Optical continuous-variable cluster states

Nicolas C. Menicucci

Perimeter Institute for Theoretical Physics
Waterloo, Canada
Teleportation “Lite”

\[|\psi\rangle \]

\[|+\rangle \]

\[X^m H Z_\alpha |\psi\rangle \]

\[m \]
Teleportation
Teleportation Network
Cluster State
Continuous-Variable Clusters

Construct CV clusters same way as for qubits
- circles: $|+_\rangle$ becomes zero-momentum eigenstate
- edges: In CV case, $C_Z = \exp(i\hat{q}_1 \otimes \hat{q}_2)$

Every CV cluster state has a corresponding graph (just as for qubits)

Optical Implementation

- 1 mode = 1 node
 - \(q = a + a^\dagger \)
 - \(p = -i(a - a^\dagger) \)

- Problem: momentum eigenstates have infinite energy (unphysical)
 - Use *finitely* squeezed vacuum states
 - Physical states \(\Rightarrow \) faulty \(\Rightarrow \) errors in computation
 - No “magic pill”—need fault tolerance from start

 \(\S \) M. Ohliger, K. Kieling, J. Eisert, arXiv:1004.0081
 \(\S \) H. Cable, D. Browne, arXiv:1008.4855

- \(C_Z \) gate can be accomplished with beam splitters and weak inline squeezing (hard!)
Measurements

- Only single-mode projective measurements are required for universal QC

- Homodyne detection (quadrature measurement) alone allows for all \textit{multimode} Gaussian operations
 - Relatively easy to do experimentally

- One non-Gaussian measurement is additionally needed for universality
 - Photon counting (harder)
Practical Preparation Method #1

- In-line squeezing (C_Z gate) can be replaced with an appropriate beam splitter network*
 - In general, $O(N^2)$ optical elements needed
 - One squeezer for each mode
 - Entanglement between spatial modes

* P. van Loock, C. Weedbrook, M. Gu, PRA 76, 032321 (2007)
Practical Preparation Method #1

Advantages
- Easy to do proof-of-principle experiments now
- 4-mode CV cluster-state QC demonstrated
- Passive beamsplitters replace active C_Z gates

Disadvantages
- N squeezers
- Stable interferometer with $O(N^2)$ beamsplitters
- Coherence of entire state must be maintained during measurements
- N is fixed for a given setup
Practical Preparation Method #2

- All squeezing and interference can be performed within a *single* crystal*
 - In general, $O(N^2)$ couplings needed
 - Single pump, single output beam
 - Entanglement between frequency modes

Single-OPO Cluster States

3 pump frequencies (polarized)
Single-OPO Cluster States

15 pump frequencies (polarized)
Single-OPO Cluster States

15 pump frequencies (polarized)

OPO
pump
cluster state
frequency-sensitive measurements

18 Aug 2011
Practical Preparation Method #2

Practical Preparation Method #2

Advantages:
- Single OPO does everything at once
- Scalability over thousands of modes
- Exactly 15 pump frequencies, regardless of size
- Nonlinear crystal already exists (PPKTP)
- Experiments underway

Disadvantages
- Finite (albeit large) scaling
- Frequency-sensitive measurements
- Coherence of entire state must be maintained during measurements
- N is fixed for a given setup
- Quantum nondemolition (QND) interaction
- Information about q is copied onto p of other mode
- Entangling gate
- Better initial squeezing in p results in more entanglement
- Hard to implement
Teleportation “Lite” Using C_Z Gate
Quantum Wire Using Many C_Z’s
Quantum Wire Using One C_Z Gate
CV Cluster State Using One C_Z
CV Cluster State Using One C_Z
Temporal-Mode CV Cluster States

■ Advantages:
 • Only one squeezer, C_Z gate, homodyne detector, and photon counter required
 § Just need to perfect one of each
 § Modematching and phaselocking only once
 • Grow-as-you-go
 § Robust against decoherence
 § Easy to add rows to the lattice
 § Extensible in time

■ Disadvantages
 • C_Z gates are experimentally challenging
Temporal-Mode GPEPS

Diagram showing the temporal-mode GPEPS setup with labels S_1, S_2, B_1, B_2, D_1, and D_2.
Temporal-Mode GPEPS
Temporal-Mode GPEPS
Conclusion

- CV cluster states allow for measurement-based quantum computation using continuous variables

- Optical schemes
 - Squeezers + C_Z gates (spatial)
 - Squeezers + beamsplitters (spatial)
 - Single OPO (frequency)
 - One squeezer + one C_Z gate (temporal)
 - Four squeezers + six beamsplitters (temporal)

- Thank you