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History:
* Permittivity €, permeability p and index of refraction n negative
e Reversal of Snell’s Law, perfect focusing, flat lenses, etc.

« Impedance match z=V/e and n = -1, zero reflection

e A>>ain LHM, while A = a in PBG

Both PBG and LHM exhibit properties not found in naturally materials

Vision:

» Understanding the physics and the exotic properties of LHMs
» Perfect Lens. Near-field optical microscopy, nano-lithography
* Wireless and optical communications. RF sensing.

e Antenna and microwave device miniaturization

v" Breakthroughs and new concepts in materials processing at nanoscale
v Search for new materials that exhibit n < 0 at THz or optical regime
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Some reviews articles from our group

Bending Back Light: The Science of Negative Index Materials
Optics and Photonics News, June 2006

Negative index materials: New frontiers in optics,
Adv. Mater. 18, 1941 (2006)

Photonic metamaterials: Magnetism at optical frequencies,
IEEE J. of Selected Topics in Quant. Electr. 12, 1097 (2006)

Negative Refractive Index at Optical Wavelengths
Science 315, 47 (2007)
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Outline of Talk

Brief history of left-handed materials
Electric and Magnetic Response of SRRs and LHMs
6, 100 and 200 THz response of SRRs (Karlsruhe, Crete, Ames)

Upper limits of the SRRs? Simulation results and their interpretation
by a LC model. Experiments.

Breaking of scaling. Top-down approach does not work.
Diamagnetic response and current density.

LHM by Double Layer Cut - Wires. Negative n at optical frequencies.
Negative group and phase velocities in NIMs!

No negative n with only cut wires.

Losses can give a negative n, without LH propagation.

Concluding Remarks (EIT, Chiral, Losses, 3d structures with DLW)
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Negative € and y lead to negative n
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Group vs phase velocity

»For >0, u>0 = (k, E, H) right-handed set
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>For £<0, u<0 = (k, E, H) left-handed set




Opposite phase and group velocities !

|

— _/
v

Source

Left-handed slab




e<0,p>0 M £>0, u>0

n=./ey imaginary n=./su real
extinction propagation
metals transparent materials
X
<0, u<O0 >0, u<O0
n= @ imaginary
= _@ extinction

propagation
opposite phase & group velocities magnets for
negative refraction W< W< W,




Negative refraction - Snell’'s law reversion

AIR RHM AlIR LHM

sin®, :lsin 0, Snell-Descartes’ law

n valid with n<0




Negative refraction - Snell’'s law reversion
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Left-handed media as flat lenses
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Left-handed media as flat lenses

Normal lens

real, inverse 2d-image

Flat LH lens

real, (semi-) 3d-image

a+b=2d
ob
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Observer A

A

Observer B

Super lens

Optical lens = phase restoration
(for propagating modes, evanescent waves are lost)

Air

Propagating
k,=0

Air

Amplitude

Image

a

Evanescent
k,=1.5w/c

d=a+b

Phase

Super-lens = phase + amplitude restoration
(propagating and evanescent waves are recovered)

Q= -
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Negative refraction in metamaterials

£ = u=-1+0.001 i

Frequency=30 GHz, A=0.01 m, thickness of metamaterial = 4 A



Metamaterials with zero index of refraction

All the angles 6, should be zero, and therefore perpendicular
to the surface



A dream comes true: Prof. Pendry suggests structures
with €<0 and u<0

For € <0: A wire medium. It can yield e <0 in atunable
frequency range (Pendry et al., PRL 1996). Artificial
dielectrics using metals!!

For g < O0: Split ring resonators. They yield py<0ina
tunable frequency range (Pendry et al., IEEE, 1999).

A combined medium can yield both e<0and p<
simultaneously. 3

A medium with negative index
of refraction should be possible
by using these suggested structures?




Frequency dispersion of LH medium

Energy density in the dispersive medium

LH medium is always dispersive

According to the Kramers-Kronig relations -
it is always dissipative
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H Cut-wire response

Continuous-wires Cut-wires
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The SRR is like an LC resonator




First Left-Handed Test Structure

UCSD, PRL 84, 4184 (2000)



David Smith (UCSD) used Prof. Pendry's suggested
structures to demonstrate the first material with a
negative index of refraction

|

D. Smith et al., Science 292, 77 (2001) '



First experimental

verification of a NIM

UCSD, PRL 84, 4184 (2000)
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Best LH peak in a left-handed material

PN,
E Peak at
8, f=4 GHz
- =75 mm
e,
n : much larger
0 / than the
= o il size of SRR
E '.r' ._1 " 'I
! gaalyy -

E Hl. Ir" \ i,' — SRR a=3.6 mm
- y ! - - - Wire

' —CMM

3 4 5 6 7 8 9

Losses: -0.3 dB/cm Frequency (GHz) Bilkent, Crete, & Ames
Optics Lett. 29, 2623 (2004)



The progress of scaling metamaterials

0.3THz 3THz 30THz 300THz

1DDG].I_I"I'I 1D{]”m 1UjJ_ITI 1.{1].1”1

Advances in scaling metamaterials with artificial maghetic response
for high-frequency structures has been rapid. The 1, 6 and 100 THz
models were fabricated in 2004, and the 200 THz in 2005.
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Metamaterials structures shown in these split-ring resonators
(SRRs) are amenable to manufacture by common planar lithography.

)

It has a magnetic response
perpendicular to the plane, which
is difficult to detect by direct
incidence measurements.

~N

Use of multilayer processing can been used
to fabricate metamaterials that give both
negative £ and u, as well as 7 for
perpendicular propagation.



Estimating the LC-resonance

G =——— = 2710CTHz

JLC

= A = 2n\/§\/g=3ym
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Polarization dependence

el

ot}

B

Coupling to LC-
resonance via B,
not accessible for
normal incidence.
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No coupling to
LC-resonance,
normal incidence.
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Coupling to LC-
resonance via £,
accessible for normal
incidence

N. Katsarakis et al., Appl. Phys. Lett. 84, 2943 (2004).



Electric Resonance

Magnetic Resonance
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Magnetic Resonance Electric Resonance
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E 27.4 THz 117.9 THz

g The magnetic resonance frequency is the same for both polarizations
q k  The electric resonance frequency is higher than the previous case



Electric Resonance

Electric Resonance
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Notice that the electric resonance frequency is the same for the

k openand closed ring SRR for this incident polarization
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Magnetic response at 100 THz
almost optical frequencies
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Magnetic response at 100 THz

Experimental spectra for sample
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Experimental spectra for sample E ]
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H, Magnetic resonance
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Negative [ at telecommunication wavelengfhs (~1 5 um)
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Going to THz Frequencies

Idea: geometric scaling

Metals are near-perfect conductors
LC-resonator
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PRL 95, 223902 (2005).



Magnetic Resonance Frequency (THz)

Limits of size scaling
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Why saturation of w,?
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Key point: Kinetic energy of the electrons becomes
comparable to magnetic energy in small scale structures

w, Ul/a (a: u.c. size)
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Metamaterials structures shown in these split-ring resonators
(SRRs) are amenable to manufacture by common planar lithography.

)

It has a magnetic response
perpendicular to the plane, which
is difficult to detect by direct
incidence measurements.

~N

Use of multilayer processing can been
used to fabricate metamaterials that give
both negative £ and u, as well as 7 for
perpendicular propagation.



LHM by Double Layer Cut - Wires
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Magnetic response from cut-wire pairs

Single cut-wire Cut-wire pair

E
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H Anti-symmetric mode,
~ magnetic dipole



Difficulties in obtaining both € and p < O in cut wire pairs
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Development of the 2-cut SRR to the fish-net structure
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Negative Index at GHz and THz: Short-wire pairs and Fishnet Structure
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Different designs used in fabricating LHMs
with negative | and n
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Metamaterials Used to Alter Light's Path,

Karlsruhe and Ames Lab., designed and fabricated for
the first time NIMs at 1.5 pum with low losses! The
design is shown below.

"Reversing and accelerating the speed of light,”

(http://www.ameslab.gov/final/News/2006rel/

metamaterials.htm)

Up:c/n

¢« dn
U, =0, (1+——
0 = Up I ndw)

If nis negative and dispersive,
both v, and v, can be negative/

Causality and relativity are ok

e

Transmittanc
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Speed

Science 312, 892
(2006)

Phase and group velocity
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nis dispersive in NIMs

1.0 . .
A v
0.8 1

0.6 1 1
0.4 1 .

0.2 1

10 1 B ]
O\ﬂ\u\a‘

o W
-20 - ]
0.0 T— . .

-0.2 N 2

()
n<0
1450 1500 1550

Wavelength (nm)

Refractive index









Low loss negative index metamaterials
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Low loss negative index metamaterials
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Significant contributions to the development of LHMs by our
group:

* Electric response of SRRs

 Electric excitation of the magnetic resonance

 Retrieval calculations for €, y

 Closed rings for distinguishing LH from RH peaks

* Negative u at THz and visible.

* Negative n at 1.5 y and 780 nm.

» Upper frequency limit of the SRRs. Diamagnetic response of SRRs.
* Negative n at GHz and THz. Negative phase and group velocities.

» Designs for 3d isotropic LHMSs.

Future directions:

» Understanding and reducing losses. Introduce gain to reduce losses.
 Fabrication of 3d LHMSs. Direct laser writing. (Karlsruhe)

» Electromagnetic induced transparency. Slow light, low losses.

* Non-linear effects. Chirality effects.

 Anisotropic metamaterials. Pseudo-focusing.

» Applications

DOE, DARPA, MURI, NATO, EU, EU-PHOME



Conclusions

‘Our team has been instrumental in creating and developing a
new revolutionary field, which extends the realm of
electromagnetism and opens up exciting technological
applications from the MHz range to optical frequencies

*The realization of negative index materials has opened up
the possibility of unprecedented applications and devices.
* MHz: Artificial magnetic materials for MRI applications
- GHz: Cellular communications
- Miniaturized antennas and waveguides
- Optics: Superlenses with subwavelength imaging




Nano Plasmonics at Near-IR and Visible

Nanowires and Nano-Rings as

resonating elements _ _
W=75nm ; G=50nm Ultra Optical Imaging?

L=667 nm ; P=717 nm

—N

DNA Image

Integration
DNA Object

W=80nm ; P=200nm



Conclusions

‘Our team has been instrumental in creating and developing a
new revolutionary field, which extends the realm of
electromagnetism and opens up exciting technological
applications from the MHz range to optical frequencies

*The realization of negative index materials has opened up
the possibility of unprecedented applications and devices.
* MHz: Artificial magnetic materials for MRI applications
- GHz: Cellular communications
- Miniaturized antennas and waveguides
- Optics: Superlenses with subwavelength imaging
-10 nm VLSI nanolithography using optics
-smaller integrated circuits
- Molecular Imaging (Medicine, Biology)
- Optics: DVDs with 100x capacity

These applications are just a start and more inventions will
come from hundreds of research groups working on the
newly created area of metamaterials
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