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Preliminaries and Summary

We work in the Hamiltonian formalism

The new ingredient is provided by the computation of the new
nontrivial form of the ground state wave-functional. This wave-
functional seems to correctly interpolate between asymptotically
free regime and low energy confining physics

With this vacuum state it is possible to (quantitatively)
demonstrate important observable features of the theory:

o Signals of confinement: area law, string tension, mass gap
o Compute the spectrum of glueball states

Very good agreement with available lattice data:

o Large-N string tension is agrees to 1% with lattice data (Bringoltz and
Teper, hep-lat/0611286)

Vo = \ m = 1.2633m  Voumiee = (1.2400 4+ 0.0013) m
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Summary of glueball mass spectrum

= All masses are in units of string tension (courtesy of Barak Bringoltz)
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Motivation (Why is YM,,,, interesting?)

YIv|(1+1) YIv|(2+1) YIVI(3+1)
No propagating Propagating degrees of freedom, | Highly nontrivial;
degrees of freedom; nontrivial. difficult
exactly solvable Exactly solvable? (Polyakov '80)
(‘t Hooft 74)

YM,,1) is superrenormalizable

Coupling constant is dimensionful:  [g7,,] = mass

It is convenient to introduce new massive parameter

2 N
Gy ar N
27

m =
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Motivation (cont’d)

Feynman (1981) argued that (2+1)YM should confine, with mass gap
generated because configuration space is compact

Lattice compact QED in (2+1)D (Polyakov ‘75) — explicit demonstration of
confinement, condensation of magnetic monopoles
Gauge invariant variables:

o Nonlocal — Wilson loops
Equation of motion <«— loop equation (Makeenko & Migdal) «— hard to proceed

o Local — many proposals (Bars, Halpern, Freedman&Khuri, etc)

Karabali, Kim and Nair formalism (hep-th/9705087, hep-th/9804132, hep-
th/0007188)
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Hamiltonian Analysis

Inner product
o Matrix variables, calculation of gauge-invariant volume

Hamiltonian £ in the new wariables

Solve Schrodinger equaton HW¥Y = EW

University of Virginia, April 2007



YM(241y in the Hamiltonian Formalism

We consider (2+1)D SU(N) pure YM theory with the Hamiltonian

§ ‘ ; 1 ;
Hymy=1T+V = /TT (ﬁfMEig T Bz)

9y m
We choose the temporal gauge A,=0
E°. is the momentum conjugate to A%, ; i=1,2, a=1,2,..,N?-1

.0
o2 Quantize: FE! — i
1

Time-independent gauge transformations preserve A,=0 gauge
condition and gauge fields A; transform as

A — gAg™t = 0,997, g€ SU(N)

Gauss’ law implies that observables and physical states are gauge
invariant
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Matrix parameterization

Choose complex coordinates 2z =y — 122, 2z = a1+ 122

1 _ 1
A=A =5 +idy),  A=Ar= (A —idy),

Parameterize A, A as
A=—-0MM™, A= M-1oM?

This parameterization is well-known in 2-dimensional YM context, gauged
WZW models, etc.

A traceless — detM =1

Here M is a complex invertible unimodular matrix M € SL(N, C)

The basic advantage of this parameterization is behavior under
gauge transformations

M- MI=gM
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Matrix parameterization (cont’'d)

= Gauge invariant variables may be written simply as

H = MTM H — Hermitian

Note that H is a local field. Roughly, M may be thought of as
analogous to an open Wilson line, and H as a closed loop

= The Wilson loop evaluates to

&(C) = TrPe’ $o(Adz+Adz) _ . p,—ifodz OHH ™'

J="2oHH""
m

= There is an ambiguity in parameterization
M(z,2) — M(z,2)h'(2) M'(2,2) — h(z)M1(z, 2)

H(z, 2) — h(2)H(z, 2)h'(2)
= One must ensure that all results are holomorphic invariant
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Volume element

The inner product of states in position representation

(112) = [[dAdA] ViV,
Change of variables gives

[dAdA] = det(—DD) dp(M, M)
Haar measur:for SL(N,C)
We can split the SL(N,C) volume element as

dp(M, MT) = dyi(H) dp(U)
Haar for SL(N,C)/SU(N)  Haar for SU(N)

Also the computation of det(—DD) presents no difficulties
det(—DD) ~ e2eadSwaw(H)

Swzw[H] = % fd22 Tr (8H5H_1) + ﬁ fdsl' e“”ATr(H_l8MHH_18,,HH_18>\H)
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Volume element (cont’d)

Finally the inner product of states can be written as overlap
integral with nontrivial measure

(112) = [ du(H) eeaswaw(i) gy,

Comments:
o Matrix elements in YM(2+1) = correlators of a hermitian WZW model;
o Volume of configuration space is finite!

fdM(H) €ZCASWZW(H) < 00

this means, in particular, that ¥ =1 is normalizable

o Note that nontrivial measure factor disappears for U(1) theory. This is
the basic difference in configuration space geometry for Abelian and
non-Abelian theories
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Intuitive argument for mass gap
The Hamiltonian has the form

H=1[[e*FE*+ B*/e

2

[E, B] ~ p (in momentum space) = AFAB ~p, or AFE ~ p/AB

2 AB)2
£ = (H) ~ 5[ |@cdpn + 97

Minimize with respectto AB — (AB)*~p = & ~p. This s
the photon.

For non-Abelian theory

. 2 2
Gaussian = (AB)*~ 2 —= E~m+ L& m = <4< — mass gap

CA 2m
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‘ The Hamiltonian

= It is natural to introduce the WZW current

J 1s a connection for
holomorphic invariance:

J = C_Aagg—l J+ hJh=! + Zhh~?
T

= The YM Hamiltonian can then be rewritten in terms of J

atd) = ( [ 1@ s+ [ o0 57y s ) e 2070

T V
= This has the collective field form (Jevicki & Sakita '‘81) and
‘A4 O  Fabe (2
Qo (2. ) = ca b fabe(T)

2 (x—y)? 7w (z—y)

= This can be rechecked by self-adjointness of H ;v (/)
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The Hamiltonian (cont’d)

Ignore V' for the moment. Then we can take Vg = 1 as a ground
state for /. This is OK since 7"¥, = 0 and since ¥y =1 s
normalizable

As a first excited state (of 1') we may try ¥; = J¢
TJY = mJ®

Note, however, that this is not holomorphically invariant
Therefore we may try ¥y = :0J0J: ~ V
T :0J0J: = 2m :0J0J:

Higher excitations of 1" can (in principle) be constructed using
higher (mass) dimension operators

o Assume that T:0J(A)"OT: = (24 n)m:0J(A)"OT: +...
o Here A = M — covariant Laplacian
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Vacuum wave functional

Include V perturbatively, Pvac = e’

P =——F— [:0J0]: — Z(mg )2 [:0J(A)OT: +0 (=5)

m2cy 3 caA

In principle vacuum state can be constructed order-by-order in
strong coupling expansion

We want to sum up all terms quadratic in .J (B)

0J0.J ~ B2
0J(A)"0J ~ B(D*)"B

University of Virginia, April 2007
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Vacuum Wave-Functional

We want to solve Schrédinger equation to quadratic order in.J¢,
therefore we take the most general gauge invariant ansatz which
contains all terms quadratic in J*

U, = exp (— "

_ : /tr OJK (LYOJ +...]. L=A/m?
2c 42

The (quasi)-Gaussian part of the vacuum wave functional
contains a (non-trivial) kernel K (L) which will be determined by
the solution of Schrdodinger equation

o Thinking of K (L) as Taylor-expandable function shows that
introducing K (L) is just a convenient way to parameterize summed
up perturbation series

K () =X (55)"

tr(0J K (L)DJ) = ¢y tr(DJDJ) + ¢ WOI89D o  1rOI220])

m4
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Vacuum Wave-Functional (cont’'d)

P 1 / tr BK D b+
= = T — ..
0= EP T G | 4m?

University of Virginia, April 2007
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Vacuum Wave-Functional (cont’'d.)

= Asymptotic behavior of the vacuum state:
o In the UV we expect to recover the standard perturbative result

: 1 1
UV = exp (—‘ 5 /B“—Ba)
20y 1 . |

2m
%

K —

o In the IR we expect

1 ‘
Uy exp | - Tr B*
v ( 203y / )

K—-1 a p—=10

University of Virginia, April 2007
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Schrodinger Equation
The Schrodinger equation takes the form
HymWVo = EgVg = [Eu T /”’B(R)B + ] Vo
By careful computation we find the differential equation for the

This may be compared to U(1) theory without matter in which case
we obtain an algebraic equation describing free photons

LK*(L)+1=0

1 2m
K(L) =+ —
D)=t ="
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Vacuum Solution

= The differential equation for kernel is of Riccati type and, by a
series of redefinitions, it can be recast as a Bessel equation.

i) - L CRUVD) + Y (1vT
VLCL(4VL) + Yi(4VI)
= The only normalizable wave functional is obtained for C — oo,

which is also the only case that has both the correct UV behavior
appropriate to asymptotic freedom as well as the correct IR

behavior appropriate to confinement and mass gap!

= This solution is of the form

1 LH(4VI)

=TT
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String tension

The expectation value of the large spatial Wilson loop can be
calculated using IR asymptotic form of vacuum state

(Wr(C) = [[dA] Wr(C) exp (— ! forBQ>

2
9y my™m

This is equivalent to 2d Euclidean YM theory with 2d coupling ¢35, = mg?

This means, in particular, that large spatial Wilson loops obey
area law with string tension (Karabali, Kim and Nair, hep-th/9804132)

C .. .
OR = Jyar % Cr — Casimir for representation R

Agrees to 1% with large-N lattice string tension (Bringoltz and
Teper, hep-lat/0611286)

Vo = \ m == 1.2533m VO attice = (1.2409 £ 0.0013) m
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Inverse Kernel
Elementary (B"(x) B'(y)) correlator is
(B*(x) B'(y)) ~ 6K~ (Jx —y))

Using the standard Bessel function identities we may expand
where the y, , are the ordered zeros of J,(u).

Ji(u) 4 =~ 1
1(L)—+2uz : ;
Jo(u) w ut =95,

n=1

Inverse kernel is thus (L =p2/4m?)

1‘7'2 ,n T?l

K'p)=1+-= Z +U2 M, =

n=1

o
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Inverse Kernel (cont’d.)

M, can be interpreted as constituents out of which glueball
masses are constructed

M; = 2.568m My =4209m M; =5810m

At asymptotically large spatial separations | — 4| — « inverse
kernel takes the form '

University of Virginia, April 2007 23



Glueball masses

To find glueball states of given space-time quantum numbers, we
compute equal-time correlators of invariant probe operators with
appropriate JF¢

For example, for 0** states we take tr(B*) as a probe operator
and compute

(tr(B)atr(B)y) ~ K~*(jx~y)

At large distance, we will find contributions of single particle poles

tr(B) tr(B),) ~ My, My, )32 e~ M tMm) o=y
B~ Y (k)

My++ = Mi+ M, =514m

M 0+ = M 1+ M o = 6.78m

Mot = My + M3 =8.38m

Motsese = My+ My =99Tm
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O0++ Glueballs

For 2+1 Yang-Mills, the “experimental data” consists of a number
of lattice simulations, largely by M. Teper et al (hep-lat/9804008,
hep-lat/0206027)

The following table compares lattice results for 07" glueball states
with analytic predictions. All masses are in units of the square
root of string tension

State Lattice, N — > Sugra Our prediction  Diff, %
0t 4.065 + 0.055 4.07(input) 4.098 0.8
0++* 6.18+0.13 7.02 5.407 12.5
Ot 7.99 +0.22 9.92 6.716 16
(F 0.44+0.38 ° 12.80 7.994 15
(F —— 15.67 9.214 ——

University of Virginia, April 2007 25



0" Glueballs (cont’d.)

There are no adjustable parameters in the theory; the ratios of

My++ to VO are pure numbers

We are able to predict masses of 0** resonances, as well as the
mass of the lowest lying member

Results for excited state masses differ at the 10-15% level from
lattice simulations.

The table below gives an updated comparison with relabeled
lattice data

State Lattice, N — oo Our prediction Diff, %
0++ 4.065 4+ 0.055 4.098 0.8
O+t 6.18 £0.13 5.407 ——
O+t 6.18 £0.13 6.716 ——
(0 R 7.99 +0.22 7.994 0.05
(R 9.44 4+ 0.38 9.214 2.4
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0 Glueballs

For O glueballs we compute

(Tr (0J0JOJ), Tr (0J0.J0J), ) ~

I 64(2r)e —y))7

n,m, k=1

Masses of O resonances are the sum of three constituents :
M +M_+M,

The following table compares analytic predictions with available
lattice data. All masses are in units of the /o

State | Lattice, N — oo Sugra Our prediction  Diff,%
07~ 5.91 £ 0.25 6.10 6.15 4
0~ * 7.63 £0.37 9.34 7.46 2.3
0" 8.96 + 0.65 12.37 8.73 2.5

University of Virginia, April 2007
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Spin—-2 States

Similarly, analytic
predictions for 2** states
are compared with
existing lattice data in
the table above

By parity doubling,
masses of J¥" and J°*
resonances should be the
same which is not the
case with lattice values
for 2*** and 2 **. This
indicates that apparent
7-14% discrepancy may
be illusory.

An updated comparison
with relabeled lattice
data is given in the table
below

State | Lattice, N — oo Our prediction  Difference, %
2Tt 6.88 £0.16 6.72 2.4
-t 6.89 +0.21 6.72 2.5
A 8.62 £ 0.38 7.99 7.6
2T 9.22+0.32 7.99 14
QHes 10.64+0.7° 0.26 13
QT —— 10.52 ——
State | Lattice, N — oo Our prediction  Difference. %
A 6.88 +0.16 6.72 2.4
AR 8.6240.38 7.99 7.6
PR 9.22+0.32 9.26 0.4
AR 10.6 £ 0.7 10.52 0.8
University of Virginia, April 2007 28



Spin-2 States (cont'd.)

Finally, the table below summarizes available lattice data for 2*
states and compares it to analytic predictions

State | Lattice, N — oo Our prediction  Difference, %
21 8.04 £+ 0.50 8.76 8.6
277 7.89 +0.35 8.76 10.4
T 9.97 +£0.91 10.04 0.7
2777 9.46 + 0.66 10.04 5.6
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Summary of glueball mass spectrum

All masses are in units of string tension (courtesy of Barak Bringoltz)
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Higher Spin States and Regge Trajectories

It is possible to generalize our
results for higher spin states

For example, the masses of J** 12| '
resonances with even J are - /
10 F /i /l
Myspn = Myjiy +Mjjiisn , -/

Similarly, the masses of J~

resonances with even J are J
. . . . 4+ N l O
Mjy-—n =My + Mjop + Myjoti4n s

It is possible to draw nearly linear
Regge trajectories. Obunw - u - W

o Graph on the right represents a Chew- T T S
Frautschi plot of large N glueball 0 5 100 10 200 250 300 350 400
spectrum. Black boxes correspond to J** M5
resonances with even spins up to J=12
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Approximate Degeneracy of Mass Spectrum

The Bessel function is essentially 1 Mn*Mn
sinusoidal and so its zeros are
approximately evenly spaced (better for
large n)

“band”

Thus, the predicted spectrum has M1+Man.1

approximate degeneracies, e.g.

My« =My + Mz =8.38m
My++ = My + My =8.42m

The spectrum is organized into “bands”
concentrated around a given level (which
are well separated) MM

Mass, M

n-1

At each level one finds more and more
spin states

“pband”

We believe this is the basic manifestation My+Man_2
of QCD string
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‘ Quarks

92 52 1 _ .
= — : “ B b(—iv'D; + M) =H H
H 2/5‘4?34—2?2/55 -|-/"‘y(?.D,‘|‘ )Y g Ty

= Schrodinger representation for fermions (Floreanini and Jackiw, 88)

] vi(E) = %[HT(EJ -

5
59(5)]

| 5
NI

v(@) =

= Vacuum ansatz

1

U, ="w T =1"T,= EXP(_Qg?m

/ Tr(B (K(L)) B)] exp( f 01 (1) [K 5 (D:)]y—0(z))

T,y
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Quarks (cont’'d)

Free fermions

"‘Ir'[:li-"lf -+ ":r'[:l’:r'.épi

) == an

Physical interpretation
K(k) = v(—k)oT(—k) — w(k)ul (k)

d:ll " y ) & - 1
() = [ fé—[biﬁ]'u{p] + d' (—p)v(—p)]eP”
J V2w

QCD in (1+1)D (‘t Hooft model, 74)

o Rainbow diagrams

o itis possible to reproduce
Bars-Green equation (1977)

|
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q* k= pr kE gk

1p}’5+ my, + %fﬁ; [u(Bht (B) = v(=R) (-R)] }u(,ﬂhE{p}u[ﬁ}
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Outlook

Results are very encouraging but many open questions remain

Extensions in (2+1)D:
o Meson and baryon spectrum*

o Finite temperature*

o Scattering amplitudes

Extension to (3+1)-dimensional YM*

o It is possible to generalize KKN (I. Bars) formalism to 3+1 dimensions:
L. Freidel, hep-th/0604185.

University of Virginia, April 2007 35



