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Introduction

The Euler buckling instability is a property of
long thin rods at zero temperature.

If you compress such a rod, the unbent
configuration will remain stable until a critical
force F_ is surpassed, when the rod will
suddenly start to buckle.

I will investigate how this phenomenon is
atfected by thermal fluctuations in the limit of
high temperature.



Motivation

+ It's physically interesting and uses cool
mathematics.

% Applicable to microtubules, intermediate
filaments and actin filaments in the
cytoskeleton. 1234l

+» Carbon nanotubes.[>%!




Introduction to the Euler Buckling Instability
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Expand 0 in a Fourier series:
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Approximate:
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Euler instability! When this
becomes negative we will
have buckling.




Now, include
t@émperature

How do thermal fluctuations affect this phenomenon?




Range of applicability

e Concrete pillars and structural beams clearly
have a negligible influence from thermal
fluctuations. (A >> LT)

e Biological filaments and nanodevices,
however, can experience large non-trivial
effects from thermal motion. (A ~ LT)



The Persistence Length

TL
A

L A
° =7~ Where L, == is the persistence length
]

e L, isarough measure of the maximum distance at which
different parts of the rod are ‘aware’ of each other. Itis also
known as a correlation length.



Averaging of Thermal Fluctuations
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Our probability distributionis P=e T
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Perform a renormalization group calculation on g .

i.e., average over 6 to obtain a probability

distribution for 6, :

_ H®Y T _H(6%6)
P=e T = n f db,e T
n=2




e Write H=Hy(6,)+Hy(0)+E,
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Expand this term




e Taking the logarithm of P and expanding both the
exponential and the logarithm for large T, we obtain:

_ 1 )
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 This is known as a cumulant expansion.
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Extrema occur when:
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Using the method of steepest descent for large T, we evaluate the integral
and find:
Disregarding thermal

Including thermal fluctuations
fluctuations: (zero temperature):
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For finite T, there is a minimum critical force!
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* Interestingly, this method works reasonably well even for
small T!

e |f we expand the exponential below to first order in T:
L
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we obtain L
F. = F,o (1 + .032?;)

* This is quite close to the result of Baczynski et allll, who solved
this problem in the limit of small T:

TL
F.=F,, (1 + .0380;)

 This indicates that our method captures the essential physics
of the entire temperature range.

[1] K. Baczynski, R. Lipowsky, and J. Kierfeld. Phys. Rev. E, 2007, 76, 061914



The case of clamped ends:

Now, 0 = i 0,, sin (?)

n=1

The calculation proceeds very similarly,
except that now:
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descent calculation around

Now we perform a steepest
s=0ands

= L.

Interestingly, we get a very different answer!
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compared with:
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Why the difference?

* Inthe region close to critical buckling, we may approximate 6,<< 1. Here
the rod is approximately shaped like a sine wave.

* In this limit, the unclamped case corresponds to negligible overall lateral

(y) displacement of the rod, while the clamped case will have a lateral

displacement proportional to 6, :
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e This indicates that the clamped and unclamped cases are physically quite
different from one another.



Conclusions

= In the limit of high temperature it has been
shown that F_increases with both length and
temperature.

& Because F_ decreases with length for small
lengths, F_is a non monotonic function of L
and it will have a nonzero minimum value.
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