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Hanbmy Brown and Twiss light intensity intevferometer

R. Hanbury Brown and R.Q. Twiss, Nature 177, 27 (1956)

R.Q. Twiss, A.G. Little, and R. Hanbury Brown, Nature 180, 324 (1957)
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ﬁrst—order coherence - laser linewidth:
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second-order coherence:
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Glauber coherence themy:

— based upon an analysis of photoelectric detection

— comnsiders multi-photon coincidence rates
and the associated optical field correlation functions

.f- two-yhoton coincidence vate is yroyortional to

At At A A
G(2)(7°17t13rzat2) = (E(rt)) E(ryty) E(ryty) E(ry,t))

— coherence defined through the factorization
of the correlation functions

.f- ﬁrst—order coherence

<ET(T1vt1)E(T27t2)> = 8*(r1,t1)€(r2,t2)

A

coherent state:  E(r,t)|state) = E(r,t) |state)



classical and non-classical fields
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photon bunching 9@
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Einstein: the yhotoelectric eﬁect
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“I have thought a hundred times as much about the quantum problems
as I have about general relativity.”

— recollection of Otto Stern
Jost, R., 1977, letter to A. Pais, August 17



On a Heuristic Point of View about
the Creation and Conversion of Light'

A. EINSTEIN

The wave theory of light which operates with continuous functions
in space has been excellently justified for the representation of purely
optical phenomena and it is unlikely ever to be replace by another
theory. One should, however, bear in mind that optical observations
refer to time averages and not to instantaneous values and notwith-
standing the complete experimental verification of the theory of
diffraction, reflexion, refraction, dispersion, and so on, it is quite
conceivable that a theory of light involving the use of continuous
functions in space will lead to contradictions with experience,
if it is applied to the phenomena of the creation and conversion of light.

t Ann. Physik 17, 132 (1905).



In fact, it seems to me that the observations on the “black-body
radiation”, photoluminescence, the production of cathode rays by
ultraviolet light and other phenomena involving the emission or
conversion of light can be better understood on the assumption that
the energy of light is distributed discontinuously in space. According
to the assumption considered here, when a light ray starting from
a point is propagated, the energy is not continuously distributed
over an ever increasing volume, but it consists of a finite number of
energy quanta, localised in space, which move without being divided
and which can be absorbed or emitted only as a whole.

In the following, I shall communicate the train of thought and
the facts which lead me to this conclusion, in the hope that
the point of view to be given may turn out to be useful for some
research workers in their investigations.

1. On a Difficulty in the Theory of “Black-body Radiation”

To begin with, we take the point of view of Maxwell’'s theory
and electron theory and consider the following case......



. On a Difficulty in the Theory of “Black-body Radiation”
. On Planck’s Determination of Elementary Quanta
. On the Entropy of the Radiation

. Limiting Law for the Entropy of Monochromatic
Radiation for Low Radiation Density

. Molecular—Theoretical Investigation of the Volume-dependence
of the Entropy of Gases and Dilute Solutions

. Interpretation of the Volume-dependence
of the Entropy of Monochromatic Radiation
according to Boltzmann's Principle

. On Stokes’ Rule

. On the Ionisation of Gases by Ultraviolet Light



Photons and the Photoelectric Effect 909

the electron is then hv — ¢ and this must be the kinetic energy of the
emerging electron,’

This is Einstein's photoelectric equation. It shows that the kinetic en-
ergy is indeed a linearly increasing function of the frequency, in agree-
ment with the data of Figure 40.8. According to Eq. (12), the slope of
the straight line in Figure 40.8 should equal Planck’s constant.
Einstein's photoelectric equation was verified in detail by a long
series of meticulous experiments by R. A. Millikan (the data in Figure
40.8 are due to him). In order to obtain reliable results, Millikan
found it necessary to take extreme precautions to avoid contamination
of the surface of the photosensitive electrode. Since the surfaces of
metals exposed to air quickly accumulate a layer of oxide, he devel-
oped a technique fo ces of his metals in a vacuum by
means of a magnetiesHy -
srefults of these experiments gave strong support to
dfn theory of light. This success of Einstein’s theory was all the more
striking in view of the failure of the classical wave theory of light to ac-
count for the features of the photoelectric effect. According to the
wave theory, the crucial parameter that determines the ejection of a
photoelectron should be the intensity of light. If an intense electro-

magnetic wave strikes an electron, it should be able to jolt it loose from
the metal, regardless of the frequency of the wave. Furthermore, the
kinetic energy of the ejected electron should be a function of the in-
sqsity of the wave. The observational evidence contradicts these pre;
the wave theory: A wave with a frequency below-The

threshold frequermes ejects an electron, regasdbess ol its inten-
sity. And, furthermore, the kinetic energy depends on the frequency,
and not on the intensity. High-intensity light ejects more photoelec-
trons, but does not give the individual electrons more kinetic energy.

Today, the photoelectric effect finds many practical applications in
sensitive electronic devices for the detection of light. For instance, in a
photomultiplier tube, an incident photon ejects an electron from an
electrode; this electron is accelerated toward a second electrode (called
a dynode; see Figure 40.9) where its impact ejects several secondary
electrons; these, in turn, are accelerated toward a third electrode
where their impact ejects tertiary electrons, etc. Thus, one electron
from the first electrode generates an avalanche of electrons. In a high-
gain photomultiplier tube, a pulse of 10° electrons emerges from the
last electrode, delivering a measurable pulse of current to an external
circuit. In this way, the photomultiplier tube can detect the arrival of
individual photons. Some sensitive television cameras, such as the
image orthicon, rely on the same multiplier principle to convert the ar-
rival of a photon at a photosensitive faceplate into a measurable pulse
of current.

Einstein’s photoelectric
equation

electron

+100V

Fig. 40.9 Schematic diagram
of a photomultiplier tube. The
secondary electrodes are

called dynodes. For the pur-
pose of this diagram it has
been assumed that each
electron impact on a dynode
releases two electrons. The
arrows show an avalanche of
electrons.

-

EXAMPLE 4. The work function for platinum is 9.9 X 10~'* |. What is the
threshold frequency for the ejection of photoelectrons from platinum?

This success
of Einstein’s theory
was all the more striking
in view of the failure

of the classical wave theory of light

to account for the features
of the photoelectric effect.
According to the wave theory,
the crucial parameter
that determines the
ejection of a photoelectron
should be the intensity of light.

If an intense electromagnetic wave

strikes an electron,
it should be able to jolt it
loose from the metal,
regardless of the
frequency of the wave.
Furthermore, the kinetic energy
of the ejected electron
should be a function of
the intensity of the wave.



334 Approximation Methods

encountered a time-dependent p ial of this kind in Section 5.5 in
i ing r-dependent two-level problems. )

dmussh:ain ?;:um that only one of the eigenstates of Hy is populated
initially. Perturbation (5.6.39) is assumed to be turned on at 1 =0, so

= 0 o —iwt® it ot
C-‘-l}-Tfo(Vﬂe' r+ﬁre i l)ei Y dr

v+ 1:3' {5 6 ‘40)

Wty - —wtw,

“h
where %! actually stands for (¥"*),,. We see that this formula is similar to
the cons:ant perturbation case. The only change needed is
Wy = E, ; - —w, tw. (5.6.41)

ni

1 [1 — gftwrent 1= gllwn—ult

So as t — oo, |c!V)|? is appreciable only if
‘w,+w=0 or E,=E—-he (5.6.42a)
w,—w=0 or E,=E+ho. (5.6.42b)

Clearly, whenever the first term is important because of (5.6.42a), the second
term is unimportant, and vice versa. We see that we h:?ve no cnergy-mn:
servation condition satisfied by the quantu:rg—me_chamcal system alone;
rather the apparent lack of energy conservation is cgmpensat:'ad by ll’:
energy given out to—or energy taken away from—the qtemal po.im'm
¥(1). Pictorially, we have Figure 5.9. In the first case (mmu..‘atef_i e:mu:wnl),
the quantum-mechanical system gives up energy hw to V; this is cear))r
possible only if the initial state is excited. In the second case (ahsf;;puon N
the quantum-mechanical system receives energy h_t.: from V and ends up as
an excited state. Thus a time-dependent perturbation can be regarded as an
inexhaustible source or sink of energy.
In complete analogy with (5.6.34), we have

2 ——
W= 7R (E)|

Ep =E;~hu
27—
Wi ()= T"Iﬁ"l p(E,) E mE s

or, more commonly,

Wiea™ g

20 { Yl

mhz}m"‘g‘im'

Note also that ;
177 =171

5.7. Applications 1o Interactions with the Classical Radiation Field

hw * \
hew
E. b
FIGURE 59. (i) Stimulated emission: Q hanical system gives up hw to ¥ (possi-

ble only if initial state is excited). (i) Absorption: Quantum mechanical system receives huw
from ¥ and ends up as an excited state.

(i)
E

which is a consequence of
il Hn) = (a7 )iy* (5.6.46)
(remember ¥"1|n) > (n¥"). Combining (5.6.43) and (5.6.45), we have

ission rate for i = [n] _ absorption rate for n — [i]
density of final states for [n]  density of final states for [i]

(5.6.47)
where in the absorption case we let i stand for final states. Equation
(5.6.47), which expresses symmetry between emission and absorption, is
known as detailed balancing.

To summarize, for constant perturbation, we obtain appreciable
transition probability for |i) - |n) only if E, = E,. In contrast, for harmonic
perturbation we have appreciable transition probability only if E, = E, — hw
(stimulated emission) or E, = E, + hw (absorption).

5.7. APPLICATIONS TO INTERACTIONS WITH THE CLASSICAL
RADIATION FIELD

Absorption and Stimulated Emission

We apply the formalism of time-dependent perturbation theory to
the interactions of atomic electron with the classical radiation field. By a
classical radiation field we mean the electric or magnetic field derivable from
a classical (as opposed to quantized) radiation field.

The basic Hamiltonian, with |A|? omitted, is

_F e
H= Py +ep(x)— P A-p, (5.7.1)
which is justified if

VA=0; (5.7.2)
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that of x?, of order R2,,, and so on, we see that the approximation of
& x aom* s
replacing (5.7.15) by its leading term is an excellent one.
Now we have
(nje /NN pliy — & (nipli). (5.7.19)
. i i
In particular, we take & along the x-axis (and @ along the z-axis). We mus
i). Usin,
calculate (n|p.i) g i .
[x HG] - = 3
’ m
we have . ‘
(nlpudiy =75 (nilx, Holli)
= ima, {n|x|i). (5.7.21)

Because of the approximation of the dipole_opefator,“:his aapp::t::m:gliﬂ
scheme is called the electric dipole npprc_uunauou._ T meit e
[see (3.10.39)] the selection rule for the dipole mairll:r. el e:' s e
a spherical tensor of rank 1 with g = *1, we must a_.veth .
li ?- jl = 0,1 (no 0— 0 transition). If & is along the y-axis, the s e e
rule applies. On the other hand, if € is in the z-direction, g = U; 3
"= ﬁ:\}iih the electric dipole approximation, the absorption cross section

(5.7.14) now takes a simpler form upon using (5.7.19) and (5.7.21) as o
Oy = dntaw, |(n|x|i)|*8(w — W,i)- (5. .,
In other words, o, treated as a function of w exhjbi:s ii sha;pdﬁ:u;t‘.l:l:
never -level sp.
i k whenever hw corresponds to the energy a :
tl;e ~p e; )/ h. Suppose |i) is the ground state, then w,, is necessarly
po;iuve; integrating (5.7.22), we get

fa,,,,(u)dw= Y dm2aw,|(nlxli)]* (5.7.23)
In atomic physics we define oscillator strength, f,;, as

2mw,;

fu= = K1

It is then straightforward (consider [x,[x, Ho]]) to establish the Thomas-
Reiche-Kuhn sum rule,

(5.7.24)

T1 =1 (5.7.25)

. . 4 ave
In terms of the integration over the absorption cross section, we

dn’ah _, o[ € | (5.7.26)
foaerto- S5k 20 )

5.7. Applications to Interactions with the Classical Radiation Field 3319

Notice how & has disappeared. Indeed, this is just the oscillation sum rule
already known in classical electrodynamics (Jackson 1975, for instance).
Historically, this was one of the first examples of how *“new quantum
mechanics” led to the correct classical result. This sum rule is quite

remarkable because we did not specify in detail the form of the Hamilto-
nian.

Photoelectric Effect
¢ now consider the photoelectric effect— that is, the ¢jection of an

electron when an atom is placed in the radiation field. The basic process is
considered to be the transition from an atomic (bound) state to a continuum
state £ > 0. Therefore, |i) is the ket for an atomic state, while |n) is the ket
for a continuum state, which can be taken to be a plane-wave state |k 77> an
approximation that is valid if the final electron is not too slow. Our earlier
formula for o,,,(w) can still be used, except that we must now integrate
8(w,; — w) together with the density of final states p(E,).

Our basic task is to calculate the number of final states per unit
energy interval. As we will see in a moment, this is an example where the
matrix element depends not only on the final state energy but also on the .
momentum direction. We must therefore consider a group of final states
with both similar momentum directions and similar energies.

To count the number of states it is convenient to use the box
normalization convention for plane-wave states. We consider a plane-wave
state normalized if when we integrate the square modulus of its wave
function for a cubic box of side L, we obtain unity. Furthermore, the state
is assumed to satisfy the periodic boundary condition with periodicity of the
side of the box. The wave function must then be of form

el

<""!>"_E:_/T' (5.7.27)
where the allowed values of k, must satisfy

2mn,
k.= T e (5.7.28)

with n, a positive or negative integer. Similar restrictions hold for k, and
k.. Notice that as L — o, k,, k,, and k, become continuous variables,
The problem of counting the number of states is reduced to that of

counting the number of dots in three-dimensional lattice space. We define n
such that

n1=n§+n§+nf. (5.7.29)
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specifically,

where & and h are the (linear) polanzation and propagation direction.
Equation (5.7.3) obviously satisfies (5.7.2) because & is perpendicular to the
propagation direction h. We write

cos[%h-x— m) - %[e"“’f"""""" 4 Hu/onxrior]  (57.4)

and treat —(e/m c)A-p as time-dependent potential, where we express A

in (5.7.3) as
A= Aoﬁ[e;:u/e)n-x-mu 4 e iw/Ohxtior] (5.7.5)

Comparing this result with (5.6.39), we see that the e~*“-term in

i .i. T _e_ & (e feih-x— et — i e x + faf

e P S re ]
(5.7.6)

is responsible for absorption, while the e*i“iterm is responsible for stimu-

lated emission.
Let us now treat the absorption case in detail. We have

ed
e G (Rl (5:1.7)

and

2

2m el | ol /g plid8(E, — E,~ ho). (5.78)
R mc? !

The meaning of the 8-function is clear. If |n) forms a continuum, we simply
integrate with p(E,). But even if |n) is discrete, because |n) cannot be a
ground state (albeit a bound-state energy level), its energy is not infinitely
sharp; there may be a natural broadening due to a finite lifetime (see
Section 5.8); there can also be a mechanism for broadening due to colli-
sions. In such cases, we regard 8(w — w,;) as

Wien™

. ¥ 1
80— ) = lim () ————7- (519)
nly—ol27 ) [(0-w,)+ y/4)
Finally, the incident electromagnetic wave itself is not perfectly monochro-
matic: in fact, there is always a finite frequency width.
We derive an absorption cross section as

(Energy /unit time) absorbed by the atom (i—=n)

Energy flux of the radiation field (3:1.10)

For the energy flux (energy per area per unit time), classical electromagnetic

k= 2A{,§cos(%i|-x-— wl‘) (5.1.3)

where & and @ are the (linear) polarization and propagation direction.
Equation (5.7.3) obviously satisfies (5.7.2) because & is perpendicular to the
propagation direction f. We write

1, ; . ;
COS( E:—i’l'x— wt) = _2__ [ea(m/c)hAx—mt + e-—!(u/c}h-x+:m] (574)
and treat —(e/mc)A-p as time-dependent potential, where we express A

in (5.7.3) as

A= Aoalei(m/c)i-x—im: + e—t’(m/c)hAx+iwt]. (5_7.5)

Comparing this result with (5.6.39), we see that the e~ “term in
— € A e ' H{w/c)h-x—iwt —i(w/e)h-x+iwt
(_—mec)A P (m‘,c)Aue ple +e ]

(5.7.6)

is responsible for absorption, while the e*i“"term is responsible for stimu-

lated emission.
Let us now treat the absorption case in detail. We have

(5.7.7)

vy} == L0 (/W Dp),,

2

| g2 n|e /05 pliy 28 (E, — E,— hw). 5.7.8)

i=n R mie?
= : continuum, we simply
integrate with p(E,). But even if |n) is discrete, because |n) cannot be a
ground state (albeit a bound-state energy level), its energy is not infinitely
sharp; there may be a natural broadening due to a finite lifetime (see
Section 5.8); there can also be a mechanism for broadening due to colli-
sions. In such cases, we regard 8(w — w,;) as

—w. )=l - 1 ; .
86 = ani) Th-IP{)( Z'rr) [(w__ t-‘.'m-)2+ _1,2/4] (5.7.9)

Finally, the incident electromagnetic wave itself is not perfectly monochro-
matic; in fact, there is always a finite frequency width.
We derive an absorption cross section as

(Energy /unit time) absorbed by the atom (i—n)

Energy flux of the radiation field (5.7.10)

For the energy flux (energy per area per unit time), classical electromagnetic



Einstein: ]mrticles and waves

I already attempted earlier to show that our current foundations
of the radiation theory have to be abandoned ...
it is my opinion that the development of theoretical physics will bring us to
a theory of light which can be interpreted as a kind of fusion
of the wave and the emission theory ...
[the] wave structure and [the] quantum structure ...
are not to be considered mutually incompatible ...
it seems to follow from the Jeans law that we will have to modify our current theories,
not to abandon them completely.

(&2, T)) = (hvp 632 p2)Vdv

T 3

|

particle wave
term term
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light electrons light electrons

Bohr, N., H.A. Kramers, and J.C. Slater,
1924, Philos. Mag. 47, 785



field amplitude

(E&2w,T)) = (hvp A

i

)
82

2)Vdv

photoelectric counts

particle wave
term term

time
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cavity QED

dipole coupling
strength:
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quantum tmjectories:

non-unitary Schrodinger evolution:

dWREc) I -
dt - ,];_hHB(t) WREC>
spontaneous emission
L i () = £(d-8) + 2 glriD)(cic N BT
th B\ > g\T; J- Jt 2 < J+7 -
L — | |
laser input dipole interaction L

cavity loss

quantum jumps:

y G|Urpc)  at rate 26((6'a) () ) ric
WREC> J——

B 7. YrEC) 2Lars 7((‘3j+‘3j-)(t)>REc



weak excitation:

0.4
spontaneous
emission
Xrec 0.0 -
cavity
emission
0.4 |
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gop(7) = [h{rj}(ﬂ } |

L (s /2l 5 (/2
hi(T) = 1.0 — Agye=z 0720 cos(82,,7) + sin({2y,,7)
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Yhoton antibunching in cavity QED:

G. Rempe, R.J. Thompson, R.J. Brecha, W.D. Lee, and H.J. Kimble,
Phys. Rev. Lett. 67, 1727 (1991)
G.T. Foster, S.L.. Mielke, and L.A. Orozco, Phys. Rev. A 61, 053821 (2000)

Rempe et al.

Foster et al




