Exchange Bias and Bi-stable Magneto-Resistance States in Amorphous TbFeCo and TbSmFeCo Thin Films

Chung Ting (Marco) Ma
University of Virginia
Outline

• Background
 Why are we interested in Tb(Sm)FeCo thin films and exchange bias?

• Experimental Results
 Magnetic and structural properties of exchange biased Tb(Sm)FeCo

• Micromagnetic Simulations
 Two-sublattice, two-phase model
Background

Amorphous TbFeCo films

- Ferrimagnetic (FiM)
- Tb and FeCo sublattices
- Compensation Temperature (T_{comp})
Background

Amorphous TbFeCo films

• Perpendicular magnetic anisotropy (PMA)
• Structural anisotropy gives rise to PMA in sputtered amorphous TbFe films

• Magnetic random access memory (MRAM)

• Ultrafast switching (picoseconds)
Background

Exchange bias

- Ferromagnetic (FM)/Antiferromagnetic (AFM) bilayer act as a pinned layer in spintronics devices

- Stabilize the magnetization in FM layer
Outline

• Background
 Why are we interested in TbFeCo thin films and exchange bias?

• Experimental Results
 Magnetic and structural properties of exchange biased Tb(Sm)FeCo

• Micromagnetic Simulations
 Interpenetrating two-phase, two-sublattice model
Experiment Methods

- Si/SiO$_2$ substrates
- Radio frequency (RF) magnetron sputtering at room temperature
- Magnetic Properties: Quantum Design Versa Lab system
- Thickness: Rigaku SmartLab system
Properties of Amorphous $\text{Tb}_{26}\text{Fe}_{64}\text{Co}_{10}$ Films

- 100 nm thick
- $T_{\text{comp}} \sim 250$K.
- PMA

![Graph](Li et al, Appl. Phys. Lett. 108, 012401 (2016))
Exchange Bias in Amorphous Tb\textsubscript{26}Fe\textsubscript{64}Co\textsubscript{10} Films

- Exchange bias effect is observed near T_{comp}
Exchange Bias in Amorphous Tb$_{26}$Fe$_{64}$Co$_{10}$ Films

- At 300K, both positive (P) and negative (N) exchange bias minor loops are observed, with different initialization procedures.

(N) Initialized at 355K and 30kOe

(P) Initialized at 175K and 30kOe

Out-of-plane Field (kOe)

Magnetization (emu/cc)
Origin of Exchange Bias in Tb$_{26}$Fe$_{64}$Co$_{10}$ Films

High-angle annular dark field imaging (STEM-HAADF)

- Non-uniform contrast indicates local compositional fluctuations

Energy-dispersive X-ray spectroscopy (STEM-EDS)

- Non-uniform distribution of all three elements.

- The regions marked with arrows indicate a local depletion in Tb, which directly coincides with an enrichment in Fe
Origin of Exchange Bias in $\text{Tb}_{26}\text{Fe}_{64}\text{Co}_{10}$ Films

Atomic probe tomography (APT)

- Tb (blue), Fe (green) and Co (red) distribution along a slice parallel to the film plane
- A network-like segregation of all three elements
- Existence of two compositional phases in amorphous $\text{Tb}_{26}\text{Fe}_{64}\text{Co}_{10}$ film
Origin of Exchange Bias in Tb$_{26}$Fe$_{64}$Co$_{10}$ Films

- Two nanoscale amorphous phases on the length scale of 2-5nm are revealed from STEM and APT.

- A Tb-enriched phase (Phase I) is nearly compensated and acts as a fixed layer

- A Tb-depleted phase (Phase II) is far away from compensation and acts as a free layer

- Exchange bias in Tb$_{26}$Fe$_{64}$Co$_{10}$ film originates from the exchange interaction between these two nanoscale amorphous phases
Origin of Exchange Bias in Tb$_{26}$Fe$_{64}$Co$_{10}$ Films

\[M = \phi (M_{\downarrow Tb \uparrow I} + M_{\downarrow FeCo \uparrow I}) + (1-\phi)(M_{\downarrow Tb \uparrow II} + M_{\downarrow FeCo \uparrow II}) \]

\(\phi \) is the volume concentration of Phase I

Moment of Tb
Moment of FeCo

\begin{align*}
\text{Magnetization (emu/cc)} \\
\text{Out-of-plane Field (kOe)}
\end{align*}

\begin{align*}
\text{Magnetization (emu/cc)} \\
\text{Out-of-plane Field (kOe)}
\end{align*}

Initialized at 355K and 30kOe

Initialized at 175K and 30kOe
Exchange Bias effect in magneto-transport measurements

Anomalous Hall Effect (AHE) and Magneto-resistance (MR) of \(\text{Tb}_{26}\text{Fe}_{64}\text{Co}_{10} \)

Current is injected through A and B

Voltage difference is measured between

EF for AHE

CD for MR
Exchange Bias effect in magneto-transport measurements

Anomalous Hall Effect (AHE) and Magneto-resistance (MR) of Tb$_{26}$Fe$_{64}$Co$_{10}$

\[R_{\downarrow H} \propto C_{\uparrow I} (R_{\downarrow Tb\uparrow I} M_{\downarrow Tb\uparrow I} + R_{\downarrow FeCo\uparrow I} M_{\downarrow FeCo\uparrow I}) + C_{\uparrow I I} (R_{\downarrow Tb\uparrow I I} M_{\downarrow Tb\uparrow I I} + R_{\downarrow FeCo\uparrow I I} M_{\downarrow FeCo\uparrow I I}) \]

Bi-stable MR states are revealed at 300K, corresponds to the exchange bias observed in AHE loops.
Exchange Bias in Amorphous $\text{Tb}_{20}\text{Sm}_{15}\text{Fe}_{55}\text{Co}_{10}$ Films

- 100nm thick
- $T_{\text{comp}} \sim 250K$
- PMA

![Graph showing M_s (emu/cc) and H_c (kOe) vs Temperature (K)]
Exchange Bias in Amorphous Tb$_{20}$Sm$_{15}$Fe$_{55}$Co$_{10}$ Films

- Exchange bias at 275K
- Bistable MR states
Experimental Summary

• Exchange bias and bi-stable magneto-resistance states are uncovered in amorphous TbFeCo and TbSmFeCo films with perpendicular magnetic anisotropy.

• Structural analysis revealed two nanoscale amorphous phases with different Tb atomic percentages distributed within the films.

• Exchange anisotropy originates from the exchange interaction between the two amorphous phases.
Outline

• Background
Why are we interested in TbFeCo thin films and exchange bias?

• Experimental Results
Magnetic and structural properties of exchange biased TbFeCo

• Micromagnetic Simulations
Two-sublattice, two-phase model.
Landau-Lifshitz-Gilbert Equation

Dynamic of Magnetization \mathcal{M}

Landau-Lifshitz-Gilbert (LLG) Equation

$$\frac{d\mathcal{M}}{dt} = -\gamma (\mathcal{M} \times H_{\text{eff}}) + \frac{\alpha}{\mathcal{M} \downarrow s} (\mathcal{M} \times \frac{d\mathcal{M}}{dt})$$

Where γ is the gyromagnetic ratio, and α is the damping factor
Landau-Lifshitz-Gilbert Equation

The Effective Field

\[H_{\text{eff}} = H_{\text{Ext}} + H_{\text{Demag}} + H_{\text{Ani}} + H_{\text{Exch}} \]

- External field
- Demagnetization field
- Anisotropy field
- Exchange field

Methods

- Atomistic model
- Micromagnetic model
The Micromagnetic Model

The Continuum Approximation

Multiple spins are grouped together to form a single cell of magnetization.
The Two-Sublattice Model

- Ferrimagnetic
- Tb and FeCo Sublattices
- Two LLG equations for each sublattice

\[
\begin{align*}
\frac{dM_{\downarrow Tb}}{dt} &= -\gamma (M_{\downarrow Tb} \times H_{\text{eff} \downarrow Tb}) + \frac{\alpha}{M_{\downarrow s \downarrow Tb}} (M_{\downarrow Tb} \times \frac{dM_{\downarrow Tb}}{dt}) \\
\frac{dM_{\downarrow Fe}}{dt} &= -\gamma (M_{\downarrow Fe} \times H_{\text{eff} \downarrow Fe}) + \frac{\alpha}{M_{\downarrow s \downarrow Fe}} (M_{\downarrow Fe} \times \frac{dM_{\downarrow Fe}}{dt})
\end{align*}
\]
The Two-Sublattice Model

The effective field due to the exchange interaction ($H_{\downarrow \text{exch} \uparrow}$)

\[
H_{\downarrow \text{exch} \downarrow \text{Tb}} = 2A_{\downarrow \text{Tb} \rightarrow \text{Tb}} / \mu_0 M_{\downarrow \text{Tb}} \ \nabla \uparrow 2 m_{\downarrow \text{Tb}} + 2A_{\downarrow \text{Tb} \rightarrow \text{Fe}} / \mu_0 M_{\downarrow \text{Tb}} \ \nabla \uparrow 2 m_{\downarrow \text{Fe}} + B_{\downarrow \text{Tb} \rightarrow \text{Fe}} / \mu_0 M_{\downarrow \text{Tb}} m_{\downarrow \text{Fe}} \\
H_{\downarrow \text{exch} \downarrow \text{Fe}} = 2A_{\downarrow \text{Fe} \rightarrow \text{Fe}} / \mu_0 M_{\downarrow \text{Fe}} \ \nabla \uparrow 2 m_{\downarrow \text{Fe}} + 2A_{\downarrow \text{Fe} \rightarrow \text{Tb}} / \mu_0 M_{\downarrow \text{Fe}} \ \nabla \uparrow 2 m_{\downarrow \text{Tb}} + B_{\downarrow \text{Fe} \rightarrow \text{Tb}} / \mu_0 M_{\downarrow \text{Fe}} m_{\downarrow \text{Tb}}
\]

- Neighbor cells from both sublattice
- Same cell from the other sublattice
The Two-Sublattice Model

The effective field due to the exchange interaction ($H\downarrow\text{exch}\uparrow$)

$$A\downarrow\text{Tb} - \text{Tb} = 1/4 \ J\downarrow\text{Tb} - \text{Tb} S\downarrow\text{Tb} S\downarrow\text{Tb}$$
$$r\downarrow\text{nn} \uparrow2 \ c\downarrow\text{Tb} / a\uparrow3$$

$$A\downarrow\text{Fe} - \text{Fe} = 1/4 \ J\downarrow\text{Fe} - \text{Fe} S\downarrow\text{Fe} S\downarrow\text{Fe} S\downarrow\text{Fe}$$
$$r\downarrow\text{nn} \uparrow2 \ c\downarrow\text{Fe} / a\uparrow3$$

$$A\downarrow\text{Tb} - \text{Fe} = 1/4 \ J\downarrow\text{Tb} - \text{Fe} S\downarrow\text{Tb} S\downarrow\text{Fe} S\downarrow\text{Fe}$$
$$r\downarrow\text{nn} \uparrow2 \ c\downarrow\text{Tb} / a\uparrow3$$

$$A\downarrow\text{Fe} - \text{Tb} = 1/4 \ J\downarrow\text{Fe} - \text{Tb} S\downarrow\text{Fe} S\downarrow\text{Fe}$$
$$r\downarrow\text{nn} \uparrow2 \ c\downarrow\text{Tb} / a\uparrow3$$

<table>
<thead>
<tr>
<th></th>
<th>Phase I</th>
<th>Phase II</th>
</tr>
</thead>
<tbody>
<tr>
<td>$K\downarrow\text{Tb}$ (J/m³)</td>
<td>3.4x10⁵</td>
<td>1.9x10⁵</td>
</tr>
<tr>
<td>$A\downarrow\text{Tb} - \text{Tb}$ (J/m)</td>
<td>1.90x10⁻¹²</td>
<td>1.21x10⁻¹²</td>
</tr>
<tr>
<td>$A\downarrow\text{Tb} - \text{Fe}$ (J/m)</td>
<td>-2.43x10⁻¹²</td>
<td>-1.87x10⁻¹²</td>
</tr>
<tr>
<td>$A\downarrow\text{Fe} - \text{Fe}$ (J/m)</td>
<td>1.40x10⁻¹¹</td>
<td>1.68x10⁻¹¹</td>
</tr>
<tr>
<td>$B\downarrow\text{Tb} - \text{Fe}$ (J/m³)</td>
<td>-1.43x10⁷</td>
<td>-1.09x10⁷</td>
</tr>
</tbody>
</table>
The Two-Phase Model

- Two interpenetrating phase
- Phase I (Red) and Phase II (Green) blocks
- 6x6x6 cells in each block
- Distributed throughout the modeling space
The Two-Phase Model

- Each cell is 0.5nm x 0.5nm x 0.5nm
- Each Phase I and Phase II block is 3nm x 3nm x 3nm
- Each block has 6x6x6 cells (Total 18x18x18 = 5832 cells)
- 27 blocks, 13 Phase I and 14 Phase II blocks

Finite distance methods based on OOMMF

Simulation Result of TbFeCo

- Positive and negative exchange bias minor loops near T_{comp}
- Positive shift in magnetization accompanied by negative exchange bias
- Negative shift in magnetization accompanied by positive exchange bias
Atomistic Simulations

Courtesy of Xiaopu Li

- Frustrated TbFe region
- Fe-Fe antiferromagnetic coupling
Simulations Summary

Micromagnetic model is employed to study exchange bias in a two-phase magnetic material with ferrimagnets.

Positive and negative exchange bias minor loops are obtained near T_{comp}.

This model provides a platform for developing exchange bias materials using ferrimagnets.
Exchange bias and bi-stable magneto-resistance states are revealed in two phase amorphous TbFeCo and TbSmFeCo thin films.

A two-phase, two-sublattice micromagnetic model is employed to simulate exchange bias effect in TbFeCo films.

Using this study, we can explore various FiM/FM and FiM/FM systems by tuning the composition of FiM phase, and develop desirable EB properties for applications at various temperatures.
Acknowledgement

University of Virginia
Professor Jiwei Lu
Professor S. Joseph Poon
Xiaopu Li
Chung Ting (Marco) Ma

Pacific Northwest National Laboratory
Dr. Ryan Comes
Dr. Arun Devaraj
Dr. Steven Spurgeon
Acknowledgement

This work was supported by the Defense Threat Reduction Agency (DTRA) grant and the U.S. Department of Energy (DOE).
Supplementary

The HRTEM image of the amorphous Tb$_{26}$Fe$_{64}$Co$_{10}$ thin film by Titan 300 kV
Supplementary

Reduced FFT of the HRTEM
Derivation of effective field due to exchange interaction

\[H_{\downarrow A} = -\frac{1}{2} \sum_{i,j} J_{\downarrow ij} S_{\downarrow i} \cdot S_{\downarrow j} = -\frac{1}{2} \sum_{Tb \downarrow i} \sum_{Tb \downarrow j} -\frac{1}{2} \sum_{Fe \downarrow i} \sum_{Fe \downarrow j} \]

We can rewrite Tb-Tb and Fe-Fe terms as follow

\[H_{\downarrow Tb} = -\frac{1}{2} J_{\downarrow Tb} \sum_{Tb \downarrow i} \sum_{Tb \downarrow j} \]

Using the continuous assumption

\[m_{\downarrow Tb} \approx m_{\downarrow Tb} + r_{ij} \cdot \nabla \]

\[H_{\downarrow Tb} \approx 1/4 J_{\downarrow Tb} \sum_{Tb \downarrow i} \sum_{Tb \downarrow j} \]
Derivation of effective field due to exchange interaction

The ferrimagnetic (Tb-Fe) term

\[H_{\downarrow Tb-Fe} = - \sum \langle Tb_{\downarrow i}, Fe_{\downarrow j} \rangle \uparrow \uparrow J_{\downarrow Tb-Fe} S_{\downarrow Tb_{\downarrow i}} \cdot S_{\downarrow Fe_{\downarrow j}} = \frac{1}{2} J_{\downarrow Tb-Fe} S_{\downarrow Tb} S_{\downarrow Fe} \]

\[\sum \langle Tb_{\downarrow i}, Fe_{\downarrow j} \rangle \uparrow \uparrow (m_{\downarrow Tb_{\downarrow i}} - m_{\downarrow Fe_{\downarrow j}}) \uparrow 2 \]

Using the continuous assumption to expand \(m_{\downarrow Fe_{\downarrow j}} \)

\[H_{\downarrow Tb-Fe} \approx \frac{1}{2} J_{\downarrow Tb-Fe} S_{\downarrow Tb} S_{\downarrow Fe} \sum \langle Tb_{\downarrow i}, Fe_{\downarrow j} \rangle \uparrow \uparrow (m_{\downarrow Tb_{\downarrow i}} - m_{\downarrow Fe_{\downarrow i}} - r_{\downarrow ij} \cdot \nabla m_{\downarrow Fe_{\downarrow i}} - \frac{1}{2} r_{\downarrow ij} \uparrow 2 \nabla \uparrow 2 m_{\downarrow Fe_{\downarrow i}}) \uparrow 2 \]

\[\approx \frac{1}{2} J_{\downarrow Tb-Fe} S_{\downarrow Tb} S_{\downarrow Fe} \sum \langle Tb_{\downarrow i}, Fe_{\downarrow j} \rangle \uparrow \uparrow ((m_{\downarrow Tb_{\downarrow i}} - m_{\downarrow Fe_{\downarrow i}}) \uparrow 2 - 2(m_{\downarrow Tb_{\downarrow i}} - m_{\downarrow Fe_{\downarrow i}})(m_{\downarrow Tb_{\downarrow i}} - m_{\downarrow Fe_{\downarrow i}}) (m_{\downarrow Tb_{\downarrow i}} - m_{\downarrow Fe_{\downarrow i}}) \cdot (m_{\downarrow Tb_{\downarrow i}} - m_{\downarrow Fe_{\downarrow i}}) \cdot (m_{\downarrow Tb_{\downarrow i}} - m_{\downarrow Fe_{\downarrow i}})) \]
Derivation of effective field due to exchange interaction

\[\mathcal{H}_{\downarrow A} = \int \nabla (A_{\downarrow Fe} - Fe \nabla m_{\downarrow Fe}) \nabla^2 + A_{\downarrow Tb} - Tb \nabla (m_{\downarrow Tb}) \nabla^2 - 2A_{\downarrow Tb} - Fe m_{\downarrow Tb} \cdot \nabla \nabla \]

\[m_{\downarrow Fe} - B_{\downarrow Tb} - Fe (m_{\downarrow Tb} \cdot m_{\downarrow Fe}) d^3 x + 2 \]

\[A_{\downarrow Tb} - Fe \oint m_{\downarrow Fe} \nabla m_{\downarrow Fe} \cdot n dS \]

The last term is integrated on the boundary, so the energy density is

\[\mathcal{E}_{\downarrow A} = A_{\downarrow Fe} - Fe (\nabla m_{\downarrow Fe}) \nabla^2 + A_{\downarrow Tb} - Tb (\nabla m_{\downarrow Tb}) \nabla^2 - 2A_{\downarrow Tb} - Fe m_{\downarrow Tb} \nabla^2 m_{\downarrow Fe} - B_{\downarrow Tb} - Fe (m_{\downarrow Tb} \cdot m_{\downarrow Fe}) \]

The effective field due to exchange interaction

\[H_{\downarrow eff, Tb} = - \frac{\delta \mathcal{E}_{\downarrow A}}{\mu_{\downarrow 0}} M_{\downarrow s}, Tb \delta m_{\downarrow Tb} \]

\[= 2/\mu_{\downarrow 0} M_{\downarrow s}, Tb A_{\downarrow Tb} - Tb \nabla \nabla m_{\downarrow Tb} + 2/\mu_{\downarrow 0} \]