Neutron scattering studies of quantum, and multiferroic transition metal oxides

Junghwa Kim

Condensed Matter Seminar April 6, 2009

Outline

- Magnetic structures of magnetoelectric multiferroics : YMn₂O₅
- Magnetic excitations of quantum dimer on triangular lattice : Ba₃Cr₂O₈

TbMnO₃

M. Kenzelmann et.al. PRL 95, 087206 (2005)

1.2

(a)

Magnetic control of ferroelectric polarization

Nature **426**, 55 (2003)

Magneto-electric coupling mechanism (I)

- incommensurate spiral spin structure

M. Kenzelmann et.al. PRL 95, 087206 (2005)

Spin-current mechanism : antisymmetric exchange coupling

Mostovoy (PRL 2006), Katsura/Nagaosa/Balatsky (PRL 2005)

Symmetry-based Ginzburg-Landau Theory

A. B. Harris (*PRB* 2006)

YMn_2O_5

Y. Noda et al. JKPS 42, 1192 (2003)

Crystal structure of YMn₂O₅

Crystal structure : Orthorhombic Space group : Pbam

- edge sharing Mn⁴⁺O₆ octahedra along the c-axis
- Mn³⁺/Y³⁺ L L layers alternate along the c-axis
- neighboring Mn³⁺O₅ pyramids share an edge
- neighboring Mn⁴⁺O₆ octahedra share an edge
- neighboring Mn³⁺O₅ and Mn⁴⁺O₆ share a corner

YMn_2O_5 L.C. Chapon et al. PRL 96, 097601 (2006) Neutron powder diffraction Ferroelectric2 Ferroelectric1 Paraelectric Low Temperature Incommensurate Intermediate Temperature Commensurate Paramagnetic 18.5K T_N (Neel Temerature) 350 1.9K Sinusoidal magnetic moments modulation along Mh³+-Mn⁴+ zig-zag chain Intensity (arb. units) All spins lie on the ab-plane. 160 Almost collinear AFM ordering along chains sunningealong thebapaxise. 80 Almost collinear AFM ordering along chains running along the a-axis. - ++---++ arrangement along c. 1.5 2.0 2.5 Q (Å 1) - NO SPIRAL

Magneto-electric coupling mechanism (II)

Magneto-elastic mechanism: symmetric exchange coupling

Mostovoy & Cheong (Nature Materials 2007)

 lons are shifted away from centrosymmetric positions by exchange striction, leading to electric polarization

Is the obtained model spin structure correct?

- 1. Can the model structure reproduce available diffraction data?
- 2. Is the model structure unique?

L.C. Chapon et al. PRL 96, 097601 (2006)

Experimental methods

• Single crystals (1g) of YMn₂O₅ were provided by S.-W. Cheong's group.

• Neutron Four-circle Diffraction (FCD) : TriCS at PSI (Switzerland)

Polarized Neutron Diffraction (PND) : <u>NG-1</u> at NCNR (USA)

CRYOPAD at JAEA (Japan)

TriCS NG-1 CRYOPAD

Representation theory

In a material, the crystal symmetry restricts possible magnetic structures that the material order into. The space group of the magnetic structure, G_k , is a subgroup of the crystal symmetry group, G_k . And the possible spin structure is a linear combination of basis functions of the magnetic space group G_k .

For YMn_2O_5 , G_k with k = (0.5,0,0.25) has two dimensional irreducible representations

Mn^{3+}

		(1)	(2)	(3)	(4)
	$\mathbf{k_1}$	100	1 0 0	0 0 0	0 0 0
σ^{-1}	_	0 0 0	0 0 0	i(1 0 0)	-i(1 0 0)
τ_1	\mathbf{k}_2	100	100	0 0 0	0 0 0
	_	0 0 0	0 0 0	i(1 0 0)	-i(1 0 0)
	$\mathbf{k_1}$	0 1 0	0 1 0	0 0 0	0 0 0
τ^2	-	0 0 0	0 0 0	-i(0 1 0)	i(0 1 0)
τ_1	\mathbf{k}_2	0 1 0	0 1 0	0 0 0	0 0 0
	_	0 0 0	0 0 0	-i(0 1 0)	i(0 1 0)
	$\mathbf{k_1}$	0 0 1	0 0 -1	0 0 0	0 0 0
τ^3	-	0 0 0	0 0 0	-i(0 0 1)	-i(0 0 1)
τ_1	\mathbf{k}_2	0 0 1	0 0 -1	0 0 0	0 0 0
		0 0 1	0 0 0	-i(0 0 1)	-i(0 0 1)

$$\begin{split} \vec{S}(\vec{R},n) &= \{C^{11}\Psi_{1}^{k_{1}\tau_{1}^{1}} + C^{12}\Psi_{2}^{k_{1}\tau_{1}^{1}}\} \exp(i\vec{k_{1}}\cdot\vec{R}) + \{C^{13}\Psi_{1}^{k_{2}\tau_{1}^{1}} + C^{14}\Psi_{2}^{k_{2}\tau_{1}^{1}}\} \exp(i\vec{k_{2}}\cdot\vec{R}) \\ &+ \{C^{21}\Psi_{1}^{k_{1}\tau_{1}^{2}} + C^{22}\Psi_{2}^{k_{1}\tau_{1}^{2}}\} \exp(i\vec{k_{1}}\cdot\vec{R}) + \{C^{23}\Psi_{1}^{k_{2}\tau_{1}^{2}} + C^{24}\Psi_{2}^{k_{2}\tau_{1}^{2}}\} \exp(i\vec{k_{2}}\cdot\vec{R}) \\ &+ \{C^{31}\Psi_{1}^{k_{1}\tau_{1}^{3}} + C^{32}\Psi_{2}^{k_{1}\tau_{1}^{3}}\} \exp(i\vec{k_{1}}\cdot\vec{R}) + \{C^{33}\Psi_{1}^{k_{2}\tau_{1}^{3}} + C^{34}\Psi_{2}^{k_{2}\tau_{1}^{3}}\} \exp(i\vec{k_{2}}\cdot\vec{R}) \\ &+ \{C^{41}\Psi_{1}^{k_{1}\tau_{1}^{4}} + C^{42}\Psi_{2}^{k_{1}\tau_{1}^{4}}\} \exp(i\vec{k_{1}}\cdot\vec{R}) + \{C^{43}\Psi_{1}^{k_{2}\tau_{1}^{4}} + C^{44}\Psi_{2}^{k_{2}\tau_{1}^{4}}\} \exp(i\vec{k_{2}}\cdot\vec{R}) \\ &+ \{C^{51}\Psi_{1}^{k_{1}\tau_{1}^{5}} + C^{52}\Psi_{2}^{k_{1}\tau_{1}^{5}}\} \exp(i\vec{k_{1}}\cdot\vec{R}) + \{C^{53}\Psi_{1}^{k_{2}\tau_{1}^{5}} + C^{54}\Psi_{2}^{k_{2}\tau_{1}^{5}}\} \exp(i\vec{k_{2}}\cdot\vec{R}) \\ &+ \{C^{61}\Psi_{1}^{k_{1}\tau_{1}^{5}} + C^{62}\Psi_{2}^{k_{1}\tau_{1}^{5}}\} \exp(i\vec{k_{1}}\cdot\vec{R}) + \{C^{63}\Psi_{1}^{k_{2}\tau_{1}^{5}} + C^{64}\Psi_{2}^{k_{2}\tau_{1}^{5}}\} \exp(i\vec{k_{2}}\cdot\vec{R}) \end{split}$$

Intermediate Temperature Commensurate Phase (25K) J.-H. Kim et al. PRB 78, 245115 (2008)

Vertical H//b Ferr ctric Field Scattering plane: [H0L] Low Tempera Paramagnetic T(K) (Neel Temerature) **FCD PND** 1.0 1 Integral Intensity (arb.unit) (a) (b) 100 0.5 -0.5 -1.0 100 200 300 400 0 0 5 **Number of Reflections**

ITC (25K)

 YMn_2O_5

L.C. Chapon et al. PRL 96, 097601 (2006)

1.5 2.0 Q (Å 1)

0.5

1.0

2.5

3.0 3.5

ITC (25K)

Spin-Current mechanism

$P//-a \longrightarrow P//a P//b \longrightarrow P//b$

Magneto-Elastic mechanism

Low Temperature Incommensurate Phase (10K)

LTI (10K)

YMn₂O₅

Neutron powder diffraction

LTI (10K)

P//b

Spin-Current mechanism

Elastic and inelastic neutron scattering

Elastic and inelastic neutron scattering can provide crucial information regarding the nature of the magneto-electric coupling by determining the magnetic structure and the effective spin Hamiltonian, respectively. We have performed the following measurements.

- ✓ Determination of spin structure
 - : neutron diffraction
 - polarized neutron scattering (determine the axis of magnetic moments precisely)
- ✓ Identification of magnetic interactions: Spin Hamiltonian
 - : inelastic neutron scattering

Spin wave calculation of YMn_2O_5 (4 K)

Nearest-Neighbor Magnetic Interactions

Spin wave calculation of YMn₂O₅ (4 K)

 $J_1 = 3.8$, $J_2 = 0.76$, $J_3 = -0.49$, $J_4 = 4.56$, $J_5 = 1.29$ and D = 1.16 (unit : meV).

Conclusion

- The magnetic structures in the intermediate temperature commensurate and low temperature incommensurate phase of YMn₂O₅ have been determined by unpolarized and polarized neutron diffraction.
- The electric polarization in YMn₂O₅ can be explained by both spin-current and magneto-elastic mechanism.
- We are in the process of analyzing the data to construct the effective spin Hamiltonian in YMn₂O₅.

ITC (25K)

Entanglements

Consider a spin pair of $s_i = 1/2$

Entangled states

Magnetic excitations of Quantum dimer on triangular lattice : Ba₃Cr₂O₈

Crystal structure of Ba₃Cr₂O₈

H = 0

singlet-triplet excitations

M. Kofu et al. PRL 102, 037206 (2009)

magnons start to condense

Hc < H <Hs

H=Hc

0<H<Hc

Experimental methods

Powder (17g from	Y. Ueda	group)	and s	single	crystal	samples	(0.45g)
were used.							

Neutron scattering

Triple-Axis Spectroscopy : **SPINS** at NCNR (USA)

Time-Of-Flight Spectroscopy : **DCS** at NCNR (USA)

<u>SPINS</u> <u>DCS</u>

Magnetic excitations

- -Magnetic excitations appear only around 2meV.
- singlet-triplet excitations
- centered at $J_0 \sim 2.2 \text{ meV}$ gap energy D ~ 1.5 meV

Magnetic excitations

Magnetic excitations in $Ba_3Mn_2O_8$ (s=1 dimer system)

J=-1.64meV $J_c=0.12meV$ $J_p=-0.11meV$

M. B. Stone et al. PRL 100, 237201 (2008)

Magnetic excitations of Ba₃Cr₂O₈

Why are multiple modes observed?

The origin of multiple modes

1. Is one triply degenerate mode split into three modes? NO!

$Cs_3Cr_2Br_9$ (s=3/2 dimer system)

B. Leuenberger *et al.* (PRB **30**, 6300 (1984)) observed an optical magnon mode in Cs₃Cr₂Br₉ where Cr³⁺ ions form two bilayer triangular planes.

$$\omega^{\rm acoustic/optic}(\vec{\mathbf{q}})\!=\![J^2\!+\!M^2\!J(n_0\!-\!n_1)(J_p\gamma_p(\vec{\mathbf{q}})\!\mp\!J_c\mid\gamma_c(\vec{\mathbf{q}})\mid)]^{1/2}\;.$$

The origin of multiple modes

- 1. Is one triply degenerate mode split into three modes? NO!
- 2. Are there one acoustic and two optical modes? NO!

$$\begin{pmatrix} \frac{d^2\sigma(\vec{\kappa},\omega)}{d\Omega dE'} \end{pmatrix}_{\text{inelatic}} \sim F(\vec{\kappa})^2 (1-e^{-\hbar\omega/kT})^{-1} (n_0-n_1)(-J) \left(1-\cos(\vec{\kappa}\cdot\vec{R})\right) \\ \times \left[(1+2\cos(\vec{\rho}\cdot\vec{\tau})) \frac{\delta\left(\omega-\omega^{\text{acoustic}}(\vec{q})\right)}{\omega^{\text{acoustic}}(\vec{q})} \right. \\ + \left. (1-\cos(\vec{\rho}\cdot\vec{\tau})) \left\{ \frac{\delta\left(\omega-\omega^{\text{optic}_1}(\vec{q})\right)}{\omega^{\text{optic}_1}(\vec{q})} + \frac{\delta\left(\omega-\omega^{\text{optic}_2}(\vec{q})\right)}{\omega^{\text{optic}_2}(\vec{q})} \right\} \right]$$

$$\begin{pmatrix} \omega^{\text{acoustic}}(\vec{q}) \\ \omega^{\text{optic}_1}(\vec{q}) \\ \omega^{\text{optic}_2}(\vec{q}) \end{pmatrix} = \begin{pmatrix} \sqrt{J^2+J(n_0-n_1)(J_p\gamma_p(\vec{q})+2J_c|\gamma_c(\vec{q})|\cos\phi)} \\ \sqrt{J^2+J(n_0-n_1)(J_p\gamma_p(\vec{q})-2J_c|\gamma_c(\vec{q})|\cos(\phi-\frac{\pi}{3})} \\ \sqrt{J^2+J(n_0-n_1)(J_p\gamma_p(\vec{q})-2J_c|\gamma_c(\vec{q})|\cos(\phi+\frac{\pi}{3})} \end{pmatrix}$$

$$\vdots \text{ vector between sublattice,} \qquad \textbf{\textit{J}} : \text{ interaction between}$$

: vector between sublattice, J: interaction between a dimer

: reciprocal lattice vector

⇒ No optical mode can be observed

The origin of multiple modes

3. Are there spatially anisotropic interdimer interactions?

Spatially anisotropic interdimer interactions

$$\left(\frac{d^2\sigma(\vec{\kappa},\omega)}{d\Omega dE'}\right)_{\rm inelatic} \sim \frac{F(\vec{\kappa})^2 \left(1-\cos(\vec{\kappa}\cdot\vec{R})\right)}{\hbar\omega(\vec{\kappa})}$$

$$\hbar\omega(\vec{q}) = \sqrt{J^2 + J\gamma(\vec{q})},$$

$$\gamma(\vec{q}) = \sum_{i} J_{\text{inter}}(\vec{R}_i) \exp^{-i\vec{q}\cdot\vec{R}_i}$$

$$J_0=2.38 \text{meV}$$

 $J_1'=0.08$ $J_2'=0.10$ $J_4'=0.04$
 $J_1''=-0.15$ $J_2''=0.07$ $J_4''=0.10$
 $J_1'''=0.10$ $J_2'''=-0.52$ $J_4'''=0.09$

Conclusion

- Spin excitations are located at 2.2 meV (center) with 1 meV bandwidth.
- Multiple excitation modes can be explained by spatially anisotropic J model.

Thanks for your attention !!

Landau theory with TbMnO₃

Space group : Pbnm

$$\sum_{\gamma} b_{\gamma} \sigma_2(k) \sigma_3(-k) P_{\gamma} + \text{c.c.}$$

 2_y : $(x,y,z) \rightarrow (-x, -y, z)$ m_{xy} : $(x,y,z) \rightarrow (x, y, -z)$

 m_{yz} : $(x,y,z) \rightarrow (-x, y, z)$

P // z-direction

Geometric frustration

Triangular lattice

Frustrated

J. E. Greedan, J.Mater. Chem 1, 37 (2001)