Fermilab - 25+ yrs as the world’s most powerful pp smasher!
CERN - now the most powerful pp smasher
What we know

The Standard Model:

- **Quarks**
 - Proton: uud
 - Neutrons: udd

- **Leptons**
 - Electrons
 - Muons (cosmic rays)
 - Neutrinos (beam to MN)

- **Force Carriers**
 - Photons (Electricity + Magnetism)
 - W/Z’ s (radioactive decay)
 - Gluons (hold quarks together)
The Higgs Boson

- The Higgs Mechanism is responsible for the breaking of a symmetry giving masses photon and massive W and Z's.
The Higgs Discovery

- July 4th 2012 3AM U Va time: CMS and ATLAS show 5σ discovery evidence of the Higgs
<table>
<thead>
<tr>
<th>What we don’t know</th>
</tr>
</thead>
</table>

EINSTEIN’S DREAM OF UNIFIED FORCES

- Are there undiscovered principles of nature: New symmetries, new physical laws?
- How can we solve the mystery of dark energy?
- Are there extra dimensions of space?
- Do all the forces become one?

THE PARTICLE WORLD

- Why are there so many kinds of particles?
- What is dark matter? How can we make it in the laboratory?

THE BIRTH OF THE UNIVERSE

- How did the universe come to be?
- What happened to the antimatter?
What we don't know

<table>
<thead>
<tr>
<th>EINSTEIN'S DREAM OF UNIFIED FORCES</th>
<th>THE PARTICLE WORLD</th>
<th>THE BIRTH OF THE UNIVERSE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Are there undiscovered principles of nature: New symmetries, new physical laws?</td>
<td>Why are there so many kinds of particles?</td>
<td>How did the universe come to be?</td>
</tr>
<tr>
<td>How can we solve the mystery of dark energy?</td>
<td>What is dark matter? How can we make it in the laboratory?</td>
<td>What happened to the antimatter?</td>
</tr>
<tr>
<td>Are there extra dimensions of space?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Questions</td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Are there undiscovered principles of nature: New symmetries, new physical laws?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>How can we solve the mystery of dark energy?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Are there extra dimensions of space?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Do all the forces become one?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Why are there so many kinds of particles?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>What is dark matter? How can we make it in the laboratory?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>How did the universe come to be?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>What happened to the antimatter?</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Our understanding about the universe is not complete.
Two Darth Mysteries: Dark Matter and Dark Energy
Dark Energy -
~72% of the energy in the Universe

Big surprise in 1998, distant supernova appear dimmer than expected because the universe's expansion is accelerating!

Use Type Ia supernova and plot the brightness difference as a function of distance (z)
2011 Nobel Prize in Physics

for the discovery of the accelerating expansion of the Universe through observations of distant supernovae

Now, what is the nature of dark energy?
Dark Matter

1930s: Jan Oort and Fritz Zwicky notice that the amount of light in galaxies and clusters of galaxies underestimate the amount of matter.

1975-80: Vera Ruben makes precise measurements of the velocities of stars around nearby galaxies firmly establishing “dark matter”.
Evidence for Dark Matter exists on a variety of scales

- Bullet Cluster
- Cosmic Microwave Background Temperature Anisotropy
- M33 rotation curve

Distribution of Visible and Dark Matter - Cosmic Evolution Survey

Hubble Space Telescope - Advanced Camera for Surveys
Dark Matter

What is the particle nature of dark matter?

L. Roszkowski

W. Wester, Fermilab, University of Virginia Physics Colloquium

10/3/14
What is the particle nature of dark matter?

WIMP-type Candidates $\Omega_x \sim 1$

- Neutrino ν
- Neutralino χ
- Gravitino $\tilde{\chi}$

L. Roszkowski

$\log(\sigma_{\text{int}}/(1 \, \text{pb}))$

- Axion a
- Axino \tilde{a}

W. Wester, Fermilab, University of Virginia Physics Colloquium

M. Turner

10/3/14
WIMPs

Weakly Interacting Massive Particles

- Supersymmetry is a compelling theory

Supersymmetry (SUSY) can explain:

1) The hierarchy problem
2) The abundance of dark matter in the universe
 “The WIMP Miracle!”
3) Unification of the strong and electroweak forces

SUSY candidates have mass 10 – 1000 GeV

- Active area of research

 • At Colliders to produce new WIMP particles
 • At underground labs to see interactions in detectors
 • Looking in space for signs of annihilation photons
WIMPs

Weakly Interacting Massive Particles

- Super symmetry is a compelling theory

\[\text{At Colliders to produce new WIMP particles} \]

\[\text{At underground labs to see interactions in detectors} \]

\[\text{Looking in space for signs of annihilation photons} \]

Supersymmetry (SUSY) can explain:

1. The hierarchy problem
2. The abundance of dark matter in the universe
3. Unification of the strong and electroweak forces

SUSY candidates have mass 10 – 1000 GeV

1993

315 Physicists Report Failure In Search for Supersymmetry

By MALCOLM W. BROWNE

Published: January 05, 1993

Three hundred and fifteen physicists worked on the experiment.

Their apparatus included the Tevatron, the world's most powerful particle accelerator, as well as a $65 million detector weighing as much as a warship, an advanced new computing system and a host of other innovative gadgets.

But despite this arsenal of brains and technological brawn assembled at the Fermilab accelerator laboratory, the participants have failed to find their quarry, a disagreeable reminder that as science gets harder, even Herculean efforts do not guarantee success.

In trying to ferret out ever deeper layers of nature's secrets, scientists are being forced to accept a markedly slower pace of discovery in many fields of research, and the consequent rising cost of experiments has prompted public and political criticism.

To some, the elaborate trappings and null result of the latest Fermilab experiment seem to typify both the lofty goals and the staggering difficulties of "Big Science," a term coined in 1961 by Dr. Alvin M. Weinberg of Oak Ridge National Laboratory. Some regard such failures as proof that high-energy physics, one of the biggest avenues of big science, is fast approaching a dead end.
WIMPs

Weakly Interacting Massive Particles

- Super symmetry is a compelling theory

- Active area of research
 - At Colliders to produce new WIMP particles
 - At underground labs to see interactions in detectors
 - Looking in space for signs of annihilation photons

Supersymmetry (SUSY) can explain:
1) The hierarchy problem
2) The abundance of dark matter in the universe
3) Unification of the strong and electroweak forces

SUSY candidates have mass 10 – 1000 GeV

Physicists Report Failure In Search for Supersymmetry

By MALCOLM W. BROWNE
Published: January 05, 1993

Three hundred and fifteen physicists worked on the experiment and 5000 more.

Their apparatus included the LHC, the world's most powerful particle accelerator, as well as a ~$1 billion detector weighing as much as a warship, an advanced new computing system and a host of other innovative gadgets.

But despite this arsenal of brains and technological brawn assembled at the CERN accelerator laboratory, the participants have failed to find their quarry, a disagreeable reminder that as science gets harder, even Herculean efforts do not guarantee success.

In trying to ferret out ever deeper layers of nature's secrets, scientists are being forced to accept a markedly slower pace of discovery in many fields of research, and the consequent rising cost of experiments has prompted public and political criticism.

To some, the elaborate trappings and null result of the latest CERN experiment seem to typify both the lofty goals and the staggering difficulties of "Big Science," a term coined in 1961 by Dr. Alvin M. Weinberg of Oak Ridge National Laboratory. Some regard such failures as proof that high-energy physics, one of the biggest avenues of big science, is fast approaching a dead end.
non-WIMPy Dark Matter

Weakly Interacting Slim Particles

- A Hidden Sector is a compelling theory

A Hidden Sector can explain:

1) Aspects of string theory
2) Why the New Physics has been elusive
3) Many possible new observables

Scales from μeV to $> 10^{15}$ GeV

- A renewed area of research

- Large areas of phase space are unexplored
- Modest scale experiments can produce results
- Maybe the dark matter candidates come from here
Outline

• The Axion particle – a highly motivated WISP
• “Light shining through a wall” and milli-eV masses
 – GammeV
 – Axion-like Particle – a dark matter candidate
• “Particles in a Jar”
 – GammeV-CHASE
 – Chameleons – a dark matter + dark energy particle!
• Search for a “dark photon”
 – Mini-BooNE dark matter
• Future Prospects and Conclusions
Axions

• Postulated in the late 1970s as a consequence of not observing CP violation in the strong interaction.

\[L_{CP} = - \frac{\alpha_s}{8\pi} \left(\Theta - \arg \det M_q \right) \text{Tr} \tilde{G}_{\mu\nu} G^{\mu\nu} \]

• The measurement of the electric dipole of the neutron implies \(\bar{\Theta} < \sim 10^{-10} \). \(\Rightarrow \) Strong CP Problem of QCD
 - This is very much on the same order of an issue with the Standard Model as the hierarchy problem that motivates supersymmetry.
 - Axions originate from a new symmetry that explains small \(\bar{\Theta} \)

Bjorken “Axions are just as viable a candidate for dark matter as sparticles”
Wilczek “If not axions, please tell me how to solve the Strong-CP problem”
Witten “Axions may be intrinsic to the structure of string theory”
Axions

- Axions “clean-up” the strong-CP problem!
Axions and Axion-like particles

- Axion mass related to the pion mass: \(m_a \sim m_\pi \frac{f_\pi}{f_a} \)
- Axions couple to two photons

An *axion-like-particle* (ALP) is a more general particle that can arise from either a pseudoscalar or scalar field, \(\phi \), and no longer has the connection to the pion.

\[
\mathcal{L}_{\text{int}} = -\frac{1}{4} \frac{\phi}{M} F_{\mu\nu} F^{\mu\nu} = \frac{\phi}{M} (\vec{E} \cdot \vec{B}) \\
\mathcal{L}_{\text{int}} = -\frac{1}{4} \frac{\phi}{M} F_{\mu\nu} F^{\mu\nu} = \frac{\phi}{M} (\vec{E} \cdot \vec{E} - \vec{B} \cdot \vec{B})
\]
Searches for Axions

- QCD Axion parameters are constrained by cosmological and experimental measurements
 - Stars don’t burn out, SN1987A events+energy are OK, and axions aren’t all the mass of the universe.
 - Low mass limits set by microwave cavities and higher mass axions are excluded by solar telescopes.
ADMX Experiment

- **Axion Dark Matter Experiment**
 - Tunable microwave cavity in B field looking for dark matter axions converting into a detectable photons.
CAST Experiment

- CERN Axion Solar Telescope

Point LHC dipole toward the sun. Detect possible X-rays from axion reconversion.
PVLAS Experiment

- Designed to study the vacuum by optical means: birefringence (generated ellipticity) and dichroism (rotated polarization)
PVLAS Experiment

- Rotating SC magnet (\(\frac{1}{2} \) Hz)
- Modulators (500 Hz)
- \(\frac{1}{4} \) wave plate to switch between ellipticity and rotation
- Optical cavity to amplify path length in B field
- Expect signals in 2\(^{nd}\) harmonic only when \(B_{\text{ext}} \) field is aligned with either E or B of the \(\gamma \)
- Cross-checks including with birefringent gasses
PVLAS Rotation Results

PVLAS Run 000903_12 (vacuum)
QWP axis 0°
field intensity 0 T
avg. number of passes = 4.2 \times 10^4
acquisition time = 649.77 s

B = 0

PVLAS Run 000808_2 (vacuum)
QWP axis 0°
field intensity 5.5 T
avg. number of passes = 4.6 \times 10^4
acquisition time = 635.87 s

B = 5.5 T

rotation
(1.2 \pm 0.1) \times 10^{-7} \text{ radians}

A new axion-like particle with mass at 1.2 meV and $g \sim 2 \times 10^{-6}$ is consistent with rotation and ellipticity measurements.

Additional data by PVLAS has since no longer seen the anomalous effects. However, the source of the anomaly has not been clarified.

PRD 77, 032006 (2008)
Light Shining Through a Wall Experiment

\[\mathcal{L}_{\text{int}} = -\frac{1}{4} \frac{\phi}{M} F_{\mu\nu} F^{\mu\nu} = \frac{\phi}{M} (\vec{E} \cdot \vec{E} - \vec{B} \cdot \vec{B}) \]

\[\mathcal{L}_{\text{int}} = -\frac{1}{4} \frac{\phi}{M} F_{\mu\nu} \widetilde{F}^{\mu\nu} = \frac{\phi}{M} (\vec{E} \cdot \vec{B}) \]

\[P_{\text{regen}} = \frac{16 B_1^2 B_2^2 \omega^4}{M^4 m_\phi^8} \sin^2 \left(\frac{m_\phi^2 L_1}{4\omega} \right) \cdot \sin^2 \left(\frac{m_\phi^2 L_2}{4\omega} \right) \]

Assuming 5T magnet, the PVLAS “signal”, and 532nm laser light

\[P_{\text{GammeV}}^{\text{regen}} = (3.9 \times 10^{-21}) \times \frac{(B_1/5 \text{ T})^2 (B_2/5 \text{ T})^2 (\omega/2.33 \text{ eV})^4}{(M/4 \times 10^5 \text{ GeV})^4 (m_\phi/1.2 \times 10^{-3} \text{ eV})^8} \]

\[\times \sin^2 \left(\frac{\pi (m_\phi/1.2 \times 10^{-3} \text{ eV})^2 (L_1/2.0 \text{ m})}{(\omega/2.33 \text{ eV})} \right) \sin^2 \left(\frac{\pi (m_\phi/1.2 \times 10^{-3} \text{ eV})^2 (L_2/2.0 \text{ m})}{(\omega/2.33 \text{ eV})} \right) \]
Light Shining through a wall

- Brookhaven, Fermilab, Rochester, Trieste (1992)

Laser photon in

Photon from magnetic field

“the wall”

Axion

Photon from magnetic field

Regenerated photon out
Light Shining through a wall

- Brookhaven, Fermilab, Rochester, Trieste (1992)

New Yorker

Light shining through a wall

W. Wester, Fermilab, University of Virginia Physics Colloquium
Light Shining through a wall

- Brookhaven, Fermilab, Rochester, Trieste (1992)

BFRT is not sensitive in the PVLAS region of interest.
GammeV Collaboration

Ten person team including a summer student, 3 postdocs, 2 accelerator/laser experts, 4 experimentalists (nearly everyone had a day job) PLUS technical support at FNAL

Nov: Initial discussion and design (Aaron Chou, WW leaders)
Apr: Review and approval from Fermilab ($30K budget!)
May: Acquire and machine parts
Jun: Assemble parts, test electronics and PMT calibration
Jul: First data but magnet and laser problems
Aug: Start data taking in earnest
Sep: Complete data taking and analysis
Jan: PRL Accepted
GammeV Experiment

Search for evidence of a milli-eV particle in a light shining through a wall experiment to unambiguously test the PVLAS interpretation of an axion-like (pseudo-)scalar.

- **Laser Box**
- **Tevatron magnet (6m)**
- **Calibration diode**
- **Plunger**
- **PMT Box**
- **PMT**
- **Temporary dark room**

Monitor sensor

Warm bore

“wall”

The “wall” is a welded steel cap on a steel tube in addition to a reflective mirror.

Existing laser in Acc. Div. nearly identical with a similar spare available

High-QE, low noise, fast PMT module (purchased)

10/3/14

W. Wester, Fermilab, University of Virginia Physics Colloquium
Vary wall position to change baseline: Tune to the correct oscillation length

A unique feature of our proposal to cover larger m_ϕ range

$$P_{\gamma \rightarrow \phi} = \frac{4B^2 \omega^2}{M^2 (\Delta m^2)^2} \left(\sin \frac{\Delta m^2 L}{4\omega} \right)^2$$

$$P_{\text{regen}} = \left(\frac{4B^2 \omega^2}{M^2 (\Delta m^2)^2} \right)^2 \left(\sin \frac{\Delta m^2 L_1}{4\omega} \right)^2 \left(\sin \frac{\Delta m^2 L_2}{4\omega} \right)^2$$

$L = \text{distance traversed in B field}$
Vary wall position to change baseline: Tune to the correct oscillation length

A unique feature of our proposal to cover larger m_ϕ range

\[P_{\gamma \rightarrow \phi} = \frac{4B^2 \omega^2}{M^2 (\Delta m^2)^2} \left(\sin \frac{\Delta m^2 L}{4\omega} \right)^2 \]

\[P_{\text{regen}} = \left(\frac{4B^2 \omega^2}{M^2 (\Delta m^2)^2} \right)^2 \left(\sin \frac{\Delta m^2 L_1}{4\omega} \right)^2 \left(\sin \frac{\Delta m^2 L_2}{4\omega} \right)^2 \]

$L = \text{distance traversed in B field}$
GammeV was located on a test stand at Fermilab’s Magnet Test Facility. Two shifts/day of cryogenic operations were supported.
Data acquisition

- **QuarkNet** timing cards
 - Built by Fermilab for Education Outreach (High School cosmic ray exp’ts.)
 - Interfaces to computer via USB (Visual Basic software for our DAQ)

- Four inputs, phase locked to a GPS 1pps using a 100MHz clock that is divided by eight for 1.25ns timing.
- Boards also send firing commands to the laser and LED pulser system
- Digital oscilloscope recorded PMT signals for LED photons and for rare coincidences.

Time the laser pulses (20Hz) and time the PMT pulses (120Hz). Look for time correlated single photons. All pulses are ~10ns wide.
Calibration

• “Leaky mirror” data involves sending the laser directly into our PMT after attenuation so that we get about 1 photon per 100 pulses.
 - Two mirrors leak ~10^-6 through
 - 10 micron pin hole captures ~10^-6
 - Neutral density filters give ~10^-7
• Look at the PMT pulse closest to a laser pulse and plot the time difference.
 - Poisson distribution
 - Nearly flat over short times <<ms
• Real photons show up!
Calibration

- Use the “Leaky Mirror” data to verify both the absolute timing and the sensitivity to polarization.
- The isochronous pulse to both QuarkNet boards can be used to remove a 10ns jitter.
GammeV Procedure

• Take data in four configurations
 - Scalar (with ½-wave plate) with the plunger in the center and at 1m
 - Pseudoscalar also with the plunger in the center and 1m positions

• In each configuration, acquire about 20 hours of magnet time or about 1.5M laser pulses at 20Hz.
 - Monitor the power of the laser using a power meter that absorbs the laser light reflected back into the laser box using NIST traceable calibration to +/-3%

• Total efficiency (25 +/- 3)%
 - PMT detection efficiencies from factory measurements QE x CE 39% x 70% = 27%
 - Measured attenuation in BK7 windows and lens: 92%

• Background in a 10ns wide search region is estimated by counting the events in a 10,000ns wide window around all the laser pulses and dividing by 1000.
GammeV Results

<table>
<thead>
<tr>
<th>Spin</th>
<th>Position</th>
<th># Laser pulse</th>
<th># photon / pulse</th>
<th>Expected Background</th>
<th>Signal Candidates</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scalar</td>
<td>Center</td>
<td>1.34 M</td>
<td>0.41e18</td>
<td>1.56±0.04</td>
<td>1</td>
</tr>
<tr>
<td>Scalar</td>
<td>1 m</td>
<td>1.47M</td>
<td>0.38e18</td>
<td>1.67±0.04</td>
<td>0</td>
</tr>
<tr>
<td>Pseudo</td>
<td>Center</td>
<td>1.43M</td>
<td>0.41e18</td>
<td>1.59±0.04</td>
<td>1</td>
</tr>
<tr>
<td>Pseudo</td>
<td>1m</td>
<td>1.47M</td>
<td>0.42e18</td>
<td>1.50±0.04</td>
<td>2</td>
</tr>
</tbody>
</table>

![Graphs showing PMT pulse data for scalar and pseudo-scalar center and 1m positions.](image-url)
GammeV Limits

• Results are derived. We show 3σ exclusion regions and completely rule out the PVLAS axion-like particle interpretation by more than 5σ.

Pseudoscalar

Scalar

• Job is done. Limit generally improves slowly (4^{th} root) vs. longer running time, or increased laser power, etc.
World-wide effort - null results

GammeV @FNAL PRL 100, 080402 (2008)

ALPS @DESY PLB 689, 149 (2010)

OSQAR @CERN PRD 78, 092003 (2008)
Note: with N$_2$ gas

LIPSS @JLab scalar only PRL 101, 120401(2008)

BMV @France pseudoscalar only
Final results: PRD 78, 032013 (2008)
Future LSW

Resonantly enhanced axion-photon regeneration

Possibility that this technique might exceed star / CAST limits.

Hints that a coupling of 10^{-11} might be interesting from observations of unexpected high energy gamma rays that somehow propagate despite background IR photons.

Probability of regeneration goes as the product of finesse’s: $\mathcal{F} \mathcal{F}$
Chameleons?

• An exotic type of WISP called a chameleon is another possibility and would explain why the sun doesn’t burn out in 1000 years.

• A chameleon particle changes its properties depending on its environment. In the sun, it might see a strong force and never escape. In vacuum, it might go through a regeneration process.
Chameleons

• A WISP with the property that its properties depend on its environment. In particular, a coupling to the stress energy tensor and a non-trivial potential result in unique properties such as a mass that depends on the ambient matter density: \(m_{\text{eff}} \sim \rho^\alpha \).

\[
\mathcal{L}_{\text{int}} = -V(\phi) + \exp \left(\frac{\phi}{M_D} \right) g_{\mu\nu} T^{\mu\nu} - \frac{1}{4} \frac{\phi}{M} F_{\mu\nu} F^{\mu\nu}
\]

• Such a field might evade fifth force measurements and could explain how there could be an axion-like particle with a strong photon coupling which evades other bounds.

• The chameleon mechanism (Khoury and Weltman) was originally postulated as a mechanism to account for the cosmic expansion - "a dark energy particle".
“Particle in a Jar”

- Chameleon properties depend on their environment - effective mass increases when encountering matter.
 - A laser in a magnetic field might have photons that convert into chameleons which reflect off of the optical windows. A gas of chameleons are trapped in a jar.
 - Turn off the laser and look for an afterglow as some of the chameleons convert back into detectable photons.
Chameleon Search

- **GammeV**

Apparatus
Replace the wall with a straight-through tube with an exit window

- **Procedure**
Turn on pulsed laser for 5hrs using both polarizations. Turn off laser and look for an afterglow above PMT dark rate, either constant or exponentially decaying depending on the photon coupling.
Chameleon Results

- **Coupling of photons vs** \(m_{\text{eff}} \) **in a region of validity**

Strong

- Limited by time to turn on PMT
- Reduced sensitivity at higher masses due to experimental configuration

Weak

- Limited by dark rate
- Also, uncertainties in the vacuum levels limit sensitivity of possible potentials, with \(m_{\text{eff}} \sim \rho^\alpha, \ > \ 0.8. \)

PRL 102, 030402 (2009)

W. Wester, Fermilab, University of Virginia Physics Colloquium
Dedicated experiment

- **GammeV - CHASE: Chameleon Afterglow Search**

 Improve vacuum (cryo pump) and monitoring.

 Use a shutter to switch to PMT readout quickly.

 Use a run plan that with lower B fields in case the coupling is strong.

 Use a lower noise PMT.

 Employ the “dish rack” to effectively have 4.7m, 1m, 30cm magnetic field regions—a bit of cleverness similar to the plunger idea to be initially sensitive to a wider range of chameleon masses.
GammeV-CHASE
GammeV-CHASE

A String Theorist!
Two unexpected systematics

- About 1-2 Hz of photons from the ion pump
- An orange glow ... a background (no B field dependence)

- Literature search revealed that certain vacuum greases can exhibit such a long-lived low temperature glow.
GammeV CHASE
Recent Results

![Diagram with axes and data points]
Portals to the dark sector

<table>
<thead>
<tr>
<th>Portal</th>
<th>Particles</th>
<th>Operator(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>“Vector”</td>
<td>Dark photons</td>
<td>$-\frac{e}{2\cos\theta_W} B_{\mu\nu} F^{\mu\nu}$</td>
</tr>
<tr>
<td>“Axion”</td>
<td>Pseudoscalars</td>
<td>$\frac{e}{f_a} F_{\mu\nu} F^{\mu\nu}$</td>
</tr>
<tr>
<td>“Higgs”</td>
<td>Dark scalars</td>
<td>$\frac{\alpha}{f_a} G_{\mu\nu} G^{\mu\nu}$</td>
</tr>
<tr>
<td>“Neutrino”</td>
<td>Sterile neutrinos</td>
<td>$(\mu S + \lambda S^2) H^\dagger H$</td>
</tr>
</tbody>
</table>

$y_N LHN$
$100M$ Search for Dark Photons

Essentially “for free” using an existing Neutrino detector!

Stable detector for more than 10yrs. Successfully completed its studies of neutrino’s and anti-neutrino’s. New run approved to look for dark matter. Sensitive to a “dark photon” that could mediate a g-2 anomaly.
Beam “off target” running

Neutrino’s are a background. Suppress them by x40 by running the experiment in a “beam dump” mode missing the target/horn.
Preliminary Results

Run ended 1 month ago. Use about 1/6th the data to understand the events and then unblind looking at the rest of the data.

Demonstrate that charged neutrino interactions make sense.
Conclusions
Not yet thought of by the way (non-perturbation)

W. Wester, Fermilab, University of Virginia Physics Colloquium