Time-Modulated Bright Beam Squeezing and Non-Gaussian States of Light

Olivier Pfister Russell Bloomer Raphael Pooser Darou Xie Matthew Pysher Hussain Zaidi James Troupe

Outline

- Define squeezing
 - Frequency Domain Squeezing
 - Time Domain Squeezing
- Time-modulated squeezing
- Current Status
- Future Experiment
 - Quantum Tomography

Squeezing

Squeezed State is where the noise in one quadrature is reduced below the minimum uncertain of a coherent state

Quadrature of light is
$$A_{\theta} = e^{-i\theta}a + e^{i\theta}a^{\dagger}$$

Noise of a quadrature is its variance

For a coherent state it is $(\Delta A_{\theta})^2 = 1$

The Heisenberg Uncertainty Principle is $\Delta X \Delta P \ge 1$

Visual of an Amplitude Squeezed State

Optical Parametric Oscillator

$\omega = \omega_1 + \omega_2$

PBS

$$N_{a} = a^{\dagger}a \approx \alpha^{2} + \alpha\delta X_{a}(t)$$

$$N_{b} = b^{\dagger}b \approx \beta^{2} + \beta\delta X_{b}(t)$$

$$i_{-}(t) \propto N_{a} - N_{b}$$

$$\propto \alpha^{2} - \beta^{2} + \alpha\delta X_{a}(t) - \beta\delta X_{b}(t)$$

$$\tilde{i}_{-}(\Omega) \propto (\alpha^{2} - \beta^{2}) \delta(\Omega) + \alpha\delta \tilde{X}_{a}(\Omega) - \beta\delta \tilde{X}_{b}(\Omega)$$

$$\langle |\tilde{i}_{-}(\Omega)|^{2} \rangle \propto (\alpha^{2} - \beta^{2})^{2} \delta(\Omega)$$

$$+ \alpha^{2} \langle |\delta \tilde{X}_{a}(\Omega)|^{2} \rangle + \beta^{2} \langle |\delta \tilde{X}_{b}(\Omega)|^{2} \rangle$$

$$- 2\alpha\beta \langle \delta \tilde{X}_{a}(\Omega)\delta \tilde{X}_{b}(\Omega) \rangle \rightarrow 1$$

Shot Noise

PBS

Frequency Domain Squeezing

Noise reduction of the signal at each frequency

$$\langle |\tilde{i}_{-}(\Omega)|^2 \rangle = S(\Omega) = 1 - \frac{4d}{(1+d)^2 + (2\pi\Omega)^2}$$

Frequency Domain Squeezing

Time-Domain Squeezing

Time-Domain Squeezing is the noise reduction in time.

Instead of
$$\langle |\tilde{i}(\Omega)|^2 \rangle \rightarrow \langle |i(t)|^2 \rangle$$

This is a measure of total squeezing

Total Squeezing

- Total Squeezing is the noise reduction of light integrated over the bandwidth of the OPO
- The variance of the total squeezing has a limit of $V(X_i) = 1/2$

Time-Modulated Squeezing

- Time-modulated squeezing is squeezing from an OPO that has a modulated pump
- The modulation rate of the pump is equal to the bandwidth of the OPO
- This rate is in between continuous wave and pulsed limits

Why Modulate the Pump?

 \bar{f}/f_{th} = The pump strength Normalized to the threshold

(1) Modulation power = 0

- (2) Modulation power = $0.75 \times \text{pump}$
- (3) Modulation power = $3.0 \times$ pump

H.H. Adamyan and G. Yu. Kryuchkyan, Phys. Rev. A 74 028130 (2006)

Current Status

- Measured Frequency Domain Squeezing of 3 dB
- Replaced the 1% Transmission Output Mirror with a 2% Transmission Mirror
 - Squeezing is proportional to the Transmittivity
 - Threshold is proportional to the square of the Transmittivity
- Ordered new Nonlinear crystal

Quantum Tomography

- Classical Tomography is finding the shape of an object from its shadow
- From balanced homodyne detection we can measure quasi-probability distribution in quantum phase space
- Each measurement is a slice of the quantum state

Gaussian States of Light

- A Gaussian state of light is a state which the quasiprobability distribution can be described by a Gaussian
- For a Coherent state, the probability in ΔX and ΔP are equal, so it is a symmetric Gaussian
- For a Squeezed state, ΔX and ΔP are not equal

Wigner Function

- Quasi-probability distribution
- For a Gaussian, it is never negative
- For a squeezed state the Wigner function is never negative, also

$$\langle q|\hat{U}(\theta)\hat{\rho}\hat{U}^{\dagger}(\theta)|q\rangle = \int_{-\infty}^{\infty} W(q\cos\theta - p\sin\theta, q\sin\theta + p\cos\theta)dp$$

Wigner Function of Coherent and Squeezed Light

$$W_s(q,p) = \frac{1}{\pi} \exp\left(-e^{2r}q^2 - e^{-2r}p^2\right)$$

Negative Wigner **Function**

- A negative Wigner function is one that has a negative value at some position in phase space.
- An example is the Fock states

$$W_n(q,p) = \frac{(-1)^n}{\pi} \exp\left(-q^2 - p^2\right) L_n \left(2q^2 + 2p^2\right)$$

Conclusion

- Explained the current limitation of an OPO
- Method to increase squeezing by modulating the pump
- Current Status
- Explained Future Experiment
- Any Questions

Possible Future Experiments

- Quantum Tomography of a non-gaussian state
- Quantum Teleportation of a Bright Squeezed state

Some Basic Experiments

- Frequency Domain Squeezing
- Time Domain Squeezing

Time Domain Squeezing

Time-Modulated Squeezing

Quantum Teleportation

In Quantum Teleportation, an unknown quantum state can be transferred from Alice to Bob with high fidelity.

Setup

$$\omega = 2\pi \times 563.5 \text{ rad/s} \ \delta lpha$$

 $\lambda = 532 \text{ nm}$

 $\omega_1 \approx \omega_2 \approx 2\pi \times 281.7 \int_{-\infty}^{\text{fad}/s} W(q,p) dp = \psi(q \neq \hat{\rho} \mid q) = 2\pi \times 281.7 \text{ rad} \cdot 1$

 $\lambda_1 = \lambda_2 = 1064 \text{ nm} \qquad \Delta X$ $\omega_1 = \Delta_2 P = 2\pi \times 281.7 \text{ rad/s}$

 $\Delta X \quad {}^{3}\!\Delta P$

Compare with previous Results

Non-Gaussian States of -<u>4</u>20 2 4 Light 0.2 0 -0.2 -0.4 -0.6 -4 -2

• Define Non-gaussain

0

2

4