# Measurement-Only Topological Quantum Computation

Parsa Bonderson
Microsoft Station Q
University of Virginia Condensed Matter Seminar
October 2, 2008

work done in collaboration with:
Mike Freedman and Chetan Nayak
arXiv:0802.0279 (PRL '08) and arXiv:0808.1933

#### Introduction

- Non-Abelian anyons are believed to exist in certain gapped two dimensional systems:
  - Fractional Quantum Hall Effect (v=5/2, 12/5, ...?)
  - ruthenates, topological insulators, rapidly rotating bose condensates, quantum loop gases/string nets?
- If they exist, they could have application in quantum computation, providing naturally ("topologically protected") fault-tolerant hardware.
- Assuming we have them at our disposal, what operations are necessary to implement topological quantum computation?





3 (and higher) spatial dimensions:

$$R = R^{-1}$$
 and  $R^2 = 1$ 

- Only initial and final positions are topologically distinguished
- Statistics characterized by permutation group S<sub>n</sub>
- Bosons and Fermions



2 spatial dimensions:

$$R \neq R^{-1}$$

- Worldlines form topologically distinct braid configurations
- Statistics characterized by braid group B<sub>n</sub>

(n strand) braid group B<sub>n</sub>



Yang - Baxter constraint:  $R_i R_{i+1} R_i = R_{i+1} R_i R_{i+1}$ 





2 spatial dimensions:

$$R \neq R^{-1}$$

- Worldlines form topologically distinct braid configurations
- Statistics characterized by braid group B<sub>n</sub>
- This gives...

# Braiding "Statistics"

One dim unitary reps of B<sub>n</sub> assign a phase to each braid generator:

$$U[R_i] |\Psi\rangle = e^{i\theta} |\Psi\rangle$$
  $\Rightarrow$  Abelian anyons (bosons:  $\theta = 0$ , fermions:  $\theta = \pi$ )

Higher dim reps of  $B_n$  mean Hilbert space is multi-dimensional, and unitary <u>matrices</u> are assigned to braid generators:

$$U[R_i] |\Psi_{\alpha}\rangle = \sum_{\beta} U_{\alpha\beta} |\Psi_{\beta}\rangle \Rightarrow \text{non-Abelian anyons!}$$

Toy model of Abelian Anyons: charge q - flux  $\Phi$  composites



Aharonov - Bohm effect :  $\theta = q\Phi$ 

#### Physical Anyons: Fractional Quantum Hall

- 2DEG
- large B field (~ 10T)
- low temp (< 1K)
- gapped (incompressible)
- quantized filling fractions

$$v = \frac{n}{m}, \quad R_{xy} = \frac{1}{v} \frac{h}{e^2}, \quad R_{xx} = 0$$





- fractionally charged quasiparticles
- Abelian anyons at most filling fractions  $\theta = \pi \frac{p}{m}$
- non-Abelian anyons in  $2^{nd}$  Landau level, e.g. v=5/2, 12/5, ...



#### non-Abelian anyons

Localized topological charge:



Non-local collective topological charge: (multiple values are possible)



Fusion rules: 
$$a \times b = \sum_{c} N_{ab}^{c} c$$

ang. mom. analog:  $\frac{1}{2} \times \frac{1}{2} = 0 + 1$ 

#### Ising anyons

- $-\nu = \frac{5}{2}$  FQH (Moore-Read `91)
- $-\nu = \frac{12}{5}$  and other 2LL FQH?(PB and Slingerlan d`07)
- Kitaev honey comb, topological insulators, ruthenates?

Topological charge types:  $I, \sigma, \psi$ 

Fusion rules:



#### Fibonacci anyons

- $-\nu = \frac{12}{5}$  FQH? (Read Rezayi`98)
- string nets? (Levin Wen `04, Fendley et. al. `08)

Particle types:  $I, \varepsilon$ 

Fusion rules:



$$\varepsilon \times \varepsilon = I + \varepsilon$$

(Kitaev, Preskill, Freedman, Larsen, Wang)



**Topological Protection!** 

Ising: 
$$a = \sigma$$
,  $c_0 = I$ ,  $c_1 = \psi$ 

Fib: 
$$a = \varepsilon$$
,  $c_0 = I$ ,  $c_1 = \varepsilon$ 

(Kitaev, Preskill, Freedman, Larsen, Wang)

$$|\Psi_{0}\rangle \qquad |\Psi_{1}\rangle$$

$$|0\rangle \longleftrightarrow a_{1} \quad a_{2} \quad a_{3} \quad a_{4} \qquad |1\rangle \longleftrightarrow a_{1} \quad a_{2} \quad a_{3} \quad a_{4}$$



Is braiding computationally universal?

Ising: not quite Fib: yes! (must be supplemented)

(Kitaev, Preskill, Freedman, Larsen, Wang)







# Topological Charge Measurement (measures anyonic state)

$$\Pi_c = |a_1, a_2; c\rangle\langle a_1, a_2; c|$$

$$|\Psi\rangle \mapsto \frac{\Pi_c |\Psi\rangle}{\langle \Psi | \Pi_c | \Psi\rangle}$$



### Topological Charge Measurement

e.g. FQH double point contact interferometer



#### FQH interferometer



Willett, et. al.  $^{\circ}08$  for v=5/2

(also progress by: Marcus, Eisenstein, Kang, Heiblum, Goldman, etc.)



(for spin ½ systems)

Entanglement Resource: maximally entangled Bell states

$$\begin{aligned} \left| \Psi^{-} \right\rangle &= \frac{1}{\sqrt{2}} \left( \left| \uparrow \downarrow \right\rangle - \left| \downarrow \uparrow \right\rangle \right) = \mathbf{1} \otimes \sigma_{0} \left| \Psi^{-} \right\rangle \\ \left| \Phi^{-} \right\rangle &= \frac{1}{\sqrt{2}} \left( \left| \uparrow \uparrow \right\rangle - \left| \downarrow \downarrow \right\rangle \right) = \mathbf{1} \otimes \sigma_{1} \left| \Psi^{-} \right\rangle \\ \left| \Phi^{+} \right\rangle &= \frac{1}{\sqrt{2}} \left( \left| \uparrow \uparrow \right\rangle + \left| \downarrow \downarrow \right\rangle \right) = i\mathbf{1} \otimes \sigma_{2} \left| \Psi^{-} \right\rangle \\ \left| \Psi^{+} \right\rangle &= \frac{1}{\sqrt{2}} \left( \left| \uparrow \downarrow \right\rangle + \left| \downarrow \uparrow \right\rangle \right) = \mathbf{1} \otimes \sigma_{3} \left| \Psi^{-} \right\rangle \end{aligned}$$

$$|\Phi_{\mu}\rangle = \mathbf{1} \otimes \sigma_{\mu} |\Psi^{-}\rangle \qquad \mu = 0,1,2,3$$

(for spin ½ systems)

Entanglement Resource: maximally entangled Bell pair

$$|\Phi_{0}\rangle = |\frac{1}{2}, \frac{1}{2}; 0\rangle = \sqrt[\frac{1}{2}]{2}$$
Want to teleport: 
$$|\psi\rangle = \psi_{\uparrow}|\uparrow\rangle + \psi_{\downarrow}|\downarrow\rangle = \psi_{\uparrow}|\uparrow\rangle + \psi_{\downarrow}|\downarrow\rangle = \psi_{\uparrow}|\uparrow\rangle$$

Form: 
$$|\psi\rangle_1|\Phi_0\rangle_{23} = \psi$$

and perform a measurement on spins 12

(for spin ½ systems)

#### Measurement



(for spin ½ systems)

#### Measurement

$$\Pi_{\mu}^{(12)}: |\psi\rangle_{1} |\Phi_{0}\rangle_{23}$$

$$\mapsto |\Phi_{\mu}\rangle_{12} \sigma_{\mu} |\psi\rangle_{3} = \sigma_{\mu} \psi$$

Now send two bits of classical info (the measurement result  $\mu$ ) from Alice to Bob and "fix" the state by applying the transformation  $\sigma_{\mu}$  to spin 3

(for spin ½ systems)

#### Measurement

$$\sigma_{\mu}^{(3)}\Pi_{\mu}^{(12)}:|\psi\rangle_{1}|\Phi_{0}\rangle_{23}$$

$$\mapsto |\Phi_{\mu}\rangle_{12}|\psi\rangle_{3} = \psi$$

Now send two bits of classical info (the measurement result  $\mu$ ) from Alice to Bob and "fix" the state by applying the transformation  $\sigma_{\mu}$  to spin 3

(for spin ½ systems)

Alternative "fix":

Recombine and measure the state of spins 23

$$\Pi_{\mu}^{(12)}: |\psi\rangle_{1} |\Phi_{0}\rangle_{23}$$

$$\mapsto |\Phi_{\mu}\rangle_{12} \sigma_{\mu} |\psi\rangle_{3} =$$



(for spin ½ systems)

#### Alternative "fix":

Recombine and measure the state of spins 23

Then try again:

$$\begin{split} \Pi_{\nu}^{(23)} \Pi_{\mu}^{(12)} : & \left| \psi \right\rangle_{1} \middle| \Phi_{0} \right\rangle_{23} \\ & \longmapsto \sigma_{\nu} \middle| \psi \right\rangle_{1} \middle| \Phi_{\nu} \right\rangle_{23} = \end{split}$$



If measurement outcome is  $\mu_n = 0$  then STOP! ("success") If not REPEAT.

(for spin ½ systems)

"Forced Measurement"



(for spin ½ systems)

"Forced

Measurement" 
$$\Pi_0^{(12)} \equiv \Pi_{\mu_n=0}^{(12)} \Pi_{\nu_n}^{(23)} \dots \Pi_{\nu_2}^{(23)} \Pi_{\mu_1}^{(12)}$$

$$\begin{split} \breve{\Pi}_0^{(12)} : |\psi\rangle_1 |\Phi_0\rangle_{23} \\ \mapsto |\Phi_0\rangle_{12} |\psi\rangle_3 = \end{split}$$

"Success" occurs with probability  $=\frac{1}{4}$  for each repeat try.

#### Anyonic State Teleportation

Entanglement Resource: maximally entangled anyon pair

$$|\overline{a},a;0\rangle =$$

Want to teleport:  $|\psi\rangle =$ 

Form:  $|\psi\rangle_1|\overline{a},a;0\rangle_{23} =$ 

and perform Forced Measurement on anyons 12

#### Anyonic State Teleportation

#### Forced Measurement



#### Anyonic State Teleportation

#### Forced Measurement

$$\widetilde{\Pi}_{0}^{(12)} \equiv \Pi_{\mu_{n}=0}^{(12)} \Pi_{\nu_{n}}^{(23)} \dots \Pi_{\nu_{2}}^{(23)} \Pi_{\mu_{1}}^{(12)}$$

$$\widetilde{\Pi}_{0}^{(12)}: |\psi\rangle_{1} |\overline{a}, a; 0\rangle_{23} 
\mapsto |a, \overline{a}; 0\rangle_{12} |\psi\rangle_{3} =$$

"Success" occurs with probability  $\geq \frac{1}{d^2}$  for each repeat try.

# What good is this if we want to braid computational anyons?

















#### Measurement Simulated Braiding!



in FQH, for example



#### in FQH, for example



#### in FQH, for example



in FQH, for example





# Measurement-Only Topological Quantum Computation

$$|\Psi_0\rangle \longleftrightarrow |\Psi_0\rangle \\ |0\rangle \longleftrightarrow |a_1 \quad a_2 \quad a_3 \quad a_4$$
 
$$|1\rangle \longleftrightarrow |a_1 \quad a_2 \quad a_3 \quad a_4$$



Topological Charge Measurement



← Topological Charge Measurement

#### Conclusion

- Anyons could provide a quantum computer.
- Teleportation has anyonic counterpart.
- Bounded, adaptive, non-demolitional measurements can generate the braiding transformations used in TQC.
- Stationary anyons hopefully makes life easier for experimental realization.
- FQH interferometer technology is rapidly progressing.