Semileptonic Decays at CLEO: Search for Two Gluon Couplings in $D \rightarrow \eta'$

Richard C. Gray

Cornell University

Laboratory for Elementary-Particle Physics

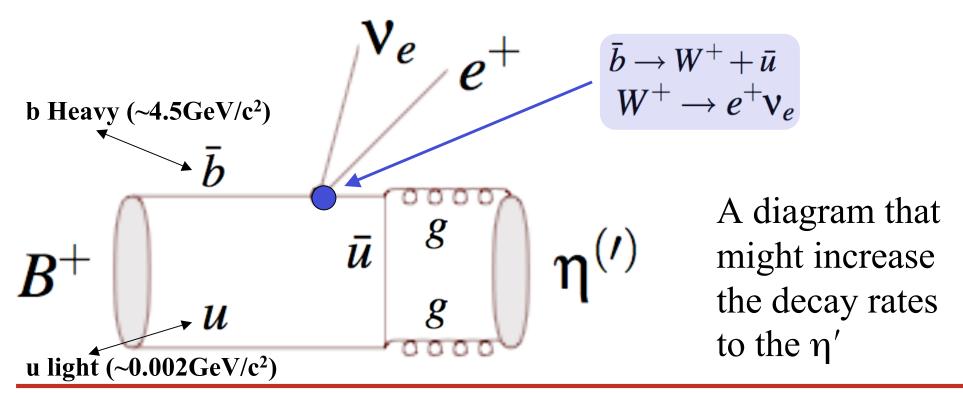
The η' Problem

1997 CLEO Measurements of: B→Xη′

- -Naïve 97 Expectation: $\frac{Br(B^+ \to \eta' K^+)}{Br(B^+ \to \eta_c K^+)} = 3 \times 10^{-4}$
- -Measured Value: $\frac{Br(B^+ \to \eta' K^+)}{Br(B^+ \to \eta_c K^+)} = 8.7 \times 10^{-2}$
- $B^0 \rightarrow \eta' K^0$
 - Measured: (68±4)x10⁻⁶
 - Factorization Prediction: (20-40)x10⁻⁶
- Are we forgetting a diagram?

The QCD Anomaly

- What is η' ? What is η ?
 - The physical η' and η mesons are combinations of the quark quantum states η^8 (octet) and η^0 (singlet)
 - $-\eta$ mostly octet
 - $-\eta'$ mostly singlet
- Anomalous Contribution to Axial vector Current


Involved in calculating particle decays

Couplings to 2 gluons $tr[\tau^a]tr[t^ct^d]$

Symmetry Factor 0 for η^8 , 1 for η^0

Semileptonic Decays

- Purely hadronic decays difficult to calculate.
- Semileptonic decays isolate B to η and B to η' .

Results of B Semileptonic

- What did I find in the B System?
 - Pre-thesis project.
 - Measurement:
 - Data: Br(B $\to \eta l \nu$): (0.44 ±0.23_{stat} ±0.11_{syst})x10⁻⁴
 - Data: Br(B $\to \eta$ 'lv): $(2.66 \pm 0.80_{\text{stat}} \pm 0.57_{\text{syst}}) \times 10^{-4}$
 - Theory For No gluon couplings:
 - Theory: Br(B $\to \eta l \nu$): (0.4)x10⁻⁴
 - Theory: Br(B $\to \eta$ 'lv): (0.2)x10⁻⁴

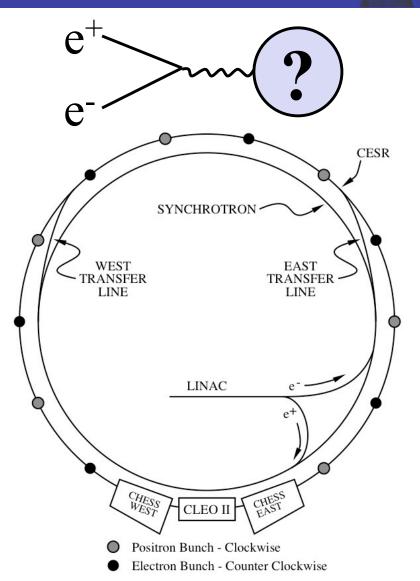
η Consistent

η' 10x Prediction!

Can we see it in D?

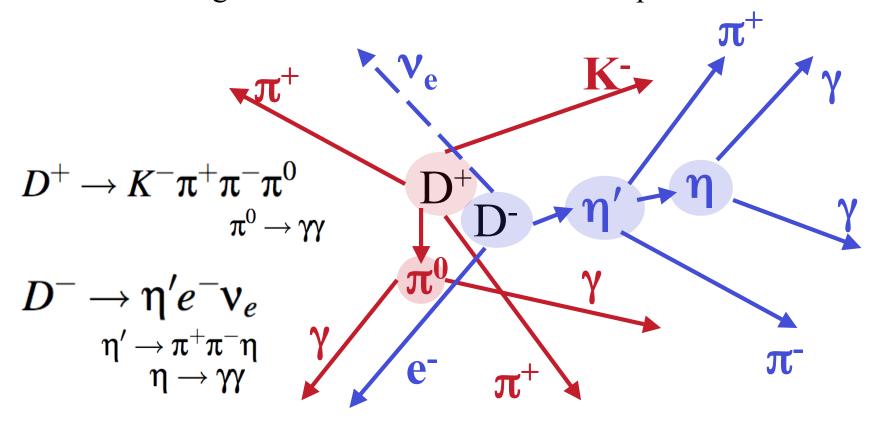
Still Room

- D meson Similar to B meson:
 - A heavy quark (b,c) paired with light quark (u,d)
 - Expect less enhancement, but idea the same.
- Is it possible to be in D too?
 - Previous Upper Limit (1/3 full data set):
 - Data (90% limit): $Br(D \rightarrow \eta' l \nu)$: $< (0.32)x10^{-3}$
 - Theory For No gluon couplings:
 - Theory: Br(B $\to \eta$ 'lv): (0.16)x10⁻³


Thesis: Look for Evidence in the D decays

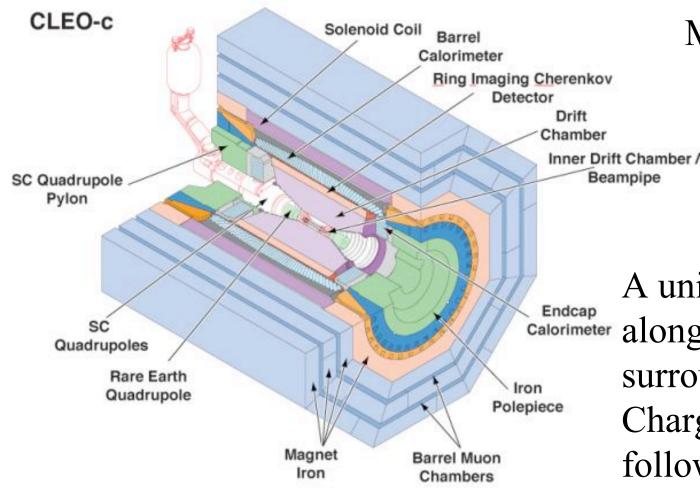
CESR/CLEO Ect.

• How do we make these measurements?



- CESR: Cornell Electron Storage Ring
- Accelerates bunches of electrons and positrons to equal Energy.
- Stores them in a stable orbit.
- Produces controlled collisions.
- Creates pairs of heavy mesons (B+B-, D+D-) nearly at rest.

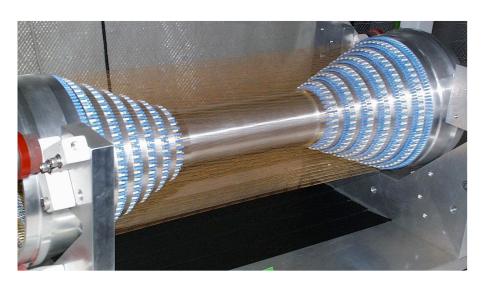
What do the D's Look Like?

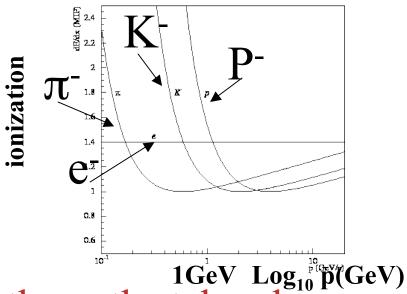

- Consider two D's at rest by one another.
 - Signal D (the decay we're looking for)
 - "Other Side" D (random hadronic decay)
 - The daughters of the two will be mixed up

CLEO

- •General purpose detector
- •High Hermiticity

After 28 years, Last event taken:

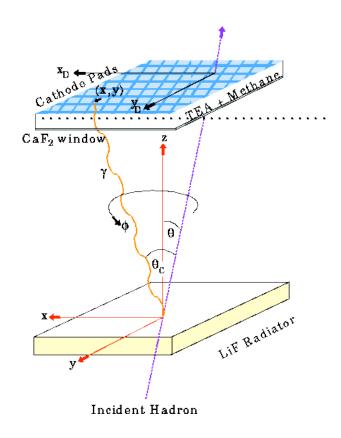

March 4, 2008


A uniform B field along beam axis surrounds detector. Charged Particles follow a Helix path

Drift Chambers

• CLEO-C has 2 drift chambers. (Hi-res Inner, Lo-Res outer)

- The drift chambers "track" the paths taken by charged particles.
 - The curvature of the "track" trajectory gives us the momentum
 - The magnitude of the ionization hints at the mass.


May 4, 2008 Cornell LEPP Template

Ring Image Cherenkov Detector

- Particles moving faster than light in a medium produce Cherenkov radiation.
- The angle between particle and photon related to particle speed.
- Helps to identify "tracks"

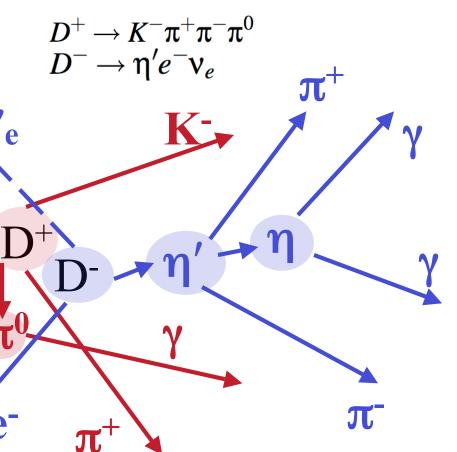
$$cos(\theta_c) = \frac{1}{n(v/c)}$$

Crystal Calorimeter

- Neutral Particles and Photons deposit energy in the calorimeter and create "showers"
 - Covers 98% detector volume
 - 7800 thallium-doped Cesium Iodide (CsI) crystals.
 - Energy Resolution:

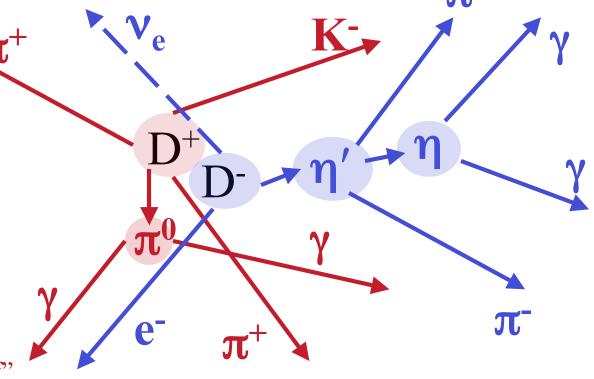
$$\sigma_E/E = 0.35/E_{GeV}^{3/4} + 1.9 - 0.1E_{GeV}$$

- Tracks will also deposit energy
 - May create a "fake" photon



My Goal

- Measure the D $\rightarrow \eta$ 'ev branching fraction to 3σ or better uncertainty.
 - Two Different Methods in use for semileptonic D decays:
 - D-Tagging method
 - Used for previous upper limit.
 - PRO: Low Systematic Uncertainties, Low backgrounds
 - CON: Low detection efficiency (not taking full advantage of data)
 - Neutrino Reconstruction method.
 - Used to study semileptonic B decays.
 - PRO: High detection efficiency (taking full advantage of data)
 - CON: More backgrounds, More sources of Systematic uncertainty.
 - Start with Neutrino Reconstruction, make improvements inspired by D-Tag's.


D-Tagging

- Search for specific D hadronic decay candidates:
 - Well known, high-res decay (mostly tracks):
 - K_sπ, Kππ, Kπππ⁰, K_sππ⁰, K_sπππ, KKπ
- Pick Best : (Example)
 - $K^{-}\pi^{+}\pi^{+}$
 - $-\mathbf{K}^{-}\boldsymbol{\pi}^{+}\boldsymbol{\pi}^{+}$
 - $-\boxed{K^{\text{-}}\pi^{\text{+}}\pi^{\text{+}}\pi^{0}}$
- Look for e⁻π⁺π⁻γγ
 - $-\mathbf{M}_{\gamma\gamma}$ consistent η
 - $-M_{\pi\pi\gamma\gamma}$ consistent η'
- Ignore extra tracks/showers
- Divide by #tags for Br γ

Neutrino Reconstruction

- Measure the Missing Energy and Momentum:
 - Look for any event consistent with there being 1 neutrino.
 - As long as "Other side" hadronic, it doesn't matter
- $E_{miss} = E_{cm} E(K^-, \pi^+, \pi^+, \gamma, \gamma, \pi^+, \pi^-, \gamma, \gamma, e^-)$
- $P_{\text{miss}} = P_{\text{cm}} P(K^-, \pi^+, \pi^+, \gamma, \gamma, \pi^+, \pi^-, \gamma, \gamma, e^-)$
- Quality cuts:
 - Net charge = 0
 - Number Leptons=1
 - Missing Mass² ≈ 0
- Look for $(e^- \text{ or } e^+)\pi^+\pi^-\gamma\gamma$
 - $M_{\gamma\gamma}$ consistent η
 - $M_{\pi\pi\gamma\gamma}$ consistent η'
 - With Neutrino makes D
- Extra Tracks/Showers?
 - Exclude tracks "Trkman"
 - Exclude showers "splitoff"

Tag/Neutrino B vs. D

• Tagging:

- For B Decays ~5% of events used.
- − For D Decays ~22% of events used.

• Neutrino Reconstruction:

- For B Decays ∼80% of events used.
- For D Decays ~50% of events used.

Previous CLEO D→η'eν

- D-Tag analysis was previously done on 1/3 data set
 - Only used 2 η' decay modes:

```
    η'→π<sup>+</sup>π<sup>-</sup>η; η→γγ
    η'→π<sup>+</sup>π<sup>-</sup>η; η→π<sup>+</sup>π<sup>-</sup>π<sup>0</sup>
```

- 1/3 Full Data set (all that was available at the time)
- No signal found.
- Even with full data set a 3σ measurement of branching fraction probably not possible using the tag method.

No Decay Mode Left Behind

η' Decay Modes			
η' →γγ	2.12%		
η' → ργ Mρ(1) 0.30-0.54GeV Mρ(2) 0.54-0.66GeV Mρ(3) 0.66-0.78GeV Mρ(4) 0.78-0.90GeV	29.5% 1.4% 4.3% 15.5% 8.1%		
 η' →ππη η' →γγ η' →πππ⁰ η' →π⁰π⁰π⁰ 	44.3% 17.5% 10.0% 14.4%		
$ \eta' \rightarrow \pi^0 \pi^0 \eta $ $ \eta' \rightarrow \gamma \gamma $ $ \eta' \rightarrow \pi \pi \pi^0 $ $ \eta' \rightarrow \pi^0 \pi^0 \pi^0 $	20.9% 8.2% 4.7% 6.8%		

η	D	ecay	M	lod	les
---	---	------	---	-----	-----

✓ η →γγ	39.4%
$ \checkmark \eta \rightarrow \pi\pi\pi^0$	22.6%

$$\eta \to \pi^0 \pi^0 \pi^0$$
 32.5%

✓ = included in Jan 2007
Tagged analysis

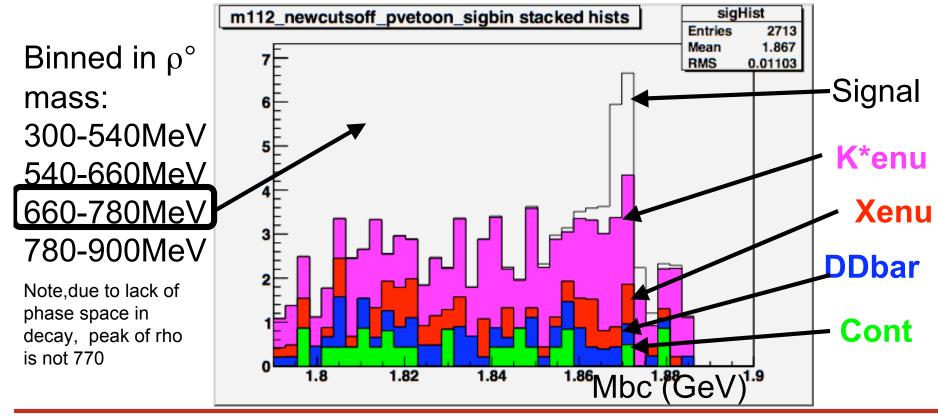
At this point all listed modes are reconstructed in untagged analysis until proven worthless.

Expected Neutrino Reconstruction Results

MC Studies:

- Assume Previous upper limit for answer.
- Tune Cuts to optimize Figure of Merit (FOM) in "signal bin"
 - "signal bin" = $|M_{BC}-M_{D}| < 0.015 \text{ GeV}$

$$FOM = rac{S^2}{S+B} \quad M_{BC} = \sqrt{E_{beam}^2 - |ec{p}_e + ec{p}_{miss} + ec{p}_{\eta'}|^2}$$

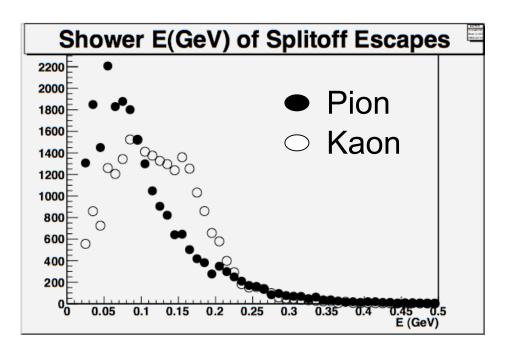

• We only had $N_{\sigma}=2.8$

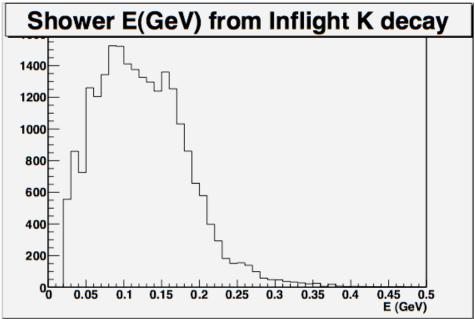
The number of standard deviations the signal is above backgrounds.

$$N_{\sigma} = \sqrt{\sum_{i} \frac{S_i^2}{S_i + B_i}}$$

Quest for 30

Strategy: Focus on difficult but high BR $\eta' \rightarrow \rho^{\circ} \gamma$, use lessons learned from this on everything else.



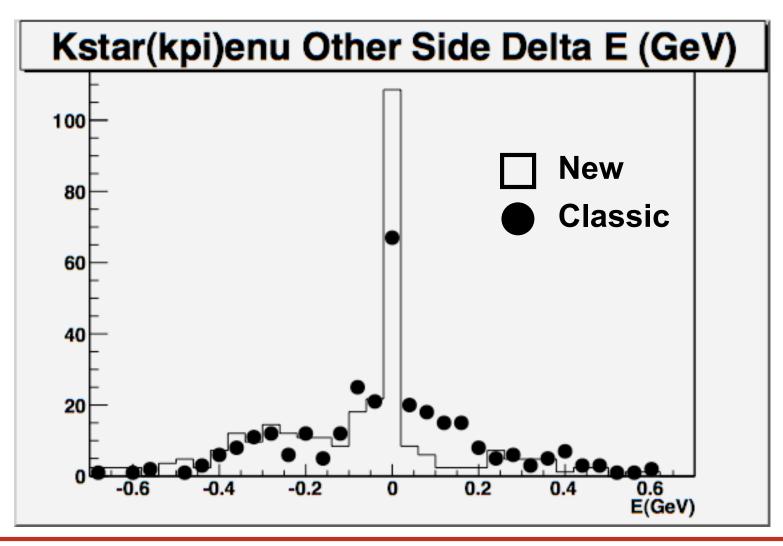

K*ev background:

Can't distinguish: $[K\pi\pi][K^*(k\pi)ev]$ from $[?][\eta'(\rho^\circ\gamma)ev]$

Poor Neutrino Resolution from Extra Photons:

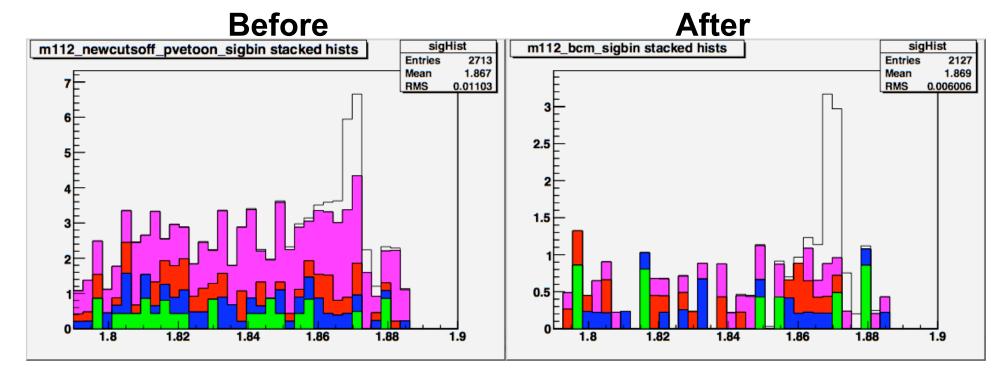
- "Splitoff Escapes" (15% from K, 5% from Pi)
- Inflight K -> X pi0 (more than 5%, not inc collisions)
- *Almost* impossible to cut out

Golden Algorithm


- Main Goal: Remove extra showers
- Use Modified "Golden π^0 " Idea (Chulsu & Nadia)
 - Was contender to replace the "Splitoff" algorithm.
 - "Splitoff" worked better, so this was abandoned.
- Create List of π^0 candidates
 - Use all showers far from tracks.
- Pick π^0 candidates with the smallest |pull|
 - Pull = $(M_{recon}-M_{true})/\sigma_{M}$
 - Use each shower only once
- π^0 with |pull| > 3.0 not included.

New Neutrino Algorithm

Generic "Other Side" D Reconstruction.


- Exclude Signal D tracks, showers
- Use Each Shower, track, K_s only once:
 - "Splitoff" App. Show.,
 - Trkmn Tracks,
 - • $K_S \rightarrow \pi\pi$ candidates
- Assign Showers to X→γγ Candidates
 - •Best |pull| π^0 (-5.0 to 3.0)
 - •Best pull π^0 or η (-25.0 to 15.0)
- •Assign best K_S→ππ
- •Remaining tracks assigned π^+ or K⁺ (RICH, Ionization)
- •Deal With Extra Showers:
 - •If K[±], veto extra showers <0.25GeV
 - •If no K[±], veto extra showers < 0.10 GeV
- Sum Error matrices to calculate uncertainty in M_D

Improvement over Classic Neutrino Reconstruction

K*enu Veto:

- Calculate: $D_{pull} = (M_D 1.869 \text{GeV})/\sigma_D$
- Find Best D_{pull} out of $(\eta', \eta, \rho, \rho^0, \pi, \pi^0, k, k_s, k^*)ev$
 - (|vee|<0.15 && |dele|<0.15)
- Require: $D^2_{pull}(\eta'ev; \eta' \rightarrow \rho^{\circ} \gamma) D^2_{pull}(best) < 9$
- Also remove "wrong sign K" Events
 - Other Side Kaons should have same charge as signal lepton
- More Restrictive other side track cuts (if not part of $K_S \rightarrow \pi\pi$)

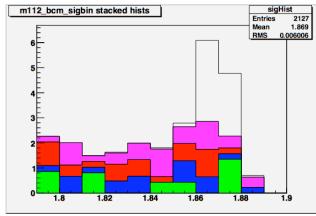
- Perform New Neutrino Reconstruction analysis.
- Bin results into H (high quality) L (low quality)
 - H bin:
 - |Dpull| < 3.0,
 - No un-vetoed Extra Showers
 - M_{BC} 1.8629GeV to 1.8789GeV
 - All π ° and η pull: -5.0 to 3.0
 - L bin: everything else

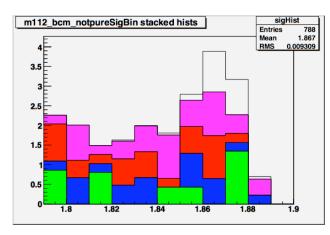
Why Bin?

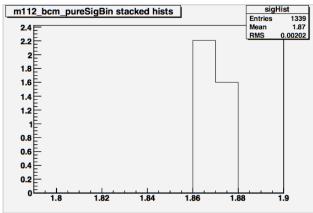
• Imagine you have 14 Signal Events Over 14 Background.

$$N_{\sigma}^2 = \frac{S^2}{S+B} = \frac{14^2}{14+14} = 7$$

• If you had a cut that removed all of your background, and half of your signal?


$$N_{\sigma}^2 = \frac{S_1^2}{S_1 + B_1} + \frac{S_2^2}{S_2 + B_2} = \frac{7^2}{7} + \frac{7^2}{7 + 14} = 9.33$$


New Binning (High/Low Quality)



L Bin

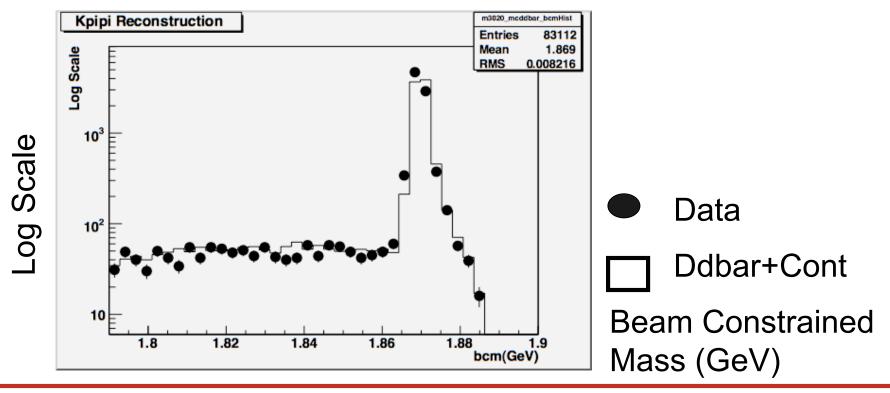
H Bin

M_{BC} (GeV)

With all the improvements N_{σ} goes from 2.8 to 3.8

Good News/ Bad News

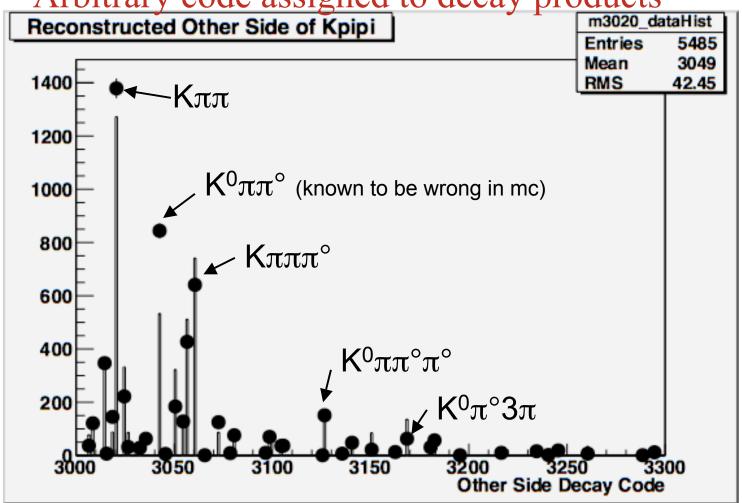
Bad News First.


 The Cost of this improvement is higher sensitivity to D hadronic branching fractions.

Good News:

 The new algorithm can be used to measure those branching fractions.

Not just for Neutrinos


- Neutrino reconstruction works with or without the neutrino. (Num Electron =0, low missing Energy)
- Replace Xev with $K\pi\pi$, use same algorithm on other side.

Other Side D Decays

• Use High Quality Bin like a generic tag.

Arbitrary code assigned to decay products

Cornell University Laboratory for Elementary-Particle Physics Solving for Branching fractions

- Normalize MC to data using known kππ fraction
- Get generator level event information
- Create cross feed matrix. Invert, and solve for mode weights.

May also have systematics wrapped into it

$$\begin{pmatrix} R_1G_1 & R_1G_2 & \cdots & R_1G_N \\ R_2G_1 & R_2G_2 & \cdots & R_2G_N \\ \cdots & \cdots & \cdots & \cdots \\ R_NG_1 & R_NG_2 & \cdots & R_NG_N \end{pmatrix} \begin{pmatrix} W_1 \\ W_2 \\ \cdots \\ W_N \end{pmatrix} = \begin{pmatrix} D_1 \\ D_2 \\ \cdots \\ D_N \end{pmatrix} - \begin{pmatrix} C_1 \\ C_2 \\ \cdots \\ C_N \end{pmatrix}$$

$$\mathbf{R_iG_k} = \text{ N true } \mathbf{k} \text{ recon as i } \mathbf{D_k} = \text{ N data in mode k}$$

$$\mathbf{W_k} = (\text{true Br})_{\mathbf{k}}/(\mathbf{MC Br})_{\mathbf{k}}$$

$$\mathbf{C_k} = \text{ Cont in mode k} \quad \text{Very small}$$

Decay Mode	RCG Branching Fraction	PDG Branching Fraction	N sigma Diff
pi pi0	9.21E-04 +/- 1.00E-04	1.28E-03 +/- 8.00E-05	-2.80
Зрі	3.67E-03 +/- 2.06E-04	3.31E-03 +/- 2.10E-04	1.22
pi Ks	1.48E-02 +/- 4.55E-04	1.47E-02 +/- 6.00E-04	0.08
pi 2pi0	6.42E-03 +/- 8.48E-04	4.80E-03 +/- 4.00E-04	1.73
3pi 1pi0	1.24E-02 +/- 5.37E-04	1.18E-02 +/- 9.00E-04	0.53
pi eta(gg)	1.18E-03 +/- 1.16E-04	1.36E-03 +/- 1.20E-04	-1.08
5pi	1.75E-03 +/- 1.98E-04	1.68E-03 +/- 1.70E-04	0.27
K Ks	3.13E-03 +/- 2.17E-04	2.95E-03 +/- 1.90E-04	0.64
ks pi pi0	6.80E-02 +/- 1.40E-03	7.00E-02 +/- 5.00E-03	-0.39
K K pi	8.64E-03 +/- 3.76E-04	1.00E-02 +/- 4.00E-04	-2.48
Ks 3pi	2.86E-02 +/- 8.34E-04	3.10E-02 +/- 2.20E-03	-1.01
K 2pi pi0	5.29E-02 +/- 1.26E-03	6.00E-02 +/- 2.80E-03	-2.30
pi 2Ks	3.50E-03 +/- 4.53E-04	5.30E-03 +/- 2.30E-03	-0.77
K 4pi	6.31E-03 +/- 4.45E-04	5.80E-03 +/- 6.00E-04	0.68
3pi eta(gg)	1.40E-03 +/- 1.58E-04	9.30E-04 +/- 1.90E-04	1.90
2Ks K	2.47E-03 +/- 3.33E-04	4.60E-03 +/- 2.10E-03	-1.00

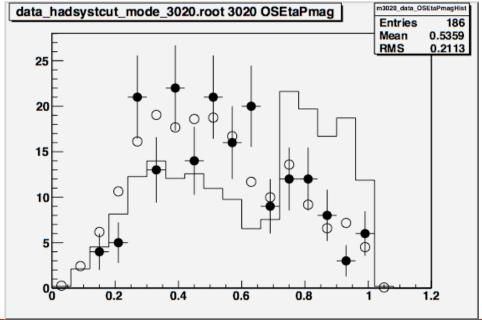
28 are 3σ or better

The above uses $Br(k\pi\pi)=0.0915$ Uncertainties are Statistical only

May 4, 2008 Cornell LEPP Template 34

Decay Mode	RCG Branching Fraction	PDG Branching Fraction	N sigma Diff	% Difference
pi pi	1.65E-03 +/- 9.68E-05	1.36E-03 +/- 3.20E-05	2.81	18.98%
pi0 pi0	7.57E-04 +/- 9.87E-05	7.90E-04 +/- 8.00E-05	-0.26	-4.33%
K pi	3.82E-02 +/- 4.70E-04	3.80E-02 +/- 7.00E-04	0.18	0.39%
2pi pi0	1.47E-02 +/- 3.93E-04	1.31E-02 +/- 6.00E-04	2.23	11.51%
4pi	8.52E-03 +/- 2.80E-04	7.31E-03 +/- 2.70E-04	3.11	15.29%
Ks pi0	1.16E-02 +/- 3.96E-04	1.14E-02 +/- 1.20E-03	0.18	2.02%
2K	4.42E-03 +/- 1.67E-04	3.84E-03 +/- 1.00E-04	2.96	13.96%
Ks 2pi	3.10E-02 +/- 6.36E-04	2.90E-02 +/- 1.90E-03	1.01	6.77%
ks pi pi0	6.80E-02 +/- 1.40E-03	7.00E-02 +/- 5.00E-03	-0.39	-2.90%
2pi 2pi0	1.11E-02 +/- 7.00E-04	9.80E-03 +/- 9.00E-04	1.14	12.42%
K 3pi	8.48E-02 +/- 9.97E-04	7.72E-02 +/- 2.80E-03	2.56	9.39%
4pi pi0	3.85E-03 +/- 3.31E-04	4.10E-03 +/- 5.00E-04	-0.41	-6.22%
Ks 2pi0	1.10E-02 +/- 6.15E-04	1.05E-02 +/- 2.00E-03	0.23	4.42%

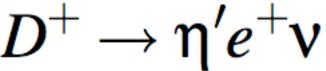
32 at 3σ or better


The above uses $Br(K\pi\pi^0)=0.1457$ Uncertainties are Statistical only

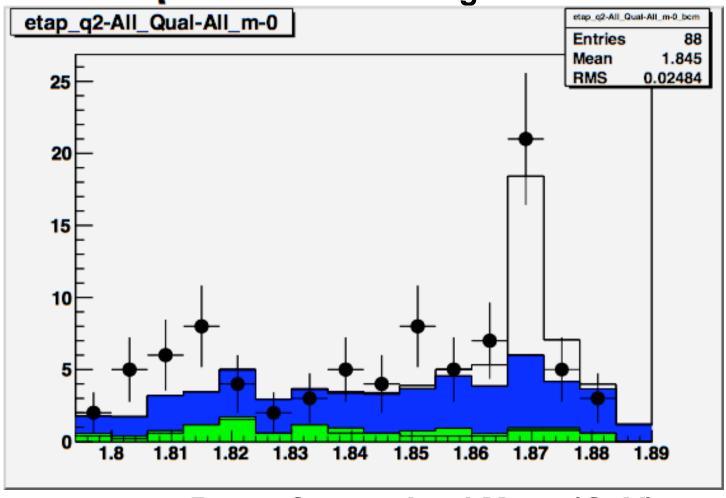
May 4, 2008 Cornell LEPP Template 35

Effects of Reweighting

- After re-weighting my branching fractions, efficiency of $D\rightarrow \eta' ev$ goes down by ~3% of itself.
- Multiplicities of particles and momentum distributions on other side improve.

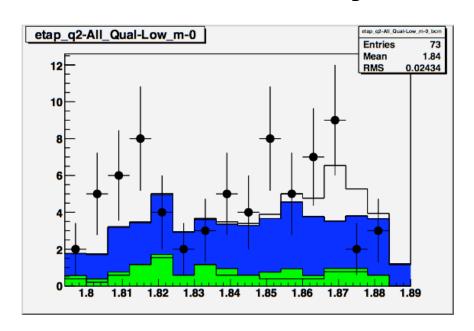


Background η momentum spectrum (GeV)

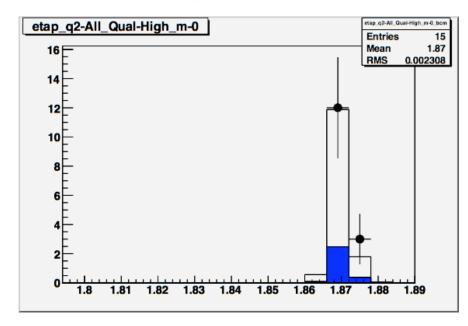

- Data
- Reweighted MC

Preliminary Results

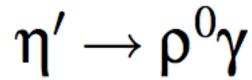
All bins expecting signal added together

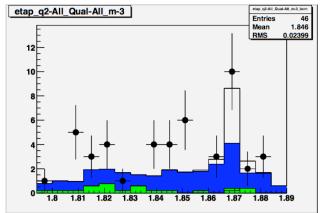

Beam Constrained Mass (GeV)

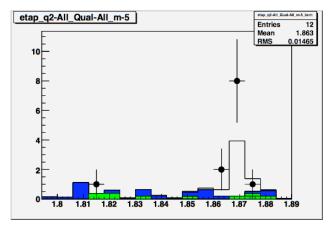
High/Low Bins


$$D^+ \rightarrow \eta' e^+ v$$

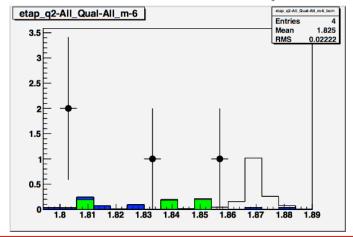
Low Quality


B.C.M. (GeV)


High Quality


B.C.M. (GeV)

$$\eta' \rightarrow \pi\pi\eta(\gamma\gamma)$$



$$D^+ \rightarrow \eta' e^+ \nu$$

Both Quality Bins

Beam Constrained Mass (GeV²) for each decay mode

$$\eta' \rightarrow \pi \pi \eta (\pi \pi \pi^0)$$

VERY Preliminary

Efficiency Corrected Yields:

- η'ev: 915 +/- 266
 - $-\Delta(-2Log(L)) = 22.5 (4.7\sigma)$
- Remaining Details:
 - Finishing up Systematic Studies

Summary

- Developed improved method for reconstructing Semileptonic Decays at CLEO
- Measured D $\rightarrow \eta'$ ev branching fraction to 3σ
- Measured \sim 60 D hadronic decays to 3σ or better.
- Used to improve Collaboration Monte Carlo
- Another Grad Student (D. Hertz) applied my code to improving measurement D→µν

May 4, 2008 Cornell LEPP Template 41