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Motivation & Outline

A. Zewail, 1999 Nobel Prize in chemistry

Outline

1. The tools of the trade
• Ultrafast lasers
• Pulse shaping and learning algorithms

2. Demonstrating Control
• Atomic population transfer & molecular fragmentation

3. Understanding Control and Making Movies
• Uncovering physical mechanisms underlying control
• Seeking to measure molecular wavefunctions

Motivation: Making molecular movies in real time
•Need a fast camera (ultrafast laser)
•Need to control the action (shaped laser pulses)



Making a Movie of Molecular 
Bond Breaking

• What if we don’t know how to 
break a given bond?

• Use feedback to figure out 
how!

• What tools do we need to do 
this?

• 3N-6 vibrational modes, 3 
rotational modes - are all 
these needed to understand the 
dynamics?
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Capturing Molecular Dynamics
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Controlling Molecular Dynamics

Econtrol>EHydrogen(5*1011 V/m)



The ‘Coherent’ Control Toolbox

Optical field control

Feedback and
learning algorithms

Amplified ultrafast lasers



Amplified Ultrafast Lasers

About 1 million 
modes lasing and 
locked in phase!

Stretch, amplify and compressStart with ‘modelocked’ ultrafast laser

Gain in amplifier
of over 106

Output
τ= 3*10-14s
Energy = 10-3J
Icontrol(1018W/m2)>>Isun(6*107W/m2)
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E(t)=E0(t)cos(ωt)



Programmable mask which 
shapes E(ω) = |E(ω)|eiφ(ω)

Grating

In Out

Lens

Ultrafast Optical Pulse Shaping



Using a Genetic Learning Algorithm I
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Based on biological model of natural selection

Individuals:

Genetic Code:

Population:

In Nature In Our Lab

Shaped pulses E(t)

Phase at each frequency

Collection of pulse shapes



Using a Genetic Learning Algorithm II

Fitnesses = 1.95, 2.46, …

Crossover, Mutation, etc.

Based on biological model of natural selection

Reproduction:

Survival of
the Fittest:

In Nature In Our Lab

“Operators”
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Control & Dynamics I 
Inversion & Lasing in an atom (Na)
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Strong Fields - Dynamic Resonance

ωo
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Eδ
Stark shift: 2)(tE εδ ∝

• Coupling strength and 
energy shifts are of the same 
order of magnitude -> low 
efficiency
•Absorption -> Emission

Without
Stark 
shift
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R. R. Jones Phys. Rev. Lett. 74, 1091 (1995)



Strong Fields – Dynamic Resonance



Using Feedback to get
Inversion & Lasing in Na

Spontaneous Emission Stimulated Emission

Improvement over unshaped ~ 3 Improvement over unshaped ~ 103



Understanding Single Atom 
Strong Field Dynamics

Phys. Rev. Lett. 96 063603 (2006)

( ) ( ) ))(cos( 0 tttAtE φω +=

Measured Optimal Pulses



Understanding Single Atom 
Strong Field Dynamics

2π

P4s(t),α(t) shaped
P4s(t), α(t) unshaped
I(t) measured

Phys. Rev. Lett. 96 063603 (2006)

α(t) is the ‘atom-laser phase’



Measurement & Calculations 
of the Stimulated Emission 

Experiment Theory

Physical Review A 74, 051403(R) (2006)



Stimulated Emission vs |ψ4s|2

Experiment Theory

Note threshold at 2/3

• Stimulated emission is superfluorescence – locking of 
atomic dipoles

• Modest single atom gains lead to large stimulated gains

|ψψψψ4s|2



Control and Dynamics II -
Molecules



Control in Trifluoroacetone (CH3COCF3)

Unshaped Pulse 

Shaped Pulse 

CF3+

CH3+

R. J. Levis, G. M. Menkir, and H. Rabitz, Science 292, 709 (2001).

D. Cardoza, M. Baertschy, T. Weinacht, J. Chem Phys. 123, 074315 (2005).

Control goal = CF3+/CH3
+
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B

A~170 fs

B~85 fs

Time (fs)
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τ

τ =170 fs

Optimal solution & Pump-
Probe Measurement

( ) ( ) ))(cos( 0 tttAtE φω +=

Laser cooperates with
Molecular dynamics

All other fragments flat

CF3 yield vs pump-probe delay



How Can We Describe the 
Dynamics?

e-

Relaxed

Stiff
+

Potential energy vs C-CF3 bond length

First Ionization, then dissociation



Molecular Relaxation

CH3COCF3
+

CF3 + CH3CO+



Molecular Relaxation II

θ

C-C-O



Enhanced Molecular Ionization

“Diatomic” EI calculation

•Ionization probability increases at Rcritical

•Treat CH3CO+ and CF3 as atomic-like

e-
+

e-

nhνννν + TFA TFA+

CF3
+ +  CH3CO+

nhνννν +   CF3 +  CH3CO+

peaks at critical 
separation (time)



Control Model

1

1. Ionization (launch)

2. Wave packet evolution

3. Enhanced ionization

C-CF3 bond length [Å]

C-C-O angle 
[degrees]

E
ne
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y[

eV
]

J. Chem. Phys. 123 074315 (2005)

Wave packet takes 145-175 fs
to reach EI point.  Pump-

Probe peak is ~170 fs1

2

3



Predictions for ‘Family Members’

CH3COCCl3 CH3COCD3



Fragmentation of Family 
Members

CH3COCD3

CH3COCCl3
CH3COCF3



Results for CH3COCCl3 and 
CH3COCD3

Control Pulse Shape Pump-probe

Chemical Physics Letters 411, 311 (2005)



Similar But Different – Charge     
Transfer

CHBr2
+

CF3
+

CHBr2CO+

H2O+

Pump Probe forCHBr2COCF3

J. of Photochemistry & Photobiology A 180, 277 (2006)



Dynamic Resonance

∆E

CF3 + CHBr2+

States for molecule+laser

CF3
+ + CHBr2

Fragment Separation
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∆E=1.5 eV

Dynamic Resonance during Dissociation

Similar to case of Na 
- but here dynamics are 
driven by nuclear motion



Oscillations & Bond Breaking

GA results:
shaped
unshaped

CH2I+ CH2IBr+

CH2XY,
X,Y =

F, Cl, Br, I



Can We Measure ψ(t)?
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Measurement gives amplitude – Interference gives phase



Preliminary Measurements

φ(t+τ)- φ(t)

30 fs Pump-pump delay



Wave Packet Simulations

τ=40fs



Conclusions & Future Directions

• Can discover and 
understand optimal 
pulse shapes for 
fragmentation

• See systematic 
behavior - ‘photonic
reagents’

• En route to making 
molecular movies –
measuring ψ(t)
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