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Introduction

• Non-Abelian anyons are believed to exist in certain 
gapped two dimensional systems:

- Fractional Quantum Hall Effect (n=5/2, 12/5, …?)

- ruthenates, topological insulators, rapidly rotating bose 
condensates, quantum loop gases/string nets?

• If they exist, they could have application in quantum 
computation, providing naturally (“topologically 
protected”) fault-tolerant hardware.

• Assuming we have them at our disposal, what 
operations are necessary to implement topological 
quantum computation?
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Particle Exchange “Statistics”

3 (and higher) spatial dimensions:

• Only initial and final positions are topologically distinguished

• Statistics characterized by permutation group  Sn

• Bosons and Fermions
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Particle Exchange “Statistics”

2 spatial dimensions:

• Worldlines form topologically distinct braid configurations

• Statistics characterized by braid group  Bn
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(n strand) braid group Bn
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Particle Exchange “Statistics”

2 spatial dimensions:

• Worldlines form topologically distinct braid configurations

• Statistics characterized by braid group  Bn

• This gives…
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Braiding “Statistics”

One dim unitary reps of Bn assign a phase to each braid generator:

= i
i eRU ][

Higher dim reps of Bn mean Hilbert space is multi-dimensional, 

and unitary matrices are assigned to braid generators:

 Abelian anyons

 =


 URU i ][  non-Abelian anyons!
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Physical Anyons: Fractional Quantum Hall

• 2DEG

• large B field (~ 10T)

• low temp (< 1K)

• gapped (incompressible)

• quantized filling fractions
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• fractionally charged 

quasiparticles

• Abelian anyons at most 

filling fractions

• non-Abelian anyons in 

2nd Landau level,         

e.g. n= 5/2, 12/5, …
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Xia, et al



non-Abelian anyons
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ab=Fusion rules:
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Localized topological charge:

Non-local collective topological charge:

(multiple values are possible)
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0 1
1a 2a

3a

Topological Quantum Computation
(Kitaev, Preskill, Freedman, Larsen, Wang)
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Ising:  === 10   ,  , cIca

Fib:  === 10   ,  , cIca

Topological Protection!
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0 1



(Bonesteel, et. al.)

Topological Quantum Computation
(Kitaev, Preskill, Freedman, Larsen, Wang)

  time

Ising: not quite 
(must be supplemented)

Fib: yes!

Is braiding computationally universal?

1a 2a
3a 4a
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0 1



(Bonesteel, et. al.)

Topological Quantum Computation
(Kitaev, Preskill, Freedman, Larsen, Wang)

 Topological Charge Measurement

  time
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Topological Charge Measurement

(measures anyonic state)
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Topological Charge Measurement

e.g. FQH double point contact interferometer



FQH interferometer

Willett, et. al. `08
for n=5/2

(also progress by: Marcus, Eisenstein, 

Kang, Heiblum, Goldman, etc.)



Quantum State Teleportation

Entanglement Resource: maximally entangled Bell states
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Quantum State Teleportation

Entanglement Resource: maximally entangled Bell pair
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Measurement
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Measurement
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Quantum State Teleportation
(for spin ½ systems)
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Now send two bits of classical info (the measurement 

result     ) from Alice to Bob and “fix” the state by 

applying the transformation        to spin 3







Measurement



2
1

2
1

2
1

Quantum State Teleportation
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Quantum State Teleportation
(for spin ½ systems)
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Alternative “fix”:

Recombine and measure 

the state of spins 23
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Quantum State Teleportation
(for spin ½ systems)

Alternative “fix”:

Recombine and measure 

the state of spins 23
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Then try again:

If measurement outcome is               then STOP! (“success”)

If not REPEAT.

0=n
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“Forced 

Measurement”
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“Success” occurs with probability            for each repeat try.
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Anyonic State Teleportation

Entanglement Resource: maximally entangled anyon pair
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Forced 
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a a

What good is this if we want to 

braid computational anyons?
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Use a maximally entangled pair and “forced 

measurements” for a series of teleportations
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Use a maximally entangled pair and “forced 

measurements” for a series of teleportations
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Use a maximally entangled pair and “forced 

measurements” for a series of teleportations
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Use a maximally entangled pair and “forced 

measurements” for a series of teleportations
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Measurement Simulated Braiding!
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in FQH, for example



in FQH, for example



in FQH, for example



in FQH, for example



0 1



Topological Quantum Computation

 Topological Charge Measurement

  time

measurement simulated braiding
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0 1



 Topological Charge Measurement

Topological Charge Measurement

Measurement-Only Topological 

Quantum Computation

1a 2a
3a 4a

0 1
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Conclusion

• Anyons could provide a quantum computer.

• Teleportation has anyonic counterpart.

• Bounded, adaptive, non-demolitional 

measurements can generate the braiding 

transformations used in TQC.

• Stationary anyons hopefully makes life easier 

for experimental realization.

• FQH interferometer technology is rapidly 

progressing.


