Measurement-Only Topological Quantum Computation

Parsa Bonderson
Microsoft Station Q
University of Virginia Condensed Matter Seminar October 2, 2008

work done in collaboration with:
Mike Freedman and Chetan Nayak arXiv:0802.0279 (PRL ‘08) and arXiv:0808.1933

Introduction

- Non-Abelian anyons are believed to exist in certain gapped two dimensional systems:
- Fractional Quantum Hall Effect ($v=5 / 2,12 / 5, \ldots ?$)
- ruthenates, topological insulators, rapidly rotating bose condensates, quantum loop gases/string nets?
- If they exist, they could have application in quantum computation, providing naturally ("topologically protected") fault-tolerant hardware.
- Assuming we have them at our disposal, what operations are necessary to implement topological quantum computation?

Particle Exchange "Statistics"

Particle Exchange "Statistics"

R

R^{-1}

3 (and higher) spatial dimensions:

$$
R=R^{-1} \quad \text { and } \quad R^{2}=\mathbf{1}
$$

- Only initial and final positions are topologically distinguished
- Statistics characterized by permutation group S_{n}
- Bosons and Fermions

Particle Exchange "Statistics"

R

R^{-1}

2 spatial dimensions:

$$
R \neq R^{-1}
$$

- Worldlines form topologically distinct braid configurations
- Statistics characterized by braid group B_{n}

(n strand) braid group B_{n}

$$
1
$$

R_{i}

R_{i}^{-1}

Yang - Baxter constraint : $R_{i} R_{i+1} R_{i}=R_{i+1} R_{i} R_{i+1}$

Particle Exchange "Statistics"

R
R^{-1}
2 spatial dimensions:

$$
R \neq R^{-1}
$$

- Worldlines form topologically distinct braid configurations
- Statistics characterized by braid group B_{n}
- This gives...

Braiding "Statistics"

One dim unitary reps of B_{n} assign a phase to each braid generator:

$$
U\left[R_{i}\right]|\Psi\rangle=e^{i \theta}|\Psi\rangle
$$

\Rightarrow Abelian anyons

(bosons: $\theta=0$, fermions : $\theta=\pi$)

Higher dim reps of B_{n} mean Hilbert space is multi-dimensional, and unitary matrices are assigned to braid generators:
$U\left[R_{i}\right]\left|\Psi_{\alpha}\right\rangle=\sum_{\beta} U_{\alpha \beta}\left|\Psi_{\beta}\right\rangle \Rightarrow$ non-Abelian anyons!

Toy model of Abelian Anyons: charge q-flux Φ composites

Aharonov-Bohm effect : $\theta=q \Phi$

Physical Anyons: Fractional Quantum Hall

- 2DEG
- large B field (~ 10T)
- low temp (<1K)
- gapped (incompressible)
- quantized filling fractions

$$
v=\frac{n}{m}, \quad R_{x y}=\frac{1}{v} \frac{h}{e^{2}}, \quad R_{x x}=0
$$

- fractionally charged quasiparticles
- Abelian anyons at most filling fractions $\theta=\pi \frac{p}{m}$
- non-Abelian anyons in $2^{\text {nd }}$ Landau level, e.g. $v=5 / 2,12 / 5, \ldots$

Xia, et al

non-Abelian anyons

Localized topological charge:

Non-local collective topological charge: (multiple values are possible)

ang. mom. analog: $\quad \frac{1}{2} \times \frac{1}{2}=0+1$

Ising any ons
$-v=\frac{5}{2} \mathrm{FQH}$ (Moore-Read `91) \(-v=\frac{12}{5}\) and other 2LL FQH?(PB and Slingerlan d`07)

- Kitaev honey comb, topological insulators, ruthenates?

Topological charge types: I, σ, ψ
Fusion rules :

$$
\psi \times \psi=I
$$

$$
\sigma \times \sigma=I+\psi
$$

Fibonacci anyons
$-v=\frac{12}{5}$ FQH? (Read - Rezayi`98)

- string nets? (Levin - Wen `04, Fendley et. al. `08)

Particle types: I, ε
Fusion rules:

$$
\varepsilon \times \varepsilon=I+\varepsilon
$$

Topological Quantum Computation

 (Kitaev, Preskill, Freedman, Larsen, Wang)$$
\begin{aligned}
& |1\rangle \longleftrightarrow \underbrace{\begin{array}{cc}
0 & 0 \\
a_{1} & a_{2}
\end{array}{ }_{a_{3}}^{0}{ }_{a_{4}}^{0}}_{c_{1}}
\end{aligned}
$$

Topological Protection!

Ising:

$$
a=\sigma, c_{0}=I, c_{1}=\psi
$$

Fib:

$$
a=\varepsilon, c_{0}=I, c_{1}=\varepsilon
$$

Topological Quantum Computation

 (Kitaev, Preskill, Freedman, Larsen, Wang)$$
\begin{aligned}
& \left|\Psi_{0}\right\rangle \\
& \stackrel{0}{a_{2}} \\
& 0 \\
& a_{3}
\end{aligned} \stackrel{a}{4}^{0} \quad|1\rangle \longleftrightarrow \begin{array}{llll}
0 & \left|\Psi_{1}\right\rangle \\
a_{1} & 0 & 0 & a_{2} \\
a_{3} & a_{4}
\end{array}
$$

Is braiding computationally universal?
Ising: not quite (must be supplemented)

Topological Quantum Computation

 (Kitaev, Preskill, Freedman, Larsen, Wang)$$
\begin{aligned}
& \left|\Psi_{0}\right\rangle \\
& \stackrel{0}{a_{2}} \quad \stackrel{0}{a_{3}} \quad \underset{a_{4}}{0} \quad|1\rangle \longleftrightarrow \begin{array}{llll}
0 & \left|\Psi_{1}\right\rangle \\
a_{1} & a_{2} & 0 & a_{3} \\
a_{4}
\end{array}
\end{aligned}
$$

(Bonesteel, et. al.)

\leftrightarrow

Topological Charge Measurement

Topological Charge Measurement (measures anyonic state)

$$
\begin{aligned}
& \Pi_{c}=\left|a_{1}, a_{2} ; c\right\rangle\left\langle a_{1}, a_{2} ; c\right| \\
& |\Psi\rangle \mapsto \frac{\Pi_{c}|\Psi\rangle}{\langle\Psi| \Pi_{c}|\Psi\rangle}
\end{aligned}
$$

Topological Charge Measurement

 e.g. FQH double point contact interferometer

FQH interferometer

Willett, et. al. `08 for $v=5 / 2$

(also progress by: Marcus, Eisenstein, Kang, Heiblum, Goldman, etc.)

Quantum State Teleportation

(for spin $1 / 2$ systems)
Entanglement Resource: maximally entangled Bell states

$$
\begin{aligned}
& \left|\Psi^{-}\right\rangle=\frac{1}{\sqrt{2}}(|\uparrow \downarrow\rangle-|\downarrow \uparrow\rangle)=\mathbf{1} \otimes \sigma_{0}\left|\Psi^{-}\right\rangle \\
& \left|\Phi^{-}\right\rangle=\frac{1}{\sqrt{2}}(|\uparrow \uparrow\rangle-|\downarrow \downarrow\rangle)=\mathbf{1} \otimes \sigma_{1}\left|\Psi^{-}\right\rangle \\
& \left|\Phi^{+}\right\rangle=\frac{1}{\sqrt{2}}(|\uparrow \uparrow\rangle+|\downarrow \downarrow\rangle)=\boldsymbol{i} \otimes \sigma_{2}\left|\Psi^{-}\right\rangle \\
& \left|\Psi^{+}\right\rangle=\frac{1}{\sqrt{2}}(|\uparrow \downarrow\rangle+|\downarrow \uparrow\rangle)=\mathbf{1} \otimes \sigma_{3}\left|\Psi^{-}\right\rangle \\
& \left|\Phi_{\mu}\right\rangle=\mathbf{1} \otimes \sigma_{\mu}\left|\Psi^{-}\right\rangle \quad \mu=0,1,2,3
\end{aligned}
$$

Quantum State Teleportation

(for spin $1 / 2$ systems)
Entanglement Resource: maximally entangled Bell pair

$$
\left|\Phi_{0}\right\rangle=\left|\frac{1}{2}, \frac{1}{2} ; 0\right\rangle=\underbrace{\frac{1}{2}}_{0} \otimes^{\frac{1}{2}}
$$

Want to teleport: $|\psi\rangle=\psi_{\uparrow}|\uparrow\rangle+\psi_{\downarrow}|\downarrow\rangle=$

Form: $\quad|\psi\rangle_{1}\left|\Phi_{0}\right\rangle_{23}=$

and perform a measurement on spins 12

Quantum State Teleportation

(for spin $1 / 2$ systems)
Measurement

Quantum State Teleportation

(for spin $1 / 2$ systems)

Measurement

Now send two bits of classical info (the measurement result μ) from Alice to Bob and "fix" the state by applying the transformation σ_{μ} to spin 3

Quantum State Teleportation

(for spin $1 / 2$ systems)

Measurement

$$
\begin{aligned}
\sigma_{\mu}^{(3)} \Pi_{\mu}^{(12)}:|\psi\rangle_{1} & \left|\Phi_{0}\right\rangle_{23} \\
& \mapsto\left|\Phi_{\mu}\right\rangle_{12}|\psi\rangle_{3}=
\end{aligned}
$$

Now send two bits of classical info (the measurement result μ) from Alice to Bob and "fix" the state by applying the transformation σ_{μ} to spin 3

Quantum State Teleportation

(for spin $1 / 2$ systems)
Alternative "fix":
Recombine and measure the state of spins 23

$$
\Pi_{\mu}^{(12)}:|\psi\rangle_{1}\left|\Phi_{0}\right\rangle_{23}
$$

$$
\mapsto\left|\Phi_{\mu}\right\rangle_{12} \sigma_{\mu}|\psi\rangle_{3}=
$$

Quantum State Teleportation

(for spin $1 / 2$ systems)
Alternative "fix":
Recombine and measure the state of spins 23

Then try again:
$\Pi_{v}^{(23)} \Pi_{\mu}^{(12)}:|\psi\rangle_{1}\left|\Phi_{0}\right\rangle_{23}$

$$
\mapsto \sigma_{v}|\psi\rangle_{1}\left|\Phi_{\nu}\right\rangle_{23}=
$$

If measurement outcome is $\mu_{n}=0$ then STOP! ("success") If not REPEAT.

Quantum State Teleportation

(for spin $1 / 2$ systems)

"Forced

Measurement"

Quantum State Teleportation

(for spin $1 / 2$ systems)

"Forced
 Measurement"
 $$
\breve{\Pi}_{0}^{(12)} \equiv \Pi_{\mu_{n}=0}^{(12)} \Pi_{v_{n}}^{(23)} \ldots \Pi_{v_{2}}^{(23)} \Pi_{\mu_{1}}^{(12)}
$$
 $$
\overbrace{0}^{\frac{1}{2}}
$$
 $\breve{\Pi}_{0}^{(12)}:|\psi\rangle_{1}\left|\Phi_{0}\right\rangle_{23}$
 $$
\mapsto\left|\Phi_{0}\right\rangle_{12}|\psi\rangle_{3}=
$$

"Success" occurs with probability $=\frac{1}{4}$ for each repeat try.

Anyonic State Teleportation

Entanglement Resource: maximally entangled anyon pair

$$
|\bar{a}, a ; 0\rangle=\stackrel{y}{\bar{a}}_{\infty}^{a}
$$

Want to teleport: $|\psi\rangle=$

Form: $|\psi\rangle_{1}|\bar{a}, a ; 0\rangle_{23}=$

and perform Forced Measurement on anyons 12

Anyonic State Teleportation

Forced
Measurement

Anyonic State Teleportation

Forced
Measurement

$$
\breve{\Pi}_{0}^{(12)} \equiv \Pi_{\mu_{n}=0}^{(12)} \Pi_{v_{n}}^{(23)} \ldots \Pi_{v_{2}}^{(23)} \Pi_{\mu_{1}}^{(12)}
$$

$$
\breve{\Pi}_{0}^{(12)}:|\psi\rangle_{1}|\bar{a}, a ; 0\rangle_{23}
$$

$$
\mapsto|a, \bar{a} ; 0\rangle_{12}|\psi\rangle_{3}=
$$

"Success" occurs with probability $\geq \frac{1}{d_{a}^{2}}$ for each repeat try.

What good is this if we want to braid computational anyons?

Use a maximally entangled pair and "forced measurements" for a series of teleportations

$$
\otimes^{\bar{a}}
$$

Use a maximally entangled pair and "forced measurements" for a series of teleportations

Use a maximally entangled pair and "forced measurements" for a series of teleportations

Use a maximally entangled pair and "forced measurements" for a series of teleportations

Measurement Simulated Braiding!

in FQH , for example

Topological Quantum Computation

\uparrow measurement simulated braiding

Topological Charge Measurement

Measurement-Only Topological Quantum Computation

\leftrightarrow
Topological Charge Measurement

\leftrightarrow
Topological Charge Measurement

Conclusion

- Anyons could provide a quantum computer.
- Teleportation has anyonic counterpart.
- Bounded, adaptive, non-demolitional measurements can generate the braiding transformations used in TQC.
- Stationary anyons hopefully makes life easier for experimental realization.
- FQH interferometer technology is rapidly progressing.

