systematic uncertainties are incorporated by varying the expected number of events in each hypothesis according to the size and correlations of the uncertainties
B-Tagging

- Several approaches:
 - soft lepton tag
 - IP based tagging
 - secondary vertex reconstruction
- Most D0 analyses now use neural network discrimination for b-quarks
 - large improvement over individual taggers
 - Loose 70% eff, 4.5% mistag
 - Tight 50% eff, 0.3% mistag
 - WH: Tight, Loose operating points

Combine in Neural Network:
- vertex mass
- vertex number of tracks
- vertex decay length significance
- chi2/DOF of vertex
- number of vertices
- two methods of combined track impact parameter significances
Tau identification

- Neural-net based ID
- 3 NN’s for three distinct τ types:
 - Type 1: τ^{\pm}, π^{\pm}, TRK + CAL
 - Type 2: τ^{\pm}, ρ^{\pm}, π^{0}, γ, no TRK, but EM sub-cluster
 - Type 3: τ^{\pm}, π^{\pm}, π^{0}, π^{\pm}, ≥ 1 TRK + wide CAL cluster

- Jet-Background:
 - q, π^{0}, π^{\pm}, π^{0}, π^{\pm}, ≥ 1 TRK + wide CAL cluster + EM sub-cluster

- Performance (for $p_T > 15$ GeV):
 - Type 1: τ^{\pm}, π^{\pm}, TRK + CAL
 - Type 2: τ^{\pm}, ρ^{\pm}, π^{0}, γ, no TRK, but EM sub-cluster
 - Type 3: τ^{\pm}, π^{\pm}, π^{0}, π^{\pm}, ≥ 1 TRK + wide CAL cluster

- Validated with the Z’s (the first Tevatron Run II Z cross section measurement)

- Table:

<table>
<thead>
<tr>
<th>Tau Type</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jets</td>
<td>1.5</td>
<td>10</td>
<td>38</td>
</tr>
<tr>
<td>Taus</td>
<td>9.1</td>
<td>50</td>
<td>20</td>
</tr>
<tr>
<td>NN > 0.9</td>
<td>5.8</td>
<td>37</td>
<td>13</td>
</tr>
</tbody>
</table>
LHC Jet Efficiencies

- Studied in MC for LHC VBF Higgs production
- Never studied with real data!

Fig. 2. a) Efficiency for reconstructing a tag jet with $P_T > 20$ GeV/c which originates from a parton with $P_T > 20$ GeV/c as a function of pseudorapidity η of the parton. b) Probability for finding at least one jet from pileup events in central rapidity intervals in the ATLAS detector as a function of the P_T value used in the jet definition. The dashed curves connect the points for pseudorapidity intervals $|\eta| < 1.5$ and $|\eta| < 3.0$ for low and high LHC luminosities.
VBF $H\rightarrow\text{tautau} \rightarrow e\mu$

- Projected Higgs signal at $m_H = 160$ GeV for tight and loose electron criteria.
Introduce clustering algorithms at L1: high efficiency, low latency

Jets:
- EM+HAD trigger sums
- 2x2 LM
- 4x4 TT geometry

EM Objects:
- 2x1 EM TT sums
- Isolation regions defined by adjacent towers

Taus:
- narrow jet
- ratio of core 2x2 to 4x4 sum
- EM+HAD energies
L1Cal Algorithms

Topological Terms:
• Back-to-Back EM objects
• Acoplanar Jets
• Jet Free Regions

Also missing E_T, scalar E_T inclusions of ICR in algos