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Preliminaries and Summary

� We work in the Hamiltonian formalism

� The new ingredient is provided by the computation of the new 
nontrivial form of the ground state wave-functional. This wave-
functional seems to correctly interpolate between asymptotically
free regime and low energy confining physics

� With this vacuum state it is possible to (quantitatively) 
demonstrate important observable features of the theory:

� Signals of confinement: area law, string tension, mass gap

� Compute the spectrum of glueball states 

� Very good agreement with available lattice data:

� Large-N string tension is  agrees to 1% with lattice data (Bringoltz and 
Teper, hep-lat/0611286)
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Summary of glueball mass spectrum

� All masses are in units of string tension (courtesy of Barak Bringoltz)
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Motivation (Why is YM(2+1) interesting?)

� YM(2+1) is superrenormalizable

� Coupling constant is dimensionful:

� It is convenient to introduce new massive parameter

Highly nontrivial;

difficult

Propagating degrees of freedom, 
nontrivial.

Exactly solvable? (Polyakov ’80)

No propagating 
degrees of freedom; 
exactly solvable 

(‘t Hooft ’74)

YM(3+1)YM(2+1)YM(1+1)
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Motivation (cont’d)

� Feynman (1981) argued that (2+1)YM should confine, with mass gap
generated because configuration space is compact

� Lattice compact QED in (2+1)D (Polyakov ‘75) – explicit demonstration of 
confinement, condensation of magnetic monopoles

� Gauge invariant variables:

� Nonlocal – Wilson loops
� Equation of motion           loop equation (Makeenko & Migdal)         hard to proceed

� Local – many proposals (Bars, Halpern, Freedman&Khuri, etc)
� Karabali, Kim and Nair formalism (hep-th/9705087, hep-th/9804132, hep-

th/0007188)
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Hamiltonian Analysis

� Inner product
� Matrix variables, calculation of gauge-invariant volume

� Hamiltonian       in the new wariables

� Solve Schrodinger equation
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YM(2+1) in the Hamiltonian Formalism

� We consider (2+1)D SU(N) pure YM theory with the Hamiltonian

� We choose the temporal gauge A0=0

� E
a
i is the momentum conjugate to A

a
i ; i=1,2,  a=1,2,…,N

2-1

� Quantize: 

� Time-independent gauge transformations preserve A0=0 gauge 
condition and gauge fields Ai transform as

� Gauss’ law implies that observables and physical states are gauge 
invariant
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Matrix parameterization

� Choose complex coordinates

� Parameterize           as

This parameterization is well-known in 2-dimensional YM context, gauged 

WZW models, etc.

� Here       is a complex invertible unimodular matrix 

� The basic advantage of this parameterization is behavior under 
gauge transformations 
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Matrix parameterization (cont’d)

� Gauge invariant variables may be written simply as

Note that      is a local field. Roughly,       may be thought of as 

analogous to an open Wilson line, and       as a closed loop

� The Wilson loop evaluates to

� There is an ambiguity in parameterization 

� One must ensure that all results are holomorphic invariant
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Volume element

� The inner product of states in position representation

� Change of variables gives

� We can split the                volume element as

� Also the computation of                 presents no difficulties
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Volume element (cont’d)

� Finally the inner product of states can be written as overlap 
integral with nontrivial measure 

� Comments:

� Matrix elements in YM(2+1) = correlators of a hermitian WZW model;

� Volume of configuration space is finite!

this means, in particular, that             is normalizable

� Note that nontrivial measure factor disappears for U(1) theory. This is 
the basic difference in configuration space geometry for Abelian and 
non-Abelian theories
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Intuitive argument for mass gap

� The Hamiltonian has the form

� Minimize with respect to                                        . This is 
the  photon.

� For non-Abelian theory
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The Hamiltonian

� It is natural to introduce the WZW current

� The YM Hamiltonian can then be rewritten in terms of J

� This has the collective field form (Jevicki & Sakita ‘81) and

� This can be rechecked by self-adjointness of 
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The Hamiltonian (cont’d)

� Ignore     for the moment. Then we can take             as a ground 
state for     . This is OK since                 and since      is   
normalizable

� As a first excited state (of     ) we may try

Note, however, that this is not holomorphically invariant

� Therefore we may try 

� Higher excitations of     can (in principle) be constructed using 
higher (mass) dimension operators

� Assume that

� Here 
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Vacuum wave functional

� Include     perturbatively,

� In principle vacuum state can be constructed order-by-order in 
strong coupling expansion

� We want to sum up all terms quadratic in  



University of Virginia, April 2007 16

Vacuum Wave-Functional

� We want to solve Schrödinger equation to quadratic order in    ,

therefore we take the most general gauge invariant ansatz which 

contains all terms quadratic in 

� The (quasi)-Gaussian part of the vacuum wave functional 

contains a (non-trivial) kernel which will be determined by 

the solution of Schrödinger equation

� Thinking of          as Taylor-expandable function shows that 

introducing          is just a convenient way to parameterize summed 

up perturbation series
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Vacuum Wave-Functional (cont’d)
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Vacuum Wave-Functional (cont’d.)

� Asymptotic behavior of the vacuum state:

� In the UV we expect to recover the standard perturbative result

� In the IR we expect
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Schrödinger Equation

� The Schrödinger equation takes the form

� By careful computation we find the differential equation for the
kernel K(L)

� This may be compared to U(1) theory without matter in which case 
we obtain an algebraic equation describing free photons  
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Vacuum Solution

� The differential equation for kernel is of Riccati type and, by a 
series of redefinitions, it can be recast as a Bessel equation.

� The only normalizable wave functional is obtained for           , 
which is also the only case that has both the correct UV behavior 
appropriate to asymptotic freedom as well as the correct IR 

behavior appropriate to confinement and mass gap!

� This solution is of the form

∞→C
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String tension

� The expectation value of the large spatial Wilson loop can be 
calculated using IR asymptotic form of vacuum state

� This is equivalent to 2d Euclidean YM theory with 2d coupling

� This means, in particular, that large spatial Wilson loops obey 
area law with string tension (Karabali, Kim and Nair, hep-th/9804132)

� Agrees to 1% with large-N lattice string tension (Bringoltz and 
Teper, hep-lat/0611286)
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Inverse Kernel

� Elementary                  correlator is

� Using the standard Bessel function identities we may expand 
where the γ2,n are the ordered zeros of J2(u).

� Inverse kernel is thus (L @ p2/4m2)
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Inverse Kernel (cont’d.)

� Mn can be interpreted as constituents out of which glueball 
masses are constructed

� At asymptotically large spatial separations                 inverse 
kernel takes the form
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Glueball masses

� To find glueball states of given space-time quantum numbers, we 
compute equal-time correlators of invariant probe operators with 
appropriate JPC

� For example, for 0++ states we take            as a probe operator 
and compute

� At large distance, we will find contributions of single particle poles
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0++ Glueballs

� For 2+1 Yang-Mills, the “experimental data” consists of a number 
of lattice simulations, largely by M. Teper et al (hep-lat/9804008, 
hep-lat/0206027)

� The following table compares lattice results for 0++ glueball states 
with analytic predictions. All masses are in units of the square
root of string tension
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0++ Glueballs (cont’d.)

� There are no adjustable parameters in the theory; the ratios of 

M0++ to       are pure numbers

� We are able to predict masses of 0++ resonances, as well as the 
mass of the lowest lying member

� Results for excited state masses differ at the 10-15% level from 
lattice simulations. 

� The table below gives an updated comparison with relabeled 
lattice data

σ



University of Virginia, April 2007 27

0
--
Glueballs

� For 0
–-
glueballs we compute

� Masses of 0
--
resonances are the sum of three constituents : 

Mn+Mm+Mk

� The following table compares analytic predictions with available
lattice data. All masses are in units of the    σ
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Spin–2 States

� Similarly, analytic 
predictions for 2±+ states 
are compared with 
existing lattice data in 
the table above

� By parity doubling, 
masses of J++ and J-+

resonances should be the 
same which is not the 
case with lattice values 
for 2++* and 2-+*. This 
indicates that apparent 
7-14% discrepancy may 
be illusory.

� An updated comparison 
with relabeled lattice 
data is given in the table 
below
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Spin–2 States (cont’d.)

� Finally, the table below summarizes available lattice data for 2±-

states and compares it to analytic predictions
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Summary of glueball mass spectrum

� All masses are in units of string tension (courtesy of Barak Bringoltz)
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Higher Spin States and Regge Trajectories

� It is possible to generalize our 
results for higher spin states

� For example, the masses of J
++

resonances with even J are

� Similarly, the masses of J
--

resonances with even J are

� It is possible to draw nearly linear 
Regge trajectories.
� Graph on the right represents a Chew-

Frautschi plot of large N glueball 
spectrum. Black boxes correspond to J++

resonances with even spins up to J=12
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Approximate Degeneracy of Mass Spectrum

� The Bessel function is essentially 
sinusoidal and so its zeros are 
approximately evenly spaced (better for 
large n)

� Thus, the predicted spectrum has 
approximate degeneracies, e.g.

� The spectrum is organized into “bands” 
concentrated around a given level (which 
are well separated)

� At each level one finds more and more 
spin states

� We believe this is the basic manifestation 
of QCD string
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Quarks

� Schrodinger representation for fermions (Floreanini and Jackiw, 88)

� Vacuum ansatz
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Quarks (cont’d)

� Free fermions

� Physical interpretation

� QCD in (1+1)D (‘t Hooft model, 74)
� Rainbow diagrams

� it is possible to reproduce

Bars-Green equation (1977)
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Outlook

� Results are very encouraging but many open questions remain

� Extensions in (2+1)D:

� Meson and baryon spectrum*

� Finite temperature*

� Scattering amplitudes

� Extension to (3+1)-dimensional YM*

� It is possible to generalize KKN (I. Bars) formalism to 3+1 dimensions: 
L. Freidel, hep-th/0604185.


