Anatoly B. Kolomeisky
Department of Chemistry
Center for Theoretical Biological Physics

How to Understand Molecular Transport through Channels: The Role of Interactions
Transport Through Channels

Oil pumping

Industry

Chromatography

Translocation through membranes

Chemistry, Physics

Biology
Major medical problem:
1) bacteria are developing resistance to drugs
2) Very few new anti-bacterial compounds
3) Mechanisms of resistance are unclear in many cases
4) One of the most important mechanisms – “permeability barrier”

Example: Resistance to Antibiotics

A key resistance mechanism in Gram-negative bacteria is the prevention of the antibiotic uptake via channel proteins porins.

Antibiotic docking to porin channels

Multidrug resistance mechanisms associated with porin modification

Membrane Protein Channels: 2 types

Ion Channels

- Highly efficient and very selective

Active Transporters

- Assumed: Passive Transporters
- Low efficiency and selectivity

BUT …
Large Membrane Pores: Selectivity

Transport of ATP molecules through mitochondrial channel VDAC studied by current fluctuation analysis

The effect of ATP addition on VDAC channel and bulk solution conductance

Lower conductance in the channel means that ATP interacts with the pore stays longer in the channel
Large Membrane Pores: Selectivity

Transport of sugar molecules through maltoporin LamB channel studied with current fluctuations

Maltose molecules interact specifically with channel residues – this is the reason for selectivity and for the efficiency

effect of mutations with respect to the wild type on kinetic rates
Theoretical Efforts:

Molecular Dynamics
Computer Simulations:
Stimulated by increasing amount of structural information
K. Schulten, M. Ceccarelli, I. Kosztin, R.D. Coalson, A. Aksimentiev…

Problems with full-atomic MD simulations: can describe systems with <100,000 atoms for few ns, not enough for real biological transport systems

Coarse-grained MD and/or more phenomenological physical-chemical analytical models. But there is a lot of confusion!
Facilitated translocation of molecules through channels and pores is of fundamental importance for transmembrane transport in biological systems. Several such systems have specific binding sites inside the channel, but a clear understanding of how the interaction between channel and molecules affects the flow is still missing. We present a generic analytical treatment of the problem that relates molecular flow to the first passage time across and the number of particles inside the channel. Both quantities depend in different ways on the channel properties. For the idealized case of noninteracting molecules, we find an increased flow whenever there is a binding site in the channel, despite an increased first passage time. In the more realistic case that molecules may block the channel, we find an increase of flow only up to a certain threshold value of the binding strength and a dependence on the sign of the concentration gradient, i.e., asymmetric transport. The optimal binding strength in that case is analyzed. In all cases the reason for transport facilitation is an increased occupation probability of a particle inside the channel that overcomes any increase in the first passage time because of binding.

Fig. 1. Basic biological situation. A membrane separates two baths with molecular concentrations c_1 and c_2. The baths are connected by channels (hatched rectangles), allowing only access to a single molecule.
Theoretical Approaches:

1) **Continuum models** – transport through the channels is viewed as a motion of the particle in the effective 1D potential created by interactions with the pore.

2) **Discrete models** - translocation dynamics is viewed as hopping between discrete binding sites.

Theoretical Efforts:

Channel-Facilitated Membrane Transport Models – Berezhkovskii and Bezrukov (NIH)

Idea: 1D diffusion in the effective potential created by interactions with the pore

Optimal attraction between the channel and the molecule
Theoretical Efforts:

Discrete-state stochastic models:

Idea: transport of the channel can be viewed as a sequence of transitions between several binding sites in the pore.

Important theoretical result:
Continuum and discrete models can be mapped into each other. But discrete models probably describe real biological translocation better:

1) Binding sites are real
2) It is hard to measure potentials, but can be “measured” by MD (potential of mean forces)
Theoretical Problems:

1) What is the fundamental role of interactions (molecule/pore and intermolecular)? By what mechanisms they control the channel flux?

2) There are attractive and repulsive binding sites. Why?

3) Spatial distribution of interaction potentials?

Potential of Mean Forces for glycerol conduction – through aquaglyceroporin

L. Movileanu and coworkers investigated transport of polypeptides through modified α-hemolysin channel: *JACS*, 129, 14034 (2007); *JACS*, 130, 4081 (2008)
Single-Molecule Experiments

Observations: spatial distribution of the binding sites strongly affect the particle current; *JACS, 129*, 14034 (2007).

| Table 3. The Rate Constants of Dissociation $k_{\text{off}-1}$, $k_{\text{off}-2}$, $k_{\text{off}-2}^{\text{trans}}$, and $k_{\text{off}-2}^{\text{cis}}$ of the Interaction between Cationic Polypeptides and αHL Pores at a Transmembrane Potential of +80 mV^a |
|---|---|---|---|---|
| peptide | protein pore | $k_{\text{off}-1}$ $(s^{-1}) \times 10^{-3}$ | $k_{\text{off}-2}$ $(s^{-1}) \times 10^{-3}$ | $k_{\text{off}-2}^{\text{trans}}$ $(s^{-1}) \times 10^{-3}$ | $k_{\text{off}-2}^{\text{cis}}$ $(s^{-1}) \times 10^{-3}$ |
| Syn B2 | WT-αHL | 1.1 ± 0.4 | 0.37 ± 0.02 | 0.29 ± 0.01 | 0.14 ± 0.01 |
| | K131D₇ | 3.2 ± 2.0 | 0.33 ± 0.04 | 0.20 ± 0.03 | 0.12 ± 0.02 |
| | K147D₇ | N/A^b | 7.2 ± 1.2 | N/A^c | 7 ± 2 |
| | K131D₇/K147D₇ | N/A^b | 11 ± 1 | N/A^c | 10 ± 1 |
| Cox IV | WT-αHL | 0.76 ± 0.01 | 0.11 ± 0.01 | 0.050 ± 0.002 | 0.052 ± 0.002 |
| | K131D₇ | 2.1 ± 1.3 | 0.16 ± 0.04 | 0.15 ± 0.04 | 0.009 ± 0.003 |
| | K147D₇ | N/A^b | 4.8 ± 0.6 | N/A^c | 5.1 ± 0.6 |
| | K131D₇/K147D₇ | N/A^b | 2.2 ± 0.2 | N/A^c | 2.0 ± 0.2 |
| AK | WT-αHL | 9.3 ± 0.9 | 1.3 ± 0.1 | 0.04 ± 0.01 | 1.2 ± 0.5 |
| | K131D₇ | 2.5 ± 0.1 | 0.57 ± 0.02 | 0.21 ± 0.01 | 0.34 ± 0.03 |
| | K147D₇ | 7.9 ± 3.9 | 1.3 ± 0.5 | N/A^c | 1.3 ± 0.3 |
| | K131D₇/K147D₇ | N/A^b | 7.6 ± 2.0 | N/A^c | 6.2 ± 2.0 |

Currents through channels for different positions of binding sites.
Our Theory

N-binding sites model

Particles do not interact with each other

Entrance rates:

$u_0 = k_{on}c_1$, $w_0 = k_{on}c_2$

Exit rates:

$w_1 = u_N = k_{off}$

Current depends on the concentration gradient $\Delta c = c_1 - c_2$

Single particle motion through the channels
Our Theory

\[N \]-site binding model for channel transport can be mapped into the single-particle hopping model on the \((N+1)\)-periodic lattice.
Our Theory

Dynamic properties can be calculated explicitly

Particle current through the channel:

\[
J = \frac{k_{on}(c_1 - c_2)}{2[1 + \frac{k_{on}(c_1 + c_2)N}{2k_{off}}][1 + \frac{k_{off}(N - 1)}{2u}]} \]
Our Approach:

Our goal:
To investigate effect of interactions on molecular transport through cellular membranes using discrete-state stochastic models.

2 types of interactions considered:
1) Molecule-Nanopore
2) Intermolecular
Molecule/Nanopore Interactions

To test the role of interactions consider a specific model:
1) Channel with N binding sites;
2) Only one particle can be found in the channel;
3) Mostly uniform channel
4) Assume that the binding site k is special with a potential ε
5) Zero particle concentration on one side of the channel (to the right) – to simplify calculations
6) Concentration gradient is supported by other processes

Questions:
How current depends on k and on ε
Molecule/Nanopore Interactions

Consider dynamics near the k-th binding site:

\[\frac{u_{k-1}(\varepsilon)}{u_k(\varepsilon)} \frac{w_k(\varepsilon = 0)}{u_{k-1}(\varepsilon = 0)} = \frac{u_k(\varepsilon = 0)}{w_{k+1}(\varepsilon = 0)} \]

\[x = \exp\left(\frac{\varepsilon}{k_B T}\right) \]

\[u_{k-1}(\varepsilon) = u_{k-1}x^{\theta}, \quad w_{k+1}(\varepsilon) = w_0x^{\theta}, \quad u_k(\varepsilon) = u_kx^{\theta-1}, \quad w_{k+1}(\varepsilon) = w_{k+1}x^{\theta-1} \]

\[\varepsilon = 0 \rightarrow \text{no interactions} \]

\[\varepsilon > 0 \rightarrow \text{attractive site} \]

\[\varepsilon < 0 \rightarrow \text{repulsive site} \]
Molecule/Nanopore Interactions

Interaction-distribution factors $0 < \theta < 1$

$$u_{k-1}(\varepsilon) = u_{k-1}e^{\frac{\theta \varepsilon}{k_BT}}$$

$$w_k(\varepsilon) = w_k e^{\frac{(1-\theta) \varepsilon}{k_BT}}$$

$\varepsilon = 0$

$\Delta G(0)$

$\Delta G(\varepsilon) = \Delta G(0) - \varepsilon$

$\varepsilon < 0$

Activation barrier E_a

$\theta \varepsilon$

$u_{k-1} \equiv e^{-E_a / k_BT}$
Molecule/Nanopore Interactions

The ratio of particle currents for different positions of the binding site k for the channel with $N=10$ binding sites from our exact theory.

- J_0 – flux in the uniform channel without interactions
- $\varepsilon/k_B T=5$, $u/u_0=0.1$, $\theta=0.5$ - attraction
- $\varepsilon/k_B T=-5$, $u/u_0=0.1$, $\theta=0.5$ - repulsion
- $\varepsilon/k_B T=5$, $u/u_0=10$, $\theta=0.5$ - attraction
- $\varepsilon/k_B T=5$, $u/u_0=0.1$, $\theta=0$ - attraction
Molecule/Nanopore Interactions

Exact results - surprising:
1) for attractive interactions the largest flux is obtained when the binding site at the exit
2) for repulsive interactions the largest flux is obtained when the binding site at the entrance
Molecule/Nanopore Interactions

Mechanism: control of local concentration of particles

For attractive interactions the binding site can be viewed as a trap, the particle that already passed tends to return back, lowering the overall flux.
Molecule/Nanopore Interactions

Mechanism: control of local concentration of particles

For repulsive interactions the binding site can be viewed as a barrier, the particle that already passed cannot return back, and this leads to increasing the overall flux.
Molecule/Nanopore Interactions

Our theoretical results in agreement with single-molecule observations: translocation is faster if the attractive binding site at the exit.

<table>
<thead>
<tr>
<th>peptide</th>
<th>protein pore</th>
<th>(k_{\text{off}-1}) ((\text{s}^{-1}) \times 10^{-3})</th>
<th>(k_{\text{off}-2}) ((\text{s}^{-1}) \times 10^{-3})</th>
<th>(k_{\text{off-2}}^{\text{trans}}) ((\text{s}^{-1}) \times 10^{-3})</th>
<th>(k_{\text{off-2}}^{\text{cis}}) ((\text{s}^{-1}) \times 10^{-3})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Syn B2</td>
<td>WT-αHL</td>
<td>1.1 ± 0.4</td>
<td>0.37 ± 0.02</td>
<td>0.29 ± 0.01</td>
<td>0.14 ± 0.01</td>
</tr>
<tr>
<td></td>
<td>K131D<sub>7</sub></td>
<td>3.2 ± 2.0</td>
<td>0.33 ± 0.04</td>
<td>0.20 ± 0.03</td>
<td>0.12 ± 0.02</td>
</tr>
<tr>
<td></td>
<td>K147D<sub>7</sub></td>
<td>N/A<sup>b</sup></td>
<td>7.2 ± 1.2</td>
<td>N/A<sup>c</sup></td>
<td>7 ± 2</td>
</tr>
<tr>
<td></td>
<td>K131D<sub>7</sub>/K147D<sub>7</sub></td>
<td>N/A<sup>b</sup></td>
<td>11 ± 1</td>
<td>N/A<sup>c</sup></td>
<td>10 ± 1</td>
</tr>
<tr>
<td>Cox IV</td>
<td>WT-αHL</td>
<td>0.76 ± 0.01</td>
<td>0.11 ± 0.01</td>
<td>0.050 ± 0.002</td>
<td>0.052 ± 0.002</td>
</tr>
<tr>
<td></td>
<td>K131D<sub>7</sub></td>
<td>2.1 ± 1.3</td>
<td>0.16 ± 0.04</td>
<td>0.15 ± 0.04</td>
<td>0.009 ± 0.003</td>
</tr>
<tr>
<td></td>
<td>K147D<sub>7</sub></td>
<td>N/A<sup>b</sup></td>
<td>4.8 ± 0.6</td>
<td>N/A<sup>c</sup></td>
<td>5.1 ± 0.6</td>
</tr>
<tr>
<td></td>
<td>K131D<sub>7</sub>/K147D<sub>7</sub></td>
<td>N/A<sup>b</sup></td>
<td>2.2 ± 0.2</td>
<td>N/A<sup>c</sup></td>
<td>2.0 ± 0.2</td>
</tr>
<tr>
<td>AK</td>
<td>WT-αHL</td>
<td>9.3 ± 0.9</td>
<td>1.3 ± 0.1</td>
<td>0.04 ± 0.01</td>
<td>1.2 ± 0.5</td>
</tr>
<tr>
<td></td>
<td>K131D<sub>7</sub></td>
<td>2.5 ± 0.1</td>
<td>0.57 ± 0.02</td>
<td>0.21 ± 0.01</td>
<td>0.34 ± 0.03</td>
</tr>
<tr>
<td></td>
<td>K147D<sub>7</sub></td>
<td>7.9 ± 3.9</td>
<td>1.3 ± 0.5</td>
<td>N/A<sup>c</sup></td>
<td>1.3 ± 0.3</td>
</tr>
<tr>
<td></td>
<td>K131D<sub>7</sub>/K147D<sub>7</sub></td>
<td>N/A<sup>b</sup></td>
<td>7.6 ± 2.0</td>
<td>N/A<sup>c</sup></td>
<td>6.2 ± 2.0</td>
</tr>
</tbody>
</table>
Our theory can be extended to more complex interactions. Our predictions: the most optimal flux is achieved when attractive sites cluster near the exit and repulsive sites are near the entrance. But are biological channels are optimized for this function? Not clear!

Potential of Mean Forces for glycerol conduction – through aquaglyceroporin

Transport through K⁺ Channels

Mechanism of Transport of K⁺ through Potassium Channels:

Selectivity filter
K⁺ entrance

Red – negative groups
Blue – positive groups
Yellow – hydrophobic groups

Molecule/Nanopore Interactions

The ratio of particle currents as a function of interaction strength for the channel with $N=10$ binding sites.

Strength of interactions is an important parameter for channel transport:

- $k=1$, $u/u_0=0.1$, $\theta=0.5$
- $k=10$, $u/u_0=0.1$, $\theta=0.5$
- $k=10$, $u/u_0=0.1$, $\theta=0.8$
- $k=5$, $u/u_0=0.1$, $\theta=0.9$
Molecule/Nanopore Interactions

Relative currents as a function of interaction strength for $N=1$ model

Most optimal interaction $\epsilon^* = 0$

Parameters for maltodextrin translocation,

$k_{on} = 15 \ \mu M^{-1}s^{-1},$

$k_{off} = 500 \ s^{-1}$

assume $c_2 = 0$,

a) $c_1 = 10 \ \mu M, \theta = 0.5$

b) $c_1 = 10 \ \mu M, \theta = 0.9$

c) $c_1 = 500 \ \mu M, \theta = 0.5$

d) $c_1 = 500 \ \mu M, \theta = 0.9$
Molecule/Nanopore Interactions

Most optimal interaction as a function of c_1 (assuming $c_2=0$)

$-c^*_{\text{critical concentration}}$

Molecular flux increases

$c_1 < c^*$ - for attractive site

$c_1 > c^*$ - for repulsive site

For $N=1$:

$$\varepsilon^* = k_B T \ln \left[\frac{\theta}{1 - \theta \frac{2k_{\text{off}}}{k_{\text{on}} (c_1 + c_2)}} \right]$$

For large concentration gradients – the most optimal interaction is negative, for small gradients – the most optimal is positive
Molecule/Nanopore Interactions

Surprising results: at some conditions the repulsive site provides the most optimal flux!

Stationary conditions: the flux into the channel is equal to the flux out. Then for large concentrations outside the particle must stay short time inside, i.e., the binding site is repulsive.
Molecule/Nanopore Interactions

Analogy with entering the bus
Intermolecular Interactions

More than 1 molecule might fit inside the channel during translocation.

Current theoretical view: molecules do not interact except hard-core exclusion, no correlations in their motion is assumed (mean-field).

Intermolecular Interactions

Our hypothesis:
molecules can interact with each other in the biological channels, and this could modify the particle flux – it turned out to be important for some ion channels transport.
Intermolecular Interactions

To investigate explicitly intermolecular interactions consider \(N=2 \) model:

1) No molecule/nanopore interactions;
2) More than 1 particle can be found in the channel
3) Particle interact with each other with energy \(\varepsilon \)
Intermolecular Interactions

4 possible configurations: (0,0); (1,0); (0,1); (1,1)

Limiting case \(\varepsilon \to -\infty \):
Single particle in the channel

Detailed balance arguments:

\[
\frac{u_1}{u_2} = \frac{u_0}{u} x,
\]

\[
x = \exp \left(\frac{\varepsilon}{k_B T} \right)
\]

\[
u_1 = u_0 x^\theta, \quad u_2 = ux^{\theta-1}
\]
Intermolecular Interactions

Ratio of particle currents as a function of intermolecular interaction for the channel with $N=2$ binding sites. J_1 is the current for $\varepsilon \to -\infty$

- $\frac{u}{u_0}=0.1$, $\theta=0$
- $\frac{u}{u_0}=0.1$, $\theta=0.5$
- $\frac{u}{u_0}=10$, $\theta=0.5$
Intermolecular Interactions

Complex behavior that depends on the parameter θ: For $0<\theta<1$ – non-monotonous behavior with optimal interaction where the flux is maximal. Optimal interaction could be attractive or repulsive!

\[
\begin{align*}
\frac{u}{u_0} &= 0.1, \quad \theta = 0 \\
\frac{u}{u_0} &= 0.1, \quad \theta = 0.5 \\
\frac{u}{u_0} &= 0.1, \quad \theta = 1 \\
\frac{u}{u_0} &= 10, \quad \theta = 0.5
\end{align*}
\]
Intermolecular Interactions

Mechanism: particle in the channel might catalyze or inhibit the entrance or exit of another one, changing the dynamics and modifying the current

![Diagram of intermolecular interactions]
Intermolecular Interactions

For attractive interactions:

1) Increases the flux of other particles into the channel;
2) Reduces the flux out of the channel
Intermolecular Interactions

For repulsive interactions:

1) Decreases the flux of other particles into the channel;
2) Increases the flux out of the channel
Transport through K^+ Channels

Mechanism of Transport of K^+ through Potassium Channels:

Selectivity filter

Red – negative groups
Blue - positive groups
Yellow - hydrophobic groups

Science, 280, 69 (1998)
What Did We Learn?

• Molecules can be moved through channels by modifying the spatial distribution of binding sites (potential of interactions)
• Another important factor in controlling the channel transport – strength of interactions
• Both negative and positive interactions might accelerate the particle currents
• We argue that interactions between the molecules can also influence the flux across the nanopores
Comments and Future Directions

1) Real biological channels are complex structures, far away from uniform cylindrical channels assumed in theory.

2) In many cases the transport is complicated by external field and complex short-range and long-range interactions.

3) Separation of mixtures.

It is necessary to combine experimental, analytical and computational methods in order to elucidate mechanisms of biological transport.
CONCLUSIONS

• A theoretical approach based on discrete-state stochastic models for molecular transport through biological channels is developed.

• The mechanisms of interactions are investigated using simple discrete-state models.

• Molecule/Nanopore interactions might control the transport across channels via strength and/or spatial distributions.

• Both attractive and repulsive binding sites might produce the optimal flux.

• Intermolecular interactions can also influence transport across the channels.