Perspectives of Charmonium Production at CMS

Zongchang YANG, Peking University

1st April, University of Virginia (USA)
Outline

• Introduction to LHC, CMS and motivations
• Muon and di-muon trigger
• Muon and di-muon reconstruction
• Inclusive J/ψ cross-section measurement
• B fraction fit
• Misalignment effect in early data
• Systematic uncertainties
• Expected results at 3pb⁻¹
• Muon performance with cosmic muons (real data)
• Summary
The Large Hadron Collider (LHC)

- LHC: the world’s largest particle accelerator at CERN, Geneva

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Circumference</td>
<td>26658 m</td>
</tr>
<tr>
<td>Momentum at collision</td>
<td>7 TeV</td>
</tr>
<tr>
<td>Design luminosity</td>
<td>10^{34} cm2s$^{-1}$</td>
</tr>
<tr>
<td>Protons per bunch</td>
<td>1.15×10^{11}</td>
</tr>
<tr>
<td>Number of bunches</td>
<td>2808</td>
</tr>
<tr>
<td>Collision rate</td>
<td>40 MHz</td>
</tr>
<tr>
<td>Operating temperature</td>
<td>1.9 K</td>
</tr>
</tbody>
</table>

Some of the LHC parameters for pp operation.

- LHC experiments: ALICE, ATLAS, CMS, LHCb, LHCf and TOTEM
The Compact Muon Solenoid (CMS)

More than 2000 scientists, from 155 institutes in 37 countries

SUPERCONDUCTING COIL

CALORIMETERS

ECAL
Scintillating PbWO4 crystals

HCAL
scintillator/brass sandwich

IRON YOKE

TRACKER
Silicon Microstrips
Pixels

MUON BARREL
Drift Tube Chambers (DT)
Resistive Plate Chambers (RPC)

MUON ENDCAPS
Cathode Strip Chambers (CSC)
Resistive Plate Chambers (RPC)

Total weight: 12,500 t
Overall diameter: 15 m
Overall length: 21.6 m
Magnetic field: 4 Tesla
Interactions in the CMS detector
Motivations

- The J/ψ production is dominated by:
 - prompt J/ψ:
 - direct J/ψ production
 - indirect from prompt χ_{c0}, χ_{c1}, χ_{c2}...
 - non-prompt J/ψ: from B hadrons decay

- Prompt puzzle: no satisfactory models fit x-section and polarization simultaneously, for example:
 - CSM (Color Singlet Model): LO, NLO, NNLO
 - can not explain the cross section
 - COM (Color Octet Mechanism): NRQCD
 - COM means polarization

- Motivations:
 - Quarkonia production and polarization for theoretical interest
 - J/ψ and Y are crucial to understand the detector performance:
 - alignment and calibration
 - muon efficiency
 - Can be done with first data, $\leq 10\text{pb}^{-1}$
CMS Detector for Quarkonia

Muon system:
- Drift Tubes (DT) in central barrel region
- Cathode Strip Chambers (CSC) in endcap region
- Resistive Plate Chambers (RPC) in barrel and endcap

Tracker system:
- Silicon pixel layers (3 in barrel, 2 in endcap)
- Silicon strips layers (10 in barrel, 12 in endcap)

- Excellent coverage: ~5 units of rapidity and 2π of ϕ
- Strongest magnetic field: 4 T, 2 T (return yoke)
- Tag from muon stations, momentum resolution from Silicon tracker: ~2% of momentum resolution for tracks with $p_T < 100$ GeV
- Ecal+Hcal+Coil – absorbs hadrons

precise measurement of position (momentum)
fast info for LVL-1 trigger
Charmonium generation

- **Prompt J/ψ production**: NRQCD COM+CSM processes in Pythia (see backup slides) with NRQCD matrix elements from: hep-ph/0003142
 - CSM values extracted from potential models (hep-ph/9503356)
 - COM values from CDF data
 - Total 0.3846 mb at 14 TeV

- **B hadrons production**: MSEL=1 in Pythia and decay with EvtGen
 - gluon fusion ($50\mu\text{b}$)
 - gluon splitting ($190\mu\text{b}$)
 - flavor excitation ($220\mu\text{b}$)

- **Prediction of the differential cross-section of prompt J/ψ and B-decay J/ψ at LHC, 14TeV** (right).
The L1 and HLT muon trigger
CMS muon trigger

<table>
<thead>
<tr>
<th>HLT path</th>
<th>L1 seeds</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>HLT_Mu3</td>
<td>L1_SingleMu3</td>
<td>one L3 muon pT>3 GeV/c,</td>
</tr>
<tr>
<td>HLT_Mu5</td>
<td>L1_SingleMu3</td>
<td>one L3 muon pT>5 GeV/c,</td>
</tr>
<tr>
<td>HLT_Mu9</td>
<td>L1_SingleMu7</td>
<td>one L3 muon pT>9 GeV/c,</td>
</tr>
<tr>
<td>HLT_DoubleMu3</td>
<td>L1_DoubleMu3</td>
<td>two L3 muon pT>0 GeV/c,</td>
</tr>
<tr>
<td>HLT_JPsiMuMu</td>
<td>L1_DoubleMu3</td>
<td>two L3 muon pT>0 GeV/c,</td>
</tr>
<tr>
<td>HLT_UpsilonMuMu</td>
<td>L1_DoubleMu3</td>
<td>two L3 muon pT>0 GeV/c,</td>
</tr>
</tbody>
</table>

For example, the CMS dimuon trigger:

- **L1 filter:** hardware-based
 - DT’s range |η|<1.2; CSC 0.9<|η|<2.4; RPC |η|<2.1
 - Two L1 muons p_T>3GeV/c, |η|<2.5
- **HLT L2 filter:** on-line reconstructed L2 muons from the muon system (DT, CSC)
 - Two L2 muons p_T>3GeV/c, |η|<2.5
- **HLT L3 filter:** using L2 muons as input and constrain to the interaction region in the silicon tracker.
 - Two L3-μ p_T>3GeV/c, |η|<2.5
J/ψ HLT trigger efficiency

eff. vs. p_T

eff. vs. η
The pre-scale factors and trigger rates

The pre-scale factors and unprescaled trigger rates at luminosity = 8×10^{29} cm$^{-2}$s$^{-1}$.

<table>
<thead>
<tr>
<th>HLT path</th>
<th>Prescale</th>
<th>Prompt J/ψ</th>
<th>B-decay J/ψ</th>
<th>background</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>HLT_Mu3</td>
<td>1</td>
<td>0.256 Hz</td>
<td>0.0838 Hz</td>
<td>15.6 Hz</td>
<td>15.9 Hz</td>
</tr>
<tr>
<td>HLT_Mu5</td>
<td>1</td>
<td>0.107</td>
<td>0.0472</td>
<td>6.23</td>
<td>6.38</td>
</tr>
<tr>
<td>HLT_Mu9</td>
<td>1</td>
<td>0.0116</td>
<td>0.00886</td>
<td>0.814</td>
<td>0.834</td>
</tr>
<tr>
<td>HLT_DoubleMu3</td>
<td>1</td>
<td>0.0120</td>
<td>0.00793</td>
<td>0.122</td>
<td>0.142</td>
</tr>
<tr>
<td>HLT_JPsiMuMu</td>
<td>1</td>
<td>0.0117</td>
<td>0.00630</td>
<td>0.00294</td>
<td>0.0209</td>
</tr>
</tbody>
</table>

The pre-scale factors and unprescaled trigger rates at luminosity = 1×10^{31} cm$^{-2}$s$^{-1}$.

<table>
<thead>
<tr>
<th>HLT path</th>
<th>Prescale</th>
<th>Prompt J/ψ</th>
<th>B-decay J/ψ</th>
<th>background</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>HLT_Mu3</td>
<td>infinity</td>
<td>3.20 Hz</td>
<td>1.05 Hz</td>
<td>195 Hz</td>
<td>None</td>
</tr>
<tr>
<td>HLT_Mu5</td>
<td>25</td>
<td>1.34</td>
<td>0.590</td>
<td>77.4</td>
<td>79.8 Hz</td>
</tr>
<tr>
<td>HLT_Mu9</td>
<td>1</td>
<td>0.145</td>
<td>0.111</td>
<td>10.2</td>
<td>10.5</td>
</tr>
<tr>
<td>HLT_DoubleMu3</td>
<td>1</td>
<td>0.150</td>
<td>0.099</td>
<td>1.53</td>
<td>1.78</td>
</tr>
<tr>
<td>HLT_JPsiMuMu</td>
<td>1</td>
<td>0.146</td>
<td>0.079</td>
<td>0.037</td>
<td>0.261</td>
</tr>
</tbody>
</table>
In the first run of 2009-2010, the total integral luminosity is about 200 pb⁻¹.

The new plan is to measure the cross section at 3 pb⁻¹ by using HLT_Mu3 path.
Muon and J/ψ reconstruction
Figure 7: The η and p_T 2D distributions of muon and prompt J/ψ for reconstructed J/ψ-events.
Muon Acceptance

• We calculated the efficiency by matching the global reconstructed muon with MC truth: (1) same charge, (2) $\Delta R = \sqrt{\Delta \eta^2 + \Delta \phi^2}$, (3) $\Delta p_T/p_T < 0.2$
Muon reconstruction performance

<table>
<thead>
<tr>
<th></th>
<th>barrel</th>
<th>transition</th>
<th>end-cap</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\sigma(1/p_T)$</td>
<td>0.6~1.0%</td>
<td>1.1~1.5%</td>
<td>1.5~2.3%</td>
</tr>
<tr>
<td>$\sigma(\eta)$</td>
<td>0.0003~0.0016</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\sigma(\phi)$</td>
<td>0.0002~0.0016</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
J/ψ selection

- We selected reconstructed global muon pairs by requiring:
 1. HLT_DoubleMu3 trigger
 2. Opposite charge.
 3. Each muon $p_T > 3\text{GeV/c}$, $|\eta| < 2.4$.
 4. Dimuon invariant mass between 2.8 to 3.4GeV/c^2.
 5. Two muons come from a common vertex.

Offline selection criteria will depend on the trigger selection.

3 pb$^{-1}$
$\sigma \sim 30\text{MeV}$
J/ψ mass distribution

- We divided J/ψ into p_T and η bins and fit the mass distribution in each bin with a single Gaussian:

- $0.0 < |\eta| < 0.2$
 - Mean = 3.098 GeV/c^2
 - σ = 16.8 MeV/c^2

- $1.0 < |\eta| < 1.2$
 - Mean = 3.098 GeV/c^2
 - σ = 27.1 MeV/c^2

- $2.0 < |\eta| < 2.2$
 - Mean = 3.103 GeV/c^2
 - σ = 39.7 MeV/c^2
J/ψ mass resolution

$E(m)$ vs. p_T

$\sigma(m)$ vs. p_T

$E(m)$ vs. η

$\sigma(m)$ vs. η
Inclusive J/ψ cross-section
Measurement of Cross-section

Following the CDF measurement, the inclusive J/ψ cross-section is determined by

$$\frac{d\sigma}{dp_T}(J/\psi) \cdot Br(J/\psi \rightarrow \mu^+\mu^-) = \frac{N_{\text{sig}}^{J/\psi}}{\int Ldt \cdot A \cdot \lambda_{\text{corr}}^{\text{trigger}} \cdot \lambda_{\text{corr}}^{\text{reco}} \cdot \Delta p_T}$$

1. $\int Ldt$: the integral luminosity
2. Δp_T: the size of the pT bin. We divided into 15 bins from 5 to 40 GeV/c
3. N_{sig}: the number of reconstructed J/ψs from fitting
4. A: the total efficiency determined from MC simulation
5. $\lambda_{\text{corr}}^{\text{trigger}}$ and $\lambda_{\text{corr}}^{\text{reco}}$: correction factors to the trigger and offline efficiencies, as measured in data compared to the MC.
Figure 18: Mass distribution fit with linear background and signal peak of a single Gaussian (a) or double Gaussian (b) in pT range 9\,GeV/c < p_T < 10\,GeV/c.
Total selection efficiency

\[A(p_T^{J/\psi}, \eta^{J/\psi}) = \frac{N_{J/\psi}^{\text{rec}}(p_T^{J/\psi}, \eta^{J/\psi})}{N_{J/\psi}^{\text{gen}}(p_T^{J/\psi}, \eta^{J/\psi})} \]

Total efficiency includes:
- detector acceptance
- trigger efficiency
- offline efficiency

\[I(\cos \theta) = \frac{3}{2(\alpha + 3)} \left(1 + \alpha \cos^2 \theta\right) \]

• Here we take existing measurements as default (CDF for prompt, BaBar for non-prompt), uncertainty in systematic error analysis.
• Polarization measurement at CMS will be done too.
• The J/ψ reconstruction efficiency can be expressed by:

$$\varepsilon_{\text{offline}}^{J/\psi}(p_T, \eta_{J/\psi}, \theta_{J/\psi}) = \varepsilon_1(p_T, \eta_1) \times \varepsilon_2(p_T, \eta_2),$$

• Muon reconstruction efficiency can be measured from data by Tag&probe method. Tag&probe can be used both on MC events or real data. Thus the correction factor is:

$$\lambda_{\text{reco}}^{corr}(p_T, \eta) = \frac{\varepsilon_{\text{data}}(p_T, \eta)}{\varepsilon_{\text{MC}}(p_T, \eta)}$$

• $\lambda_{\text{reco}}^{corr}(p_T, \eta)$ is ideal to be 1 if the MC simulation is perfect.
• Absolute muon efficiency is difficult to obtain at low p_T.

• Correction factors to the J/ψ trigger efficiency can be determined in a similar way.
B fraction fit
To distinguish $b \rightarrow J/\psi$ from prompt J/ψ, we use the pseudo-proper decay length:

$$
\ell_{xy} = \frac{L_{xy}^{J/\psi} \cdot M_{J/\psi}}{P_T^{J/\psi}}
$$

$L_{xy}^{J/\psi}$ is the transverse component of decay length in lab system.

1. **Prompt J/ψ:** decays at the primary vertex (red), described with resolution function: double Gaussian + double-sided exponential,

 $$
 F_p(\ell_{xy}) = R(\ell_{xy}, \sigma)
 $$

2. **Non-prompt J/ψ:** B-hadrons have long lifetimes:

 $$
 F_B(\ell_{xy}) = R(\ell_{xy} - \ell_{xy}', \sigma) \otimes X_{mc}(\ell_{xy}')
 $$

$X_{mc}(\ell_{xy}')$ is the $b \rightarrow J/\psi$ lifetime distribution, an exponential function convoluted with a Gaussian.
B fraction fit (2)

- **Unbinned Maximum Likelihood** fit is used.
 - Both pseudo-proper decay length and invariant mass distributions are used.
 - Likelihood of mass signal and side-band events are minimized simultaneously.

- The likelihood function is:

\[
\ln L = \sum_{i=1}^{N} \ln F(\ell_{xy}, m_{\mu\mu})
\]

\[
F(\ell_{xy}, m_{\mu\mu}) = f_{\text{sig}} F_{\text{sig}}(\ell_{xy}) M_{\text{sig}}(m_{\mu\mu}) + (1 - f_{\text{sig}}) F_{\text{bkg}}(\ell_{xy}) M_{\text{bkg}}(m_{\mu\mu})
\]

\[
F_{\text{sig}}(\ell_{xy}) = (1 - f_{B}) F_{\text{p}}(\ell_{xy}) + f_{B} F_{\text{B}}(\ell_{xy})
\]

B fraction: what we want

\[
R(\ell_{xy}, \sigma) \quad R(\ell_{xy} - \ell'_{xy}, \sigma) \otimes X_{mc}(\ell'_{xy})
\]

Example of B fraction fit in J/ψ
pT bin 9-10 GeV/c
The fit result is very well compared to the MC truth.

Figure 25: (a) B fraction from fitting (dot) and the MC truth (triangle) (b) the deviation of B fraction from MC truth. The unbinned maximize likelihood fitting provides the correct results, within the range of three σ.
The figure shows the results of other fits divided by the standard fitting, and the differences are considered as systematic uncertainties (see slide 35).

Systematic uncertainties in B fraction fit seem small.
Misalignment
Mass resolution

• Plots of J/ψ invariant mass distribution in 10pb$^{-1}$, 100pb$^{-1}$ and ideal conditions. And table 5 gives the numbers of the mass resolutions.

Table 5: J/ψ mass resolution in different misalignment scenarios

<table>
<thead>
<tr>
<th></th>
<th>10pb$^{-1}$</th>
<th>100pb$^{-1}$</th>
<th>ideal</th>
</tr>
</thead>
<tbody>
<tr>
<td>J/ψ mass resolution</td>
<td>34.2MeV</td>
<td>30.5MeV</td>
<td>29.5MeV</td>
</tr>
</tbody>
</table>
B fraction

- Left: Misalignment effects on the pseudo-proper decay length distribution.
- Right: We fitted the B fraction in 10pb⁻¹ sample and compared with MC and result in ideal.

We conclude that there is no bias in neither of the two scenarios and take 50% of the difference as a systematic error.
Systematic uncertainties.
Summary of systematic errors

Table 6: Summary of possible systematic uncertainties in the J/ψ cross-section measurement in CMS early data. All the uncertainties are p_T-depended, except the uncertainty from luminosity. The total uncertainty is about 10% in the region $p_T > 20\text{GeV}/c$ and 16% at the first p_T bin 5-6GeV/c.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Source</th>
<th>Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>Luminosity</td>
<td>Luminosity</td>
<td>$\sim 5%$</td>
</tr>
<tr>
<td>Number of J/ψ</td>
<td>Mass PDF</td>
<td>1.6 - 9.5%</td>
</tr>
<tr>
<td>Number of J/ψ</td>
<td>Momentum scale</td>
<td>$\sim 1%$</td>
</tr>
<tr>
<td>Acceptance</td>
<td>J/ψ polarization</td>
<td>1.8 - 7.0%</td>
</tr>
<tr>
<td>Acceptance</td>
<td>p_T spectrum</td>
<td>0.1 - 10%</td>
</tr>
<tr>
<td>Acceptance</td>
<td>MC statistics</td>
<td>0.53 - 1.7%</td>
</tr>
<tr>
<td>$\epsilon_{\text{reconstruction}}$</td>
<td>Determine in tag-and-probe</td>
<td>$\sim 5%$</td>
</tr>
<tr>
<td>$\epsilon_{\text{trigger}}$</td>
<td>Determine in tag-and-probe</td>
<td>$\sim 5%$</td>
</tr>
<tr>
<td>B fraction</td>
<td>Resolution model</td>
<td>0. - 2.6%</td>
</tr>
<tr>
<td>B fraction</td>
<td>B-decay J/psi model</td>
<td>0.01 - 0.05%</td>
</tr>
<tr>
<td>B fraction</td>
<td>Background</td>
<td>$\sim 1.5%$</td>
</tr>
<tr>
<td>B fraction</td>
<td>Misalignment</td>
<td>0.7 - 3.5%</td>
</tr>
<tr>
<td>total 10% - 16%</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- The total uncertainties is about 10\% in p_T above 20GeV, and 16\% at the first p_T bin
- The most important uncertainties will be shown, and others are in backup slides.
Uncertainties: J/ψ polarization

- **What we used:**
 - Prompt J/ψ:
 - B-decay J/ψ: $\alpha_B = -0.13 \pm 0.01$

- **We used the mean value and varied it by $\pm \sigma$:**
 - $\alpha = \mu$, $\alpha_+ = \mu + 3\sigma$, $\alpha_- = \mu - 3\sigma$
 - With α, α_+, α_-, we have acceptances: A, A_+, A_-
 - $A_+ < A < A_-$
 - $\Delta \sigma / \sigma_{sys} = 1.8 \sim 7.0\%$
The J/ψ p_T spectrum is the subject of this analysis.

The Acceptance from MC in each p_T bin depends on the generated spectrum.

In order to estimate this systematic, we take the difference between the flat spectrum and the generated one:
- For each p_T bin, we divided into 4 smaller bins of equal p_T size:
- Calculate each small bin’s acceptance:

$$\Delta A = \sum_{i=1}^{4} A_i - \frac{\sum_{i=1}^{4} A_i N_i}{\sum_{i=1}^{4} N_i}$$

$\Delta A/A$ gives a uncertainty from 0.1 to 10%.
Uncertainties: others

- Mass fit: we split each p_T bin into three separate $|\eta|$ regions (0. – 0.8 – 1.6 – 2.4) and fit each region with a single Gaussian. The difference with respect to a single η bin and double Gaussian is taken as systematics.
 - 1.6 – 9.5%

- Residual misalignment effect: the B fraction fitting result in 10pb$^{-1}$ and ideal alignment is shown in slide 29. We conclude that there is no bias in neither of the two scenarios and take 50% of the difference as a systematic error.
 - 0.7 – 3.5%

- The luminosity uncertainty is supposed to be 5%, and the errors from Tag&Probe are also considered as 5%.

- More details in the backup slides.
Results
Table 8: The prompt and B-decay J/ψ differential cross sections as a function of p_T with statistical and systematic uncertainties. The cross section in each p_T bin is integrated over the η range $|\eta| < 2.4$. The Monte Carlo input values are listed in the last 2 columns.

<table>
<thead>
<tr>
<th>p_T (GeV/c)</th>
<th>$d\sigma/dp_T \cdot Br(n b/(G e V/c))$</th>
<th>MC input values (nb/(GeV/c))</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>prompt J/ψ</td>
<td>B-decay J/ψ</td>
</tr>
<tr>
<td>5-6</td>
<td>$220\pm5(stat)\pm41(syst)$</td>
<td>$47.8\pm3.2(stat)\pm8.9(syst)$</td>
</tr>
<tr>
<td>6-7</td>
<td>$130\pm2\pm18$</td>
<td>$30.2\pm1.0\pm4.1$</td>
</tr>
<tr>
<td>7-8</td>
<td>$74.9\pm0.7\pm10.2$</td>
<td>$22.2\pm0.5\pm3.0$</td>
</tr>
<tr>
<td>8-9</td>
<td>$44.5\pm0.4\pm6.3$</td>
<td>$15.4\pm0.3\pm2.2$</td>
</tr>
<tr>
<td>9-10</td>
<td>$26.9\pm0.3\pm4.0$</td>
<td>$11.4\pm0.2\pm1.7$</td>
</tr>
<tr>
<td>10-11</td>
<td>$16.6\pm0.2\pm2.4$</td>
<td>$7.91\pm0.13\pm1.14$</td>
</tr>
<tr>
<td>11-12</td>
<td>$11.1\pm0.2\pm1.6$</td>
<td>$5.53\pm0.10\pm0.81$</td>
</tr>
<tr>
<td>12-13</td>
<td>$6.97\pm0.10\pm1.06$</td>
<td>$4.19\pm0.08\pm0.64$</td>
</tr>
<tr>
<td>13-14</td>
<td>$4.80\pm0.07\pm0.72$</td>
<td>$2.87\pm0.06\pm0.43$</td>
</tr>
<tr>
<td>14-15</td>
<td>$3.39\pm0.06\pm0.54$</td>
<td>$2.16\pm0.05\pm0.35$</td>
</tr>
<tr>
<td>15-17</td>
<td>$2.03\pm0.03\pm0.35$</td>
<td>$1.45\pm0.03\pm0.25$</td>
</tr>
<tr>
<td>17-20</td>
<td>$0.942\pm0.016\pm0.158$</td>
<td>$0.745\pm0.015\pm0.12$</td>
</tr>
<tr>
<td>20-24</td>
<td>$0.379\pm0.009\pm0.067$</td>
<td>$0.320\pm0.008\pm0.057$</td>
</tr>
<tr>
<td>24-30</td>
<td>$0.131\pm0.004\pm0.024$</td>
<td>$0.122\pm0.004\pm0.022$</td>
</tr>
<tr>
<td>30-40</td>
<td>$0.0347\pm0.0015\pm0.0071$</td>
<td>$0.0347\pm0.0015\pm0.0071$</td>
</tr>
</tbody>
</table>
Inclusive J/ψ cross section and B fraction

- The inclusive J/ψ differential cross-section as a function of p_T, integrated over the pseudorapidity range $|\eta|<2.4$, corresponding to an integral luminosity of 3pb$^{-1}$.
- Results of B fraction fit.
The prompt and non-prompt J/ψ differential cross-section as a function of p_T, integrated over the pseudorapidity range $|\eta|<2.4$, corresponding to a integral luminosity of 3pb^{-1}.

This study is expected to be the first physics paper with real collision data in CMS.
Cosmic Muon Study
Cosmic muon reconstruction

- The normal cosmic muon reconstruction contains one-leg track and two standalone muons.
- It can also be reconstructed as two splitted global muons:
 - two tracks and two standalone muons
 - up muon’s outer position $y>0$
 - down muon’s outer position $y<0$

Cosmic muon selection:
1. Good runs with B field on (3.8 T)
2. Events with 2 tracks in opposite hemispheres
3. Each track: $|d0|<10$ and $|dz|<40$

- Total 85 K events after selection

- Plot $\Delta p_T/p_T$, $\Delta \eta$, and $\Delta \phi$ of the two splitted tracks in bins of the one-leg muon’s p_T, η, ϕ and number of valid hits.
Muon resolution vs. p_T

\[\frac{\Delta p_T}{p_T} \]

- Gaussian width of $p_T(\mu_{\text{up}}) - p_T(\mu_{\text{down}})$ divided by the center value and rescaled by $1/\sqrt{2}$ for single prong resolution.
 - the same to $\Delta \eta$ and $\Delta \phi$.

- The p_T resolution is consistent with CMS PTDR (Physics Technical Design Report)!
Muon resolution vs. N_{hits}

The resolution as a function of η and ϕ is in the back-up slides.

\[\frac{\Delta p_T}{p_T} \]

\[N_{\text{hits}}(\mu_{\text{up}}) + N_{\text{hits}}(\mu_{\text{down}}) \leq N_{\text{hits}}(\mu_{\text{one-leg}}) \]
Summary

- We present a feasibility study of the J/ψ cross section measurement with first data:
 1. Inclusive J/ψ cross section measurement
 2. B fraction fitting
 3. Misalignment effects are considered
 4. Systematic uncertainties are estimated.

- J/ψ in CMS:
 1. Mass resolution: $\sigma_{J/ψ} = 30$ MeV/c² ($|\eta| < 2.4$)
 2. Signal/Background: ~7 for J/ψ by requiring two muons $p_T > 3$ GeV/c
 3. Expected rates in $|\eta| < 2.4$: two muons $p_T > 3$ GeV/c, ~25K J/ψ per 1 pb⁻¹ (1.2 days @10³¹ cm⁻² s⁻¹)

- Splitted cosmic muons can be used to inspect the detector performance.
 - The tracker seems to behave very well.

The LHC will start at September 2009!
Thank you!
&Backup slides
Event Generation (1)

- COM J/ψ generation were originally implemented by S. Wolf (2002, never in official release)
 - Based on NRQCD- approach
 - Singlet and octet QQ produced perturbatively, followed by shower
 - Parton showers for radiation off octet QQ

- In Pythia:
 - Code integrated (Sjöstrand): PYTHIA ≥ 6.324
 - Possibility to dampen cross section at small PT like for $gg \rightarrow gg$ in underlying event (PYEVWT)
 - NRQCD matrix elements tuned (See Bargiotti, CERN-LHCb-2007-042)
NRQCD matrix elements

- Rates for all quarkonium processes given by NRQCD matrix elements
- Motivation of tuning: agreement MC↔data
- NRQCD matrix elements from: hep-ph/0003142
 - CSM values extracted from potential models (hep-ph/9503356)
 - COM values from CDF data
- Quark masses: $m_c = 1.5 \text{ GeV}$, $m_b = 4.88 \text{ GeV}$

See also talk by M. Bargiotti at HERA-LHC workshop 2006

PARP(141)	$\langle O^{J/\psi}[^{3}S_1^{(1)}] \rangle$	1.16
PARP(142)	$\langle O^{J/\psi}[^{3}S_1^{(8)}] \rangle$	0.0119
PARP(143)	$\langle O^{J/\psi}[^{1}S_0^{(8)}] \rangle$	0.01
PARP(144)	$\langle O^{J/\psi}[^{3}P_0^{(8)}] / m_c^2 \rangle$	0.01
PARP(145)	$\langle O^{\chi_c 0}[^{3}P_0^{(1)}] / m_c^2 \rangle$	0.05
PARP(146)	$\langle O^{\Upsilon}[^{3}S_1^{(1)}] \rangle$	9.28
PARP(147)	$\langle O^{\Upsilon}[^{3}S_1^{(8)}] \rangle$	0.15
PARP(148)	$\langle O^{\Upsilon}[^{1}S_0^{(8)}] \rangle$	0.02
PARP(149)	$\langle O^{\Upsilon}[^{3}P_0^{(8)}] / m_b^2 \rangle$	0.02
PARP(150)	$\langle O^{\chi_b 0}[^{3}P_0^{(1)}] / m_b^2 \rangle$	0.085
Event generation (2)

- Prediction of the differential cross-section of prompt J/ψ and B decayed J/ψ at LHC, 14TeV

- Prompt J/ψ: Use the tuned parameters and increase energy to 14TeV

- B decayed J/ψ: MSEL=1, QCD processes

Figure 3: Prompt and non-prompt J/ψ differential cross sections in pp collision at 14TeV integrated over the range $|\eta| < 2.4$.
Update (1)

- Resolution function: to parameterize the prompt J/psi pseudo-proper decay length.

- Double Gaussian $G+G$: 5

- Triple Gaussian $G+G+G$: 8

- $G+G*E$: 6

- $G+G+E+E$: 7
Update (2)

- Non-J/psi QCD background life time fitting

\[
F_{Bkg}(\ell_{xy}) = \begin{cases}
(1 - f_+ - f_- - f_{\text{sym}}) \cdot R(\ell_{xy}, \sigma) + \frac{f_+}{\lambda_+} e^{-\frac{\ell_{xy}}{\lambda_+}} \otimes R(\ell'_{xy} - \ell_{xy}, \sigma) \\
+ \frac{f_{\text{sym}}}{2\lambda_{\text{sym}}} e^{-\frac{\ell_{xy}}{\lambda_{\text{sym}}}} \otimes R(\ell'_{xy} - \ell_{xy}, \sigma) \\
(1 - f_+ - f_- - f_{\text{sym}}) \cdot R(\ell_{xy}, \sigma) + \frac{f_-}{\lambda_-} e^{\frac{\ell_{xy}}{\lambda_-}} \otimes R(\ell'_{xy} - \ell_{xy}, \sigma) \\
+ \frac{f_{\text{sym}}}{2\lambda_{\text{sym}}} e^{\frac{\ell_{xy}}{\lambda_{\text{sym}}}} \otimes R(\ell'_{xy} - \ell_{xy}, \sigma)
\end{cases}
\]

when $\ell_{xy} > 0$, (26)
when $\ell_{xy} < 0$,

Background only
• Because of the small background statistics, I didn’t split them into pT bins but put them all into one bin:
 – Each pT bin will have different background level
 – Likelihood functions of the events in mass signal and mass side-band window are minimized simultaneously.

In pT bin 5-6 GeV/c, the background level $S/B = 2.35$

<table>
<thead>
<tr>
<th></th>
<th>fit (w bkg)</th>
<th>fit (w/o bkg)</th>
<th>MC input</th>
</tr>
</thead>
<tbody>
<tr>
<td>f_b</td>
<td>0.212 ± 0.019</td>
<td>0.178 ± 0.012</td>
<td>0.180</td>
</tr>
</tbody>
</table>
In pT bin 9-10 GeV/c, the background level $S/B = 16.7$

<table>
<thead>
<tr>
<th></th>
<th>fit (w bkg)</th>
<th>fit (w/o bkg)</th>
<th>MC input</th>
</tr>
</thead>
<tbody>
<tr>
<td>f_b</td>
<td>0.296 ± 0.0047</td>
<td>0.299 ± 0.0045</td>
<td>0.295</td>
</tr>
</tbody>
</table>
In pT bin 20-24 GeV/c, the background level $S/B = 4.36$

<table>
<thead>
<tr>
<th></th>
<th>fit (w bkg)</th>
<th>fit (w/o bkg)</th>
<th>MC input</th>
</tr>
</thead>
<tbody>
<tr>
<td>f_b</td>
<td>0.454 ± 0.011</td>
<td>0.458 ± 0.009</td>
<td>0.457</td>
</tr>
</tbody>
</table>
Cosmic Muons
Muon resolution vs. η

$$\frac{\Delta p_T}{p_T}$$

p_T resolution vs η

η resolution vs η

ϕ resolution vs η
Muon resolution vs. η
Muon resolution vs. N_{hits}

\[
\frac{\Delta p_T}{p_T} = p_T \text{ resolution vs } N_{\text{hits}}
\]

\[
N_{\text{hits}}(\mu_{\text{up}}) + N_{\text{hits}}(\mu_{\text{down}}) \leq N_{\text{hits}}(\mu_{\text{one-leg}})
\]

The resolution as a function of η and ϕ is in the back-up slides.