Helicity Evolution at Small x

Matthew D. Sievert

High-Energy Physics Seminar
University of Virginia
Wednesday Jan. 27, 2016

References: 1511.06737 1505.01176

Collaborators: Y. Kovchegov D. Pitonyak
Introduction: Studying Proton Structure

• Deep Inelastic Scattering and the Parton Model
• Quantum evolution and the small-x limit
• The Proton Spin Crisis: Is there spin at small x?
Outline

Introduction: Studying Proton Structure
- Deep Inelastic Scattering and the Parton Model
- Quantum evolution and the small-\(x\) limit
- The Proton Spin Crisis: Is there spin at small \(x\)?

The Toolbox: Quarks and the Small-\(x\) Limit
- TMD quark distributions at large and small \(x\)
- Coherence and quasi-classical initial conditions
- Small-\(x\) evolution
Introduction: Studying Proton Structure

- Deep Inelastic Scattering and the Parton Model
- Quantum evolution and the small-x limit
- The Proton Spin Crisis: Is there spin at small x?

The Toolbox: Quarks and the Small-x Limit

- TMD quark distributions at large and small x
- Coherence and quasi-classical initial conditions
- Small-x evolution

The Calculation: Helicity at Small x

- Polarized initial conditions
- Evolving spin to small x
- The added complexity: Non-Ladder Diagrams
Introduction: Studying Proton Structure
An Analogy: The Proton and the Atom

The Hydrogen Atom

The Proton
An Analogy: The Proton and the Atom

The Hydrogen Atom

• Elementary bound state of a proton and electron.
• Bound by QED interactions.

The Proton

• Elementary bound state of three quarks.
• Bound by QCD interactions.
An Analogy: The Proton and the Atom

The Hydrogen Atom

- Elementary bound state of a proton and electron.
- Bound by QED interactions.
- Ground state is spherically symmetric with zero net angular momentum.

\[J, L, F = 0 \]

\[
\begin{align*}
J &= \frac{1}{2} \\
L &= 0 \\
F &= 0
\end{align*}
\]

The Proton

- Elementary bound state of three quarks.
- Bound by QCD interactions.
- Spin \(\frac{1}{2} \) fermion can be accommodated by quark spin pairing.
The Hydrogen Atom

- Hydrogen has complex structure: fine, hyperfine...
 ... but it is well described by the Bohr model because QED is a perturbative theory.
The Importance of Proton Structure

The Hydrogen Atom

- Hydrogen has complex structure: fine, hyperfine... but it is well described by the Bohr model because QED is a perturbative theory.
- Atomic structure led to chemistry, electronics, and the nanotech revolution.
The Importance of Proton Structure

The Hydrogen Atom

- Hydrogen has complex structure: fine, hyperfine... but it is well described by the Bohr model because QED is a perturbative theory.
- Atomic structure led to chemistry, electronics, and the nanotech revolution.

The Proton

- QCD is only perturbative at short distances...
 ... so the proton structure embodies all the non-perturbative complexity of the field theory.
The Importance of Proton Structure

The Hydrogen Atom

- Hydrogen has complex structure: fine, hyperfine... ... but it is well described by the Bohr model because QED is a perturbative theory.
- Atomic structure led to chemistry, electronics, and the nanotech revolution.

The Proton

- QCD is only perturbative at short distances... ... so the proton structure embodies all the non-perturbative complexity of the field theory.
- Proton structure will tell us about the nature of QCD and a future femtoscale revolution.
The DIS “Femto-scope”

• Deep Inelastic Scattering (DIS)

\[e + p \rightarrow e' + X \]

Proton Rest Frame

- Proton
- Rest Frame

\[E' \]

\[E \]

\[\theta \]

\[X \]
The DIS “Femto-scope”

- Deep Inelastic Scattering (DIS)
- Kinematic variables:

\[
\begin{align*}
E & \\
E' & \\
\theta & \\
\end{align*}
\quad \rightarrow \quad
\begin{align*}
Q^2 &= 4EE' \sin^2 \frac{\theta}{2} \\
\frac{x}{2} &= \frac{Q^2}{2m_N(E-E')} \\
S &= 2Em_N
\end{align*}
\]

\[e + p \rightarrow e' + X\]

Proton Rest Frame
The DIS “Femto-scope”

- Deep Inelastic Scattering (DIS)
- Kinematic variables:

\[
\begin{align*}
Q^2 &= 4EE' \sin^2 \frac{\theta}{2} \\
x &= \frac{Q^2}{2m_N(E-E')} \\
s &= 2Em_N
\end{align*}
\]

\[Q^2 = \text{“Resolution”}\]
\[x = \text{“Exposure”}\]

\[\Delta x^2_\perp < \frac{1}{Q^2}\]
\[\Delta t < \frac{1}{m_Nx}\]
The DIS “Femto-scope”

- Deep Inelastic Scattering (DIS)
- Kinematic variables:

\[
\begin{align*}
E & \rightarrow Q^2 = 4EE' \sin^2 \frac{\theta}{2} \\
E' & \rightarrow x = \frac{Q^2}{2m_N(E-E')} \\
\theta & \rightarrow s = 2Em_N
\end{align*}
\]

- Resolve proton substructure: \(Q^2 \gg m_N^2 \)

\[
e + p \rightarrow e' + X
\]
The DIS “Femto-scope”

- Deep Inelastic Scattering (DIS)
- Kinematic variables:

\[
\begin{align*}
Q^2 &= 4EE' \sin^2 \frac{\theta}{2} \\
x &= \frac{Q^2}{2m_N(E-E')} \\
s &= 2Em_N \\
\end{align*}
\]

- \(Q^2\) = “Resolution” \(\Delta x^2_\perp < \frac{1}{Q^2}\)
- \(x\) = “Exposure” \(\Delta t < \frac{1}{m_N x}\)

- Resolve proton substructure: \(Q^2 \gg m_N^2\)
- Bjorken scaling: asymptotic freedom!
The DIS “Femto-scope”

- **Deep Inelastic Scattering (DIS)**
- **Kinematic variables:**

\[
E' = \frac{Q^2}{2m_N(E - E')} \\
\theta = \frac{s}{2Em_N}
\]

\[
Q^2 = 4EE' \sin^2 \frac{\theta}{2}
\]

\[
x = \frac{Q^2}{2m_N(E - E')}
\]

\[
s = 2Em_N
\]

- **Resolve proton substructure:** \(Q^2 \gg m^2_N \)
- **Bjorken scaling:** asymptotic freedom!
- **Identified QCD as the fundamental theory of the strong nuclear force.**

\[e + p \rightarrow e' + X\]
Parton model: At short distances, virtual photon strikes one quark.
• **Parton model:** At short distances, virtual photon strikes one quark.

• **Structure functions interpreted as parton distribution functions**

\[
F_2(x, Q^2) = \sum_f Z_f^2 x f(x, Q^2)
\]
• **Parton model**: At short distances, virtual photon strikes one quark

• **Structure functions interpreted as parton distribution functions**

\[
F_2(x, Q^2) = \sum_f Z_f^2 x f(x, Q^2)
\]

• **x** has the interpretation as the quark momentum fraction

\[
x = \frac{k^+}{p^+} \quad 0 \leq x \leq 1
\]
Parton model: At short distances, virtual photon strikes one quark

Structure functions interpreted as parton distribution functions

\[F_2(x, Q^2) = \sum_f Z_f^2 x f(x, Q^2) \]

\(x \) has the interpretation as the quark momentum fraction

\[x = \frac{k^+}{p^+} \quad 0 \leq x \leq 1 \]
• Parton model: At short distances, virtual photon strikes one quark.

• Structure functions interpreted as parton distribution functions:

\[F_2(x, Q^2) = \sum_f Z_f^2 x f(x, Q^2) \]

• \(x \) has the interpretation as the quark momentum fraction:

\[x = \frac{k^+}{p^+}, \quad 0 \leq x \leq 1 \]

Large \(x \): \(x \approx \frac{1}{3} \) Valence Quarks
Parton model: At short distances, virtual photon strikes one quark.

Structure functions interpreted as parton distribution functions:

\[F_2(x, Q^2) = \sum_f Z_f^2 x f(x, Q^2) \]

\(x \) has the interpretation as the quark momentum fraction:

\[x = \frac{k^+}{p^+} \quad 0 \leq x \leq 1 \]

Large \(x \): \(x \approx \frac{1}{3} \) Valence Quarks

Small \(x \): \(x \approx 1\% \) Bremsstrahlung
• **Parton model:** At short distances, virtual photon strikes one quark.

• **Structure functions interpreted as parton distribution functions**

\[
F_2(x, Q^2) = \sum_f Z_f^2 x f(x, Q^2)
\]

• **x** has the interpretation as the quark momentum fraction

\[
x = \frac{k^+}{p^+}, \quad 0 \leq x \leq 1
\]

<table>
<thead>
<tr>
<th>Large x:</th>
<th>(x \approx \frac{1}{3})</th>
<th>Valence Quarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Small x:</td>
<td>(x \approx 1%)</td>
<td>Bremsstrahlung</td>
</tr>
<tr>
<td>Smaller x:</td>
<td>(x < 1%)</td>
<td>Gluon Explosion!</td>
</tr>
</tbody>
</table>
Bjorken scaling occurs over a range of Q^2.

Smaller-scale quantum fluctuations are suppressed by asymptotic freedom.
• Bjorken scaling occurs over a range of Q^2

Smaller-scale quantum fluctuations are suppressed by asymptotic freedom.

• But large increases in Q^2 do resolve small-scale quantum fluctuations.
Bjorken scaling occurs over a range of Q^2

- Smaller-scale quantum fluctuations are suppressed by asymptotic freedom.

But large increases in Q^2 do resolve small-scale quantum fluctuations.

Short-distance fluctuations are suppressed...

...but some are enhanced by logarithms of Q^2

“Quantum Evolution” of the parton distributions!

$$\alpha_s(Q^2) \ln \frac{Q^2}{\Lambda^2} \sim 1$$
What’s So Special about Small x?

- Multiple bremsstrahlung leads to an explosion of gluon density at small x.
What’s So Special about Small x?

- Multiple bremsstrahlung leads to an explosion of gluon density at small x.
- Quantum Evolution: soft bremsstrahlung enhanced by logarithms of $\frac{1}{x}$

$$\alpha_s \ln \frac{1}{x} \sim 1$$
What’s So Special about Small x?

- Multiple bremsstrahlung leads to an explosion of gluon density at small x.
- Quantum Evolution: soft bremsstrahlung enhanced by logarithms of $\frac{1}{x}$
 \[\alpha_s \ln \frac{1}{x} \sim 1 \]
- The gluon density increases so quickly it would violate unitarity (Froissart bound)
What’s So Special about Small x?

- **Multiple bremsstrahlung** leads to an explosion of gluon density at small x.

- **Quantum Evolution:** soft bremsstrahlung enhanced by logarithms of $\frac{1}{x}$

\[\alpha_s \ln \frac{1}{x} \sim 1 \]

- The gluon density increases so quickly it would violate unitarity (Froissart bound)

- At very small x, nonlinear gluon fusion must lead to a **saturation** of the gluon density.
If you can do DIS with polarized protons and electrons, you can measure the spin of the quarks.
• If you can do DIS with polarized protons and electrons, you can measure the spin of the quarks.

• From a naive constituent quark picture, one expects the valence quarks to accommodate the proton spin.
If you can do DIS with polarized protons and electrons, you can measure the spin of the quarks.

From a naive constituent quark picture, one expects the valence quarks to accommodate the proton spin.

But in 1988 the EMC Collaboration found that “only $14 \pm 9 \pm 21\%$ of the proton spin is carried by the spin of the quarks”!
• If you can do DIS with polarized protons and electrons, you can measure the spin of the quarks

• From a naive constituent quark picture, one expects the valence quarks to accommodate the proton spin.

• But in 1988 the EMC Collaboration found that “only 14 ± 9 ± 21% of the proton spin is carried by the spin of the quarks”!

• If the quark spins don’t account for the proton spin... what does?
The “Proton Spin Budget” is described by the Jaffe-Manohar Sum Rule.

\[\frac{1}{2} = \frac{1}{2} \Delta \Sigma + \Delta G + L_q + L_g \]
The Proton Spin Crisis

- The “Proton Spin Budget” is described by the Jaffe-Manohar Sum Rule.

\[\frac{1}{2} = \frac{1}{2} \Delta \Sigma + \Delta G + L_q + L_g \]

- Modern measurements still cannot account for the spin of the proton!
 - Quark spins from polarized DIS
 - Gluon spins from polarized proton-proton collisions

Data from

\[0.001 < x < 1 \]

- \(\Delta \Sigma \approx 0.25 \) (25%)
- \(\Delta G \approx 0.2 \) (40%)
The Proton Spin Crisis

• The “Proton Spin Budget” is described by the Jaffe-Manohar Sum Rule.

\[
\frac{1}{2} = \frac{1}{2} \Delta \Sigma + \Delta G + L_q + L_g
\]

• Modern measurements still cannot account for the spin of the proton!

→ Quark spins from polarized DIS
→ Gluon spins from in polarized proton-proton collisions

• Proton structure is much more complex than previously believed!

→ Orbital angular momentum?
→ Polarization at very small x?

Data from

\[
0.001 < x < 1
\]

\[
\Delta \Sigma \approx 0.25 \ (25\%)
\]

\[
\Delta G \approx 0.2 \ (40\%)
\]
The Toolbox:
Quarks and the Small-x Limit
\[\phi_{\alpha\beta}(x, \vec{k}_\perp) = \int \frac{d^2 r}{(2\pi)^3} \frac{e^{i k \cdot r}}{4\pi^2} \langle h(p, S) | \bar{\psi}_\beta(0) \mathcal{U}[0, r] \psi_\alpha(r) | h(p, S) \rangle \]
Definition: TMD Quark Distribution

\[
\phi_{\alpha\beta}(x, \vec{k}_\perp) = \int \frac{d^2 r}{(2\pi)^3} e^{i \vec{k} \cdot \vec{r}} \langle h(p, S) | \bar{\psi}_\beta(0) U[0, r] \psi_\alpha(r) | h(p, S) \rangle
\]

Transverse Momentum Dependent Parton Distribution Functions
\[
\phi_{\alpha\beta}(x, \vec{k}_T) = \int \frac{d^2r}{(2\pi)^3} e^{i k \cdot r} \langle h(p, S) | \bar{\psi}_{\beta}(0) U[0, r] \psi_{\alpha}(r) | h(p, S) \rangle
\]

Transverse Momentum Dependent Parton Distribution Functions

\[
\sum_{\sigma\lambda} \langle h(p) | b_{\lambda \sigma}^\dagger b_{k\lambda} | h(p) \rangle \ [\bar{U}_{\sigma}(k)]_{\beta} [U_{\lambda}(k)]_{\alpha}
\]

Quark number operator + Dirac spinors
Definition: TMD Quark Distribution

<table>
<thead>
<tr>
<th>Nucleon Polarization</th>
<th>Un-Polarized (U)</th>
<th>Longitudinally Polarized (L)</th>
<th>Transversely Polarized (T)</th>
</tr>
</thead>
<tbody>
<tr>
<td>U</td>
<td>f_U</td>
<td></td>
<td>h_U^+</td>
</tr>
<tr>
<td>L</td>
<td>g_{UL}</td>
<td></td>
<td>h_{UL}^+</td>
</tr>
<tr>
<td>T</td>
<td>f_{T}^\perp</td>
<td></td>
<td>h_T^\perp</td>
</tr>
<tr>
<td></td>
<td>g_{T}^\perp</td>
<td></td>
<td>h_T^\perp</td>
</tr>
<tr>
<td></td>
<td>f_{T}</td>
<td></td>
<td>h_T</td>
</tr>
</tbody>
</table>

| Quark Polarization | γ^+ | $\gamma^+\gamma^5$ | $\gamma^+\gamma_\perp^\gamma^5$ |

\[
\phi_{\alpha\beta}(x, \vec{k}_\perp) = \int \frac{d^2r}{(2\pi)^3} e^{ik\cdot r} \langle h(p, S)|\bar{\psi}_\beta(0)U[0, r]|\psi_\alpha(r)|h(p, S)\rangle
\]

Transverse Momentum Dependent Parton Distribution Functions

\[
\sum_{\sigma\lambda}\langle h(p)|b_{k\sigma}^\dagger b_{k\lambda}|h(p)\rangle\ [\bar{U}_\sigma(k)]_\beta[U_\lambda(k)]_\alpha
\]

Quark number operator + Dirac spinors
Definition: TMD Quark Distribution

<table>
<thead>
<tr>
<th>Quark Polarization</th>
<th>Un-Polarized (U)</th>
<th>Longitudinally Polarized (L)</th>
<th>Transversely Polarized (T)</th>
</tr>
</thead>
<tbody>
<tr>
<td>U</td>
<td>f_1</td>
<td></td>
<td>h_{1T} — Boer-Mulders</td>
</tr>
<tr>
<td>L</td>
<td>g_{1L}</td>
<td>Helicity</td>
<td>h_{1L}</td>
</tr>
<tr>
<td>T</td>
<td>f_{1T}^\pm</td>
<td>Sivers</td>
<td>h_{1T} — Transversity</td>
</tr>
</tbody>
</table>

Nucleon Polarization

| Γ | γ^+ | $\gamma^+\gamma^5$ | $\gamma^+\gamma_{\perp}^i\gamma^5$ |

Gauge Link: momentum redistribution due to final-state interactions

\[
\phi_{\alpha\beta}(x, \vec{k}_{\perp}) = \int \frac{d^2 - r}{(2\pi)^3} e^{i \vec{k} \cdot \vec{r}} \langle h(p, S) | \bar{\psi}_\beta(0) U[0, r] \psi_\alpha(r) | h(p, S) \rangle
\]

Transverse Momentum Dependent Parton Distribution Functions

\[
\sum_{\sigma\lambda} \langle h(p) | b_{k\sigma}^\dagger b_{k\lambda} | h(p) \rangle [\bar{U}_\sigma(k)]_\beta [U_\lambda(k)]_\alpha
\]

Quark number operator + Dirac spinors
Semi-Inclusive Deep Inelastic Scattering (SIDIS)

\[e + p \rightarrow e' + h + X \]
Quark Distributions at Large x

Semi-Inclusive

Deep Inelastic Scattering (SIDIS)

\[e + p \rightarrow e' + h + X \]

Large-x Kinematics:

\[\hat{s} \sim Q^2 \gg k_T^2 \]
\[x = \frac{Q^2}{\hat{s} + Q^2} \sim \mathcal{O}(1) \]
Semi-Inclusive Deep Inelastic Scattering (SIDIS)

\[e + p \rightarrow e' + h + X \]

Large-\(x \) Kinematics:

\[\hat{s} \sim Q^2 \gg k_T^2 \]
\[x = \frac{Q^2}{\hat{s} + Q^2} \sim \mathcal{O}(1) \]

- Photon knocks out a quark from the proton.
Semi-Inclusive Deep Inelastic Scattering (SIDIS)

\[e + p \rightarrow e' + h + X \]

Large-\(x \) Kinematics:

\[\hat{s} \sim Q^2 \gg k_T^2 \]
\[x = \frac{Q^2}{\hat{s} + Q^2} \sim \mathcal{O}(1) \]

- Photon knocks out a quark from the proton.
- Propagates through the gauge field before escaping.
Semi-Inclusive Deep Inelastic Scattering (SIDIS)

\[e + p \rightarrow e' + h + X \]

Large-x Kinematics:

\[\hat{s} \sim Q^2 \gg k_T^2 \]
\[x = \frac{Q^2}{\hat{s} + Q^2} \sim \mathcal{O}(1) \]

• Photon knocks out a quark from the proton.

• Propagates through the gauge field before escaping

• Staple-shaped gauge link encodes final-state interactions
Quark Distributions at Small x

Small-x Kinematics:

\[\Delta t < \frac{1}{m_N x} \]
\[\hat{s} \gg Q^2 \gg k_T^2 \]
\[x = \frac{Q^2}{\hat{s}} \ll 1 \]
Quark Distributions at Small x

Small-x Kinematics:
\[\hat{s} \gg Q^2 \gg k_T^2 \]
\[x = \frac{Q^2}{\hat{s}} \ll 1 \]

- Photon creates a quark / antiquark pair which propagates through the proton.

⇒ Quark transport is x-suppressed.
Quark Distributions at Small x

Small-x Kinematics:

\[
\Delta t < \frac{1}{m_N x} \\
x = \frac{Q^2}{\hat{s}} \ll 1
\]

- Photon creates a quark / antiquark pair which propagates through the proton.
- Quark transport is \(x\)-suppressed.
- Proton is Lorentz-contracted to a “shockwave”.
- Gauge link covers the entire proton.
Small-x Kinematics:
\[\Delta t < \frac{1}{m_N x}, \quad \hat{s} \gg Q^2 \gg k_T^2, \quad x = \frac{Q^2}{\hat{s}} \ll 1 \]

- Photon creates a quark / antiquark pair which propagates through the proton.
- Quark transport is \(x \)-suppressed.

- Proton is Lorentz-contracted to a “shockwave”.
- Gauge link covers the entire proton.
- Infinite dipole degrees of freedom at small \(x \)

\[S_{xy} = \frac{1}{N_c} \text{Tr} \left[V_x V_y^\dagger \right] \]
Initial Conditions at Small x

- Long-lived projectile sees whole target coherently.

→ High gluon density at small x enhances multiple scattering.
Initial Conditions at Small x

- Long-lived projectile sees whole target coherently.
- High gluon density at small x enhances multiple scattering

- High density rescattering can be systematically re-summed
- Classical gluon fields!

Nucleus: $\alpha_s^2 A^{1/3} \sim 1$ Proton: $\alpha_s \rho \sim 1$

\[
\Delta t < \frac{1}{m_N x}
\]
Initial Conditions at Small x

- Long-lived projectile sees whole target coherently.
 - High gluon density at small x enhances multiple scattering

- High density rescattering can be systematically re-summed
 - Classical gluon fields!

 Nucleus: $\alpha_s^2 A^{1/3} \sim 1$
 Proton: $\alpha_s \rho \sim 1$

- Charge density defines a hard momentum scale which screens the IR gluon field.

 Both: $Q_s^2 \propto \alpha_s^2 A^{1/3} \propto \alpha_s \rho$

 $Q_s^2 \gg \Lambda^2$

\[\Delta t < \frac{1}{m_N x} \]
High-energy radiation from a moving particle couples to A^-

In $A^- = 0$ gauge this radiation is suppressed.
Quantum Evolution in the Light-Cone Gauge

- High-energy radiation from a moving particle couples to A^-. In $A^- = 0$ gauge this radiation is suppressed.

- Quantum evolution requires long lifetimes to generate logarithms of a large phase space. Instantaneous t-channel particles do not evolve either. All evolution takes place within the moving particles.
• High-energy radiation from a moving particle couples to A^- in $A^- = 0$ gauge this radiation is suppressed.

• Quantum evolution requires long lifetimes to generate logarithms of a large phase space. Instantaneous t-channel particles do not evolve either. All evolution takes place within the moving particles.

• For classical fields and leading-log evolution, $A_\perp = 0$ as well. The transverse part of the gauge link does not contribute.
The quark dipole radiates soft gluons before and after scattering.

- Evolution of the dipole scattering amplitude
- Re-sums single logarithms of x

\[S_{xy} = \frac{1}{N_c} \text{Tr} [V_x V_y^+] \]

\[\alpha_s \ln \frac{1}{x} \sim 1 \]
BK Evolution: The Small-x Gluon Cascade

\[
\frac{\partial}{\partial \ln s} \langle S_{xy} \rangle(s) = \bar{\alpha}_s \int d^2 z \frac{(x_\perp - y_\perp)^2}{(x_\perp - z_\perp)^2(z_\perp - y_\perp)^2} \left[\langle S_{xz} S_{zy} \rangle(s) - \langle S_{xy} \rangle(s) \right]
\]

- The quark dipole radiates soft gluons before and after scattering.
- Evolution of the dipole scattering amplitude
- Re-sums single logarithms of x

\[
S_{xy} = \frac{1}{N_c} \text{Tr} [V_x V_y^\dagger]
\]

- Some radiated gluons also rescatter in the target gauge field.
- Non-linear evolution with a hierarchy of operators

\[
\alpha_s \ln \frac{1}{x} \sim 1
\]
 BK Evolution: The Small-x Gluon Cascade

\[\frac{\partial}{\partial \ln s} \langle S_{xy} \rangle(s) = \bar{\alpha}_s \int d^2 z \frac{(x_\perp - y_\perp)^2}{(x_\perp - z_\perp)^2(z_\perp - y_\perp)^2} \left[\langle S_{xz} \rangle(s) \langle S_{zy} \rangle(s) - \langle S_{xy} \rangle(s) \right] \]

- The quark dipole radiates soft gluons before and after scattering.
- Evolution of the dipole scattering amplitude
- Re-sums single logarithms of x
 \[\alpha_s \ln \frac{1}{x} \sim 1 \]

- Some radiated gluons also rescatter in the target gauge field.
- Non-linear evolution with a hierarchy of operators

- Evolution closes in the large \(N_c \) limit (BK eqn.)
 \[Q_s^2(x) \propto \left(\frac{1}{x} \right)^{1/3} \]

\[S_{xy} = \frac{1}{N_c} \text{Tr} [V_x V_y^\dagger] \]
• High energy (small x) scattering is predominantly spin independent.

BK evolution: total cross section, unpolarized quark distribution.
High energy (small x) scattering is predominantly spin independent.

BK evolution: total cross section, unpolarized quark distribution.

Transporting quark polarization to small x is suppressed!

Spin asymmetries, polarized quarks are suppressed at small x.
Digging for Spin Structure

High energy (small x) scattering is predominantly spin independent.

\[
\frac{d\Delta \sigma_q}{d^2 k} = -2 \frac{\alpha_s^2 C_F^2}{N_c} \frac{1}{s} \frac{1}{k_T^2}
\]

BK evolution: total cross section, unpolarized quark distribution.

Transporting quark polarization to small x is suppressed!

Spin asymmetries, polarized quarks are suppressed at small x.

Sub-leading gluon exchange can also transfer spin dependence.

Gluon exchange can mix with quark exchange.
\textbf{Polarized Initial Conditions}

- \textit{"Polarized Wilson Line"} - Coherent, spin-dependent scattering.
- One spin-dependent exchange (more are suppressed)
- Dressed by multiple unpolarized scattering
“Polarized Wilson Line” - Coherent, spin-dependent scattering.

- One spin-dependent exchange (more are suppressed)
- Dressed by multiple unpolarized scattering

“Polarized Dipole Amplitude”:

- Quark (gauge link) scatters by an unpolarized Wilson line.
- Fermion (antiquark) scatters by a polarized Wilson line.

\[G_{xy} \equiv \frac{1}{2N_c} \text{Tr} \left[V_x V_y^\dagger (\sigma) + V_y (\sigma) V_x^\dagger \right] \]
• Kernels: Spin-dependent quark / gluon wave functions

⇒ Soft quarks and soft gluons can mix (same order)
Evolving Spin to Small x

- **Kernels:** Spin-dependent quark / gluon wave functions

- **Soft quarks and soft gluons can mix (same order)**

- **Requires longitudinal and transverse momentum ordering**

 $1 \gg z_1 \gg z_2 \gg \cdots \gg \frac{Q^2}{s}$

 $Q^2 \ll \frac{k_{1T}^2}{z_1} \ll \frac{k_{2T}^2}{z_2} \ll \cdots$

- **Includes “infrared” phase space:**

 $k_{1T}^2 \gg k_{2T}^2 \gg k_{1T}^2 \frac{z_2}{z_1}$
Evolving Spin to Small x

- **Kernels:** Spin-dependent quark / gluon wave functions
 - Soft quarks and soft gluons can mix (same order)

- Requires **longitudinal and transverse momentum ordering**
 \[
 1 \gg z_1 \gg z_2 \gg \cdots \gg \frac{Q^2}{s} \quad \quad Q^2 \ll \frac{k_{1T}^2}{z_1} \ll \frac{k_{2T}^2}{z_2} \ll \cdots
 \]
 - Includes "infrared" phase space:
 \[
 k_{1T}^2 \gg k_{2T}^2 \gg k_{1T}^2 \frac{z_2}{z_1}
 \]

- Leads to **double-log evolution.**
 - Faster evolution than unpolarized BK!
 \[
 \alpha_s \ln^2 \frac{1}{x} \sim 1
 \]
To solve, first keep only the kernels without unpolarized rescattering.

\[
\frac{\alpha_s}{2\pi} \int \frac{dz}{z} \int \frac{d\vec{k}_T^2}{k_T^2} \left(\begin{array}{cc} C_F & 2C_F \\ -N_f & 4N_c \end{array} \right)
\]
To solve, first keep only the kernels without unpolarized resscattering.

\[
\frac{\alpha_s}{2\pi} \int \frac{dz}{z} \int \frac{d{k_T}^2}{k_T^2} \left(\begin{array}{cc} C_F & 2C_F \\ -N_f & 4N_c \end{array} \right)
\]

Solve by Mellin transform and saddle point approximation.

\[\alpha_s = 0.3\]
\[N_c = N_f = 3\]
\[G_{xy}(s) \sim \left(\frac{s}{Q^2} \right)^{1.46}\]
Solution: Ladder Evolution

To solve, first keep only the kernels without unpolarized rescattering.

\[\frac{\alpha_s}{2\pi} \int \frac{dz}{z} \int \frac{dk_T^2}{k_T^2} \begin{pmatrix} C_F & 2C_F \\ -N_f & 4N_c \end{pmatrix} \]

Solve by Mellin transform and saddle point approximation.

\[\alpha_s = 0.3, \quad N_c = N_f = 3 \]

\[G_{xy}(s) \sim \left(\frac{s}{Q^2} \right)^{1.46} \]

Fast growth of quark polarization at small x!

\[S_{xy}(s) \sim \left(\frac{s}{Q^2} \right)^{0.3} \]

Large contribution to the proton spin?
• Unlike BK or DGLAP, leading-log evolution is also generated by non-ladder graphs.

→ Arises uniquely from the IR sector.

\[k_{1T}^2 \gg k_{2T}^2 \gg k_{1T}^2 \frac{z_2}{z_1} \]
• Unlike BK or DGLAP, leading-log evolution is also generated by non-ladder graphs
 ➞ Arises uniquely from the IR sector.

• Quark and antiquark non-ladder graphs cancel

\[G_{xy} \equiv \frac{1}{2N_c} \text{Tr} \left[V_x V_y^\dagger (\sigma) + V_y (\sigma) V_x^\dagger \right] \]
• Unlike BK or DGLAP, leading-log evolution is also generated by non-ladder graphs
 ➡️ Arises uniquely from the IR sector.

\[k_{1T}^2 \gg k_{2T}^2 \gg k_{1T}^2 \frac{z_2}{z_1} \]

• Quark and antiquark non-ladder graphs cancel

\[G_{xy} \equiv \frac{1}{2N_c} \text{Tr} \left[V_x V_y^\dagger (\sigma) + V_y (\sigma) V_x^\dagger \right] \]

• Complication: Gluon non-ladder graphs do not cancel.
 ➡️ Ladder evolution is an unjustified truncation
• **Non-ladder gluons can stack in complex ways which still generate leading logarithms.**
Non-ladder gluons can stack in complex ways which still generate leading logarithms.

Polarized gluons can "jump a rung" of evolution.
• Non-ladder gluons can stack in complex ways which still generate leading logarithms.

➡ Polarized gluons can “jump a rung” of evolution

➡ Even unpolarized BK evolution in an intermediate step can contribute!
Knots of Non-Ladder Gluons

- Non-ladder gluons can stack in complex ways which still generate leading logarithms.

- Polarized gluons can "jump a rung" of evolution.

- Even unpolarized BK evolution in an intermediate step can contribute!

- Unpolarized evolution is in a color-octet state (unlike ordinary BK evolution).
Operator Evolution of the Polarized Dipole

Ladder:

\[\partial_{Y} \]

\[0 \rightarrow 1 \]

Unpolarized (BK):

Ladder:

Non-Ladder:
Operator Evolution of the Polarized Dipole

Ladder:

Non-Ladder:
Operator Evolution of the Polarized Dipole

Ladder:

Non-Ladder:

Unpolarized (BK):
• The evolution yields another infinite operator hierarchy

⇒ Closes in the large N_c limit, like BK evolution.

⇒ But not physically relevant: neglects quark exchange
The evolution yields another infinite operator hierarchy

- Closes in the large N_c limit, like BK evolution.

- But not physically relevant: neglects quark exchange

The transverse ordering condition is not automatically satisfied.

- Polarized dipoles can depend on their “neighbors”

- More complex than the large N_c BK equation.
A Better Approximation: Large N_c, N_f

\[
\frac{\partial}{\partial \ln z} Q_{10}(z) = \frac{\partial}{\partial \ln z} G_{10}(z) = \frac{\partial}{\partial \ln z} A_{10}(z) = \frac{\partial}{\partial \ln z} \Gamma_{02,21}(z) + \frac{\partial}{\partial \ln z} S_{02}(z) + \frac{\partial}{\partial \ln z} G_{21}(z) - \frac{\partial}{\partial \ln z} A_{12}(z) - \frac{\partial}{\partial \ln z} Q_{10}(z) + \frac{\partial}{\partial \ln z} S_{01}(z) + \frac{\partial}{\partial \ln z} A_{21}(z)
\]

• To keep quark contributions, must also take N_f large.

⇒ Must distinguish between dipoles made of actual quarks vs. large N_c gluons.

⇒ Evolution equation closes, but even more complicated....
Can we solve the helicity evolution in \textit{any} systematic approximation?

- Large N_c, N_f? Only large N_c?
- Does the growth persist at small x?
Outlook: The Truth is Out There!

- Can we solve the helicity evolution in **ANY systematic approximation**?
 - Large N_c, N_f? Only large N_c?
 - **Does the growth persist** at small x?

- What is the role of **saturation**?
 - Does multiple unpolarized scattering **reduce the intercept**?
 - Does saturation keep the **IR sector** from becoming **nonperturbative**?
Outlook: The Truth is Out There!

- Can we solve the helicity evolution in **ANY systematic approximation**?
 - Large N_c, N_f? Only large N_c?
 - **Does the growth persist** at small x?

- What is the role of **saturation**?
 - Does multiple unpolarized scattering **reduce the intercept**?
 - Does saturation keep the **IR sector** from becoming **nonperturbative**?

- Do we need **single log corrections**?
 - Leading log evolution of the **unpolarized gauge link**.
 - **Subleading evolution** of the polarized matrix element.
Outlook: The Truth is Out There!

- Can we solve the helicity evolution in ANY systematic approximation?
 - Large N_c, N_f? Only large N_c?
 - Does the growth persist at small x?

- What is the role of saturation?
 - Does multiple unpolarized scattering reduce the intercept?
 - Does saturation keep the IR sector from becoming nonperturbative?

- Do we need single log corrections?
 - Leading log evolution of the unpolarized gauge link.
 - Subleading evolution of the polarized matrix element.

- What about other polarization observables like transversity?
• Up to 35% of the proton angular momentum is unaccounted for.

Is there significant polarization at small x?

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\Delta \Sigma$</td>
<td>0.25 (25%)</td>
</tr>
<tr>
<td>ΔG</td>
<td>0.2 (40%)</td>
</tr>
</tbody>
</table>

$0.001 < x < 1$
• Up to 35% of the proton angular momentum is unaccounted for.

Is there significant polarization at small x?

- $0.001 < x < 1$
- $\Delta \Sigma \approx 0.25$ (25%)
- $\Delta G \approx 0.2$ (40%)

• Quark / gluon splitting leads to double-logarithmic evolution

Ladder graphs: rapid growth of polarization with small x!

$$G_{xy}(s) \sim \left(\frac{s}{Q^2} \right)^{1.46}$$
• Up to 35% of the proton angular momentum is unaccounted for.
 ➡ Is there significant polarization at small x?

• Quark / gluon splitting leads to double-logarithmic evolution
 ➡ Ladder graphs: rapid growth of polarization with small x!

• Massive complications due to non-ladder gluons and IR phase space.
 ➡ Much more to discover just around the corner!

$0.001 < x < 1$
$\Delta \Sigma \approx 0.25 \ (25\%)$
$\Delta G \approx 0.2 \ (40\%)$

$G_{xy}(s) \sim \left(\frac{s}{Q^2} \right)^{1.46}$