Observing UHECRs with Smartphones

Chase Shimmin
University of California, Irvine
About me...

KamLAND 2008

POLARBEAR 2008 - 2011

ATLAS Experiment 2012 - present
and now…

Disclaimer — this is my first foray into the world of cosmic ray physics!

Observing Ultra-High Energy Cosmic Rays with Smartphones

Daniel Whiteson,1 Michael Mulhearn,2 Chase Shimmin,1 Kyle Brodie,1 and Dustin Burns2

1Department of Physics and Astronomy, University of California, Irvine, CA 92697
2Department of Physics, University of California, Davis, CA

arXiv:1410.2895
So then,

Why Comic Rays?
At LHC, I study Dark Matter because...
At LHC, I study Dark Matter because…

We have no idea

(but we know it’s out there)

The universe (as we know it)
CR’s are Mysterious

$\sigma_{\text{sys}}(E) = 22\%$

$E^3 J(E) \text{ [km}^{-2} \text{ yr}^{-1} \text{ sr}^{-1} \text{ eV}^2]$
CR’s are Mysterious

What are they?
Where do they come from?
How do they attain such energy?

$E^3 J(E) \: [\text{km}^{-2} \: \text{yr}^{-1} \: \text{sr}^{-1} \: \text{eV}^2]$
High Energy

But…

These go to eleven
GZK Limit

\[\gamma_{CMB} + p \rightarrow \Delta^+ \rightarrow p + \pi^0 \]

Proton Energy [eV]

Propagation Distance [Mpc]

\(10^{20}\) eV

\(10^{21}\) eV

\(10^{22}\) eV

\(~100\ Mpc\)
GZK Limit

\[\gamma_{\text{CMB}} + p \rightarrow \Delta^+ \rightarrow \nu + \pi^0 \]

Proton Energy [eV]

\[10^{20} \text{ eV} \]

\[10^{21} \text{ eV} \]

\[10^{22} \text{ eV} \]

Propagation Distance [Mpc]

\[\sim 100 \text{ Mpc} \]

"Oh-My-God Particle"

\[3 \times 10^{20} \text{ eV} \]

Fly's Eye

Oct. 1991
Extensive Air Showers
Air Showers
Air Showers

Showers develop longitudinally…
Air Showers

Showers develop longitudinally...

... and laterally
Air Showers

hadrons muons electrs neutr

$0.00 \cdot 10^{-6} \text{ sec}$

Proton 10^{14} eV

$h^{1st} = 21311 \text{ m}$
Particle Content

\geqMeV γ\textsc{s/e}$^\pm$

\geqGeV μ\textsc{ns}

$E_0 = 10^{19} - 10^{20}$ eV

![Graph showing particle content distribution with energy on the x-axis and number on the y-axis. The graph includes plots for γ, e^\pm, and μ^\pm. The energy scale ranges from 10^4 to 10^{10} GeV, and the number scale ranges from 10^1 to 10^{10}.]
Particle Content

Tremendous densities near shower core

\[E_0 = 10^{19} - 10^{20} \text{ eV} \]
Detecting Cosmic Rays
Detection Techniques

Ways to detect air showers:

- Atmospheric fluorescence
Detection Techniques

Ways to detect air showers:

➡ Atmospheric fluorescence

➡ Cherenkov telescopes
Detection Techniques

Ways to detect air showers:

- Atmospheric fluorescence
- Cherenkov telescopes
- Radio frequency
Detection Techniques

Ways to detect air showers:

- Atmospheric fluorescence
- Cherenkov telescopes
- Radio frequency
- Ground arrays
Pierre Auger Observatory

1600 Cherenkov tanks
3000 km2
Pierre Auger Observatory
Pierre Auger Observatory

Auger = 3×10^3 km2
Earth = 5×10^8 km2
Rare Events

How can we cover more ground?
Smartphones!
Smartphones are:
(tiny)
Particle Detectors

Camera Sensor
(Active area: ~0.3 cm²)
We are not the first to realize this!

- CellRad (Idaho Nat’l Lab)
- SafeCast (Non-profit)
- DECO (Wisconsin)
- “Chernobyl 2013: radioactive ant bites” (YouTube video)
Smartphones are:
Mobile Laboratories

GPS

Wi-Fi
But:

it’s not enough to simply observe particles...
Our goal: *network* a large number of smartphones into a *worldwide observatory*!
The App (android)
The App: Internals

Scan video for bright pixels. Upload any hits to our server.
Trigger Calibration

Set **trigger threshold** to maintain *average event rate* of ~0.1Hz
Photon Sensitivity

No source

Ra226

Time
Photon Sensitivity

Sources w/ varying activity, energy:

- Ra226: ~180–600 keV
- Cs137: 700 keV
- Co60: 1.1/1.3 MeV
What do Photons *Look Like*?

Usually: a single pixel high above threshold

![Graph showing the distribution of photon hits]

Ra226 Source

![Plot of photon hits vs. number of pixels]

![Plot of photon hit locations]

Pixels from one event

Seemingly random pixel hits
What do Photons Look Like?

Sometimes we get interesting tracks:

- **Ra226 Source**
- **Co60 Source**
So far, no muon sources available…
Muon Sensitivity

Get them for free from the sky!

1 muon/cm²/min \implies 1 muon every 4 mins

MIP track w/ over 125 pixel hits!
Muon Sensitivity

Get them for free from the sky!

1 muon/cm2/min \Rightarrow 1 muon every 4 mins

23 pixel hits
Muon Sensitivity
Timing

For measuring coincident hits

Timing test
Random blinking LED
Measure capture time on two phones.
Putting it All Together
Shower Reconstruction

Auger: highly sensitive detectors w/ picosecond timing
Shower Reconstruction

\(t \in [0.0 - 0.2s] \)

- Red circles: hit
- Blue circles: nohit
Shower Reconstruction

t∈[0.1 - 0.3s]
During a shower event, the expected number of particle hits is:

$$\lambda = A \epsilon \cdot \rho(x, y) + \eta$$

- A — active area
- ϵ — detection eff.
- ρ — LDF [particles/m2]
- η — noise term
During a shower event, the expected number of particle hits is:

\[\lambda = A \epsilon \cdot \rho(x, y) + \eta \]

Probability of seeing nothing:

\[P_0(x, y) = e^{-\lambda} \]
During a shower event, the expected number of particle hits is:
\[\lambda = A \epsilon \cdot \rho(x, y) + \eta \]

Probability of seeing nothing:
\[P_0(x, y) = e^{-\lambda} \]

Likelihood function, given phones that were / weren’t hit:
\[L(E_0, \theta, \phi, s) = \prod_i P_0(x_i, y_i) \cdot \prod_j (1 - P_0(x_j, y_j)) \]
Shower Reco Efficiency

Sensitive only at the very highest energies

(those are the interesting ones!)
Shower Reco Efficiency

Sensitive only at the **very highest energies**

(those are the interesting ones!)
Energy Resolution

Higher energy → more hits → better measurement

![Graph showing the relationship between primary energy and fractional energy resolution, with different line styles and markers for various device densities and event types.]
Energy Resolution

Higher energy \rightarrow more hits \rightarrow better measurement

![Graph showing the relationship between Primary Energy and Fractional Energy Resolution for different device densities and energy types.](image-url)
Angular Resolution

Except in the most optimistic scenario, almost no pointing information.
Keeping up with Auger

Auger observing power

~800k smartphones!
800k phones?!

- Over a billion smartphone users in the world
- Initial media response netted over 50k signups
I'm still worth something :)

Image: Five smartphones with broken screens. The最后一部手机 says, "I’m still worth something :)"
To Summarize

- Phones can see muons and gamma rays
To Summarize

- Phones *can* see muons and gamma rays
- A giant network can search of UHECR showers
To Summarize

- Phones \textit{can} see muons and gamma rays
- A giant network can search of UHECR showers
- Under the right conditions, can even compete with the \textit{state-of-the-art}!
To Summarize

- Phones *can* see muons and gamma rays via phones.
- A giant network can search for gamma-ray bursts of UHECR showers.
- Under the right conditions, can even compete with the state-of-the-art!

Not possible on Mars!
To Summarize

- Phones can see muons and gamma rays

- A giant network can search of UHECR showers

- Under the right conditions, can even compete with the state-of-the-art!

- There’s never been a global observatory of this scale... who knows what else we may find!
Going Beyond

In [6]: #Now we can make a plot of the pixel frequency
ds.events.Draw("log10(pix_freq)"
canvas.SetLogy()
print ds.events.GetEntries()
canvas

293825

Out[6]:

In [7]: # now we can plot the pixel value (brightness) for all pixels and the ones that are do
ds.events.SetLineColor(1)
ds.events.Draw('pix_val') # all pixels
ds.events.SetLineColor(4)
ds.events.Draw('pix_val', 'log10(pix_freq)<-4.5','same') # the clean pixels
canvas

Out[7]:

pix_val
Going Beyond

Users own the data!
Going Beyond

PEACE 4 SPACE

- **Pixel values**
 - Number of Pixels

- **Counts of pixels per event**
 - Number of Events

Event numbers are listed for clean / total.

Exposure
- Total: 48 days, 8 hours
- Current run: 35 minutes

Events
- Total: 238,669 / 959,535
- Current run: 0 / 286

Live plots from each device!
Going Beyond

Opening the data to the community:

- **rewards** the users
- broadens **research** applications
- provides exciting **education** opportunities

Event numbers are listed for clean / total.

Live plots from each device!
The End
Not sure where/if I’ll use these:
GZK Limit

Cutoff is observed, but is it GZK?

How rare are events above the cutoff?
Primary Composition

One of the most basic questions to ask:

what **are** the UHECR's *made of*?
Primary Composition

One of the most basic questions to ask:

what are the UHECR’s made of?

The short answer: probably protons or iron nuclei.
Primary Composition

Hadronic physics dictates the atmospheric depth of the shower maximum.
Primary Composition

Hadronic physics dictates the atmospheric depth of the shower maximum.