Interactions Between Pairs Of Cs Rydberg Atoms

K. Richard Overstreet
The University of Oklahoma, Homer L. Dodge Department of Physics and Astronomy, 440 W. Brooks St., Norman, OK, 73019.

The University of Oklahoma, Atomic, Molecular and Optical Physics
Outline

• Pair Interactions
• Experimental Apparatus
• Time-of-Flight Velocity Distributions
• Photo-Initiated Collision Measurement
• Macrodimer Measurements
Rydberg Atom Pair Interactions

- Interesting for a variety of reasons
 - Resonant energy transfer
 - Dipole Blockade
 - Exotic states of matter
 - *Macrodimers*
- Requires detailed knowledge of Pair interaction potentials
Calculations by Matrix Diagonalization

- Includes dipole and quadrupole contributions
- Diagonalized in the Stark shifted basis with $E \parallel R$

 Thanks Arne!

$$V(R, r_{1A}, r_{2B}) = \sum_{L_1, L_2 = 1}^{N} \sum_{M = -L}^{L} \frac{(-1)^{L_2} f_{L_1 L_2 M}}{R^{L_1 + L_2 + 1}} Q_{L_1 M}(r_{1A}) Q_{L_2 - M}(r_{2B})$$

where the multipole operator is

$$Q_{LM}(r) = \left\{ \frac{4\pi}{2L + 1} \right\}^{1/2} r^L Y_{LM}(\vec{r})$$

and

$$f_{L_1 L_2 M} = \frac{(L_1 + L_2)!}{[(L_1 + M)!(L_1 - M)!(L_2 + M)!(L_2 - M)]^2}$$

The University of Oklahoma, Atomic, Molecular and Optical Physics
E-Fields and Avoided Crossings

- Electric fields have a strong influence on avoided crossings
 - Existence of wells depends on E
 - Pairs may be bound or dissociative
 - *Photoinitiated (PI) Collisions*
 - *Macrodimmers*
Experimental Setup

- Time-of-Flight spectrometer
- Centered on Cs MOT
- UHV system (~10^{-10} Torr)
- Z-Stack microchannel plate detector
 - res. x-y: 20µm, z: 500ps
Signals and Timing

The University of Oklahoma, Atomic, Molecular and Optical Physics
Time-of-Flight Distributions

- Expansion of TOF distribution depends on:
 - *Thermal* velocity
 - Recoil velocity determined by *collision* exit channel
 - *Coulomb repulsion*
Temperature Measurement

- Resolution of spectrometer calibrated using thermal expansion
 - Gaussian distribution
 \[f(z, t) \propto e^{-mz^24ln2/\Delta z^2} \]
 \[\Delta z = \sqrt{\Delta z_0^2 + \frac{8ln2k_BT}{m}\tau^2} \]
 - Velocity resolution of 2.5 cm/s
 - Light shift parameter
 \[\Lambda = \Omega^2/|\delta|\Gamma \]
 \[T = T_0 + 2 \times C_\sigma T_D \left(\frac{\Omega^2}{|\delta|\Gamma} \right) \]
PI Collisions vs. Macrodimers

- **PI collision** can occur from excitation at a stationary point
 - Collision products gain velocity v_{coll} determined by the energy of the exit channel

- **Macrodimer** can be excited in a well
 - Excitation with narrow band cw laser light causes R to have *fixed distribution*
 - Vibrational period ($\sim 2 \mu s$) $<$ excitation time ($\sim 5 \mu s$)
Delay Dependence of TOF Distributions

- Coulomb repulsion in TOF identifies pair interaction
 - Expansion at short delay can identify R as constant
 - Expansion at long delay is a direct measure of v_{coll}.

The University of Oklahoma, Atomic, Molecular and Optical Physics
PI Collision Measurement

- Pair resonance observed near 89D+89D
 - No prominent well
Pair Identification

(a) 2-photon for 6P→89D
(b) 2-atom from charge pulse height distribution
(c) 2-photon 6S→6P
Exit Velocity Measurements

- Expansion the result of thermal and exit velocities
 - $88D + 90D$ resonance is a collision process.
 - Exit velocity of $17 \pm 3 \text{ cm/s}$

Graph:
- $v_{\text{coll}} = 17 \pm 3 \text{ cm/s}$
- $T_{\text{thermal}} = 79 \pm 7 \mu\text{K}$
Choosing n for Molecular States

- Lower principal quantum number advantageous for measurements of Coulomb repulsion for bound states.
 - Lower n → resonances are farther from atomic lines
 - **Pros:**
 - Less atomic background signal
 - Deeper wells
 - **Con:**
 - Less oscillator strength

The University of Oklahoma, Atomic, Molecular and Optical Physics
Ion Rates and TOF Velocity Distributions

- Ion rate is **quadratic**
- Coulomb repulsion easily resolved from TOF distributions
 - Black: atomic state
 - Red: molecular resonance

\[\text{Delay} = 38 \ \mu s \]
The red line is a Monte Carlo simulation of collision with thermal velocity recoil.

- Circles are molecule data
- Triangles are atomic data (dashed line is fit to thermal expansion)

\[\varepsilon = 224 \text{ mV/cm} \]
\[\varepsilon = 205 \text{ mV/cm} \]
\[\varepsilon = 190 \text{ mV/cm} \]
\[\varepsilon = 158 \text{ mV/cm} \]
Future Directions

• Investigate angular distribution of Macrodimers
 – 3D imaging to study applied E spatial dependence

• Measure macrodimer \textit{lifetimes} by observing state distribution of products

• Perform detailed spectroscopy of wells
 – Electric field dependence of wells
The Group

• James Shaffer
 – Arne Schwettmann: contributed calculations of pair interactions
 – Jonathan Tallant: assisted with experiments
 – Donald Boothe: currently assisting Arne with calculations

• K. R. Overstreet, A. Schwettmann, J. Tallant, D. Booth, and J. P. Shaffer, “Observation of Cs Rydberg atom macrodimers” (in submission)

The University of Oklahoma, Atomic, Molecular and Optical Physics
Pair Excitation

• Near resonant 2-photon transition
 – Excitation rate increased due to proximity to nearest atomic duplicate pair state
 – Pair interact strongly at short R and mixes in nD state character
 – Excitation rate higher for higher n