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=) INTRODUCTION



Quantum computing now: a few qubits

useful quantum computing in the future:

many qubits

7/ qubits to factorize 15!

Necessity of investigations on quantum properties
of systems with many degrees of freedom

This talk : multimode quantum states of light



Quantum light 1

continuous variable regime

single mode, many photons

Y)= cC

Photon number

g

mode label




Quantum light 2

photon counting regime

single photon, many modes

Y)= c|n=1: )

/

Photon number

|

mode label




Multimode quantum light

Y)= . .c . mniln: )

n, n

many photons, many modes ...

...and an enormous amount of entanglement !



B \\WHAT IS A LIGHT MODE ?



Positive electric field operator:

EO(rt)= au (rot)

Scaling factor / /

Annihilation operator

Mode amplitude

{U } Orthonormal and complete set
of solutions of Maxwell equations




Example of modes

1 .
u (r ,t) =—€ e'(k r-w) Travelling plane wave

W

y y
Spatial Hermite-Gauss modes HX Hx
Temporal Hermite-Gauss modes WNV\M WW\N\MW

» 1 >

t




Freedom of choice of modal basis
The same quantum state |Y')
may have quite different forms

when expressed in different modal bases

In this talk : total freedom in change of mode basis

A related problem: bipartite entanglement

Part 1: subset {Ulp} Only
« local operations »

Part 2: subset{UZm} allowed




ex1: polarization modes

>

Y > — ‘y ;queeze >A ‘/ ;queeze >

Separable state in the basis of Ox,0y polarizations

Y)=al/ )AL )+ b|Cu)A X 45)

Entangled state on the basis of O,,; O_, polarizations



ex2. multimode single photon state

Y)= c|n=1: )

One defines  W(r.t)= cu(r,t)
Completed basis: v |
Y)=1:j=DA|0:j1 1)

Multimode on one basis, single mode in another



ex3: multimode coherent state

Y )=la,:0,a,:1..,a : ,.)
One defines Wl(r,t):% au (rt)
with: \b\z = |a \2

Completed basis: {Wk}
Y)=|b:k=1)A|0:k* 1)

Multimode on one basis, single mode in another



‘ INTRINSIC PROPERTIES OF LIGHT STATES



Invariants
with change of modal bases

- The vacuum state ‘O> =

0...0.)

- The total number of photons

N= aa= bb
J



Definition of an
Intrinsic single mode state

For an intrinsic single mode state
there exists a mode basis {ui (r )}

where the quantum state Is written as:

'Y )=|/ :u)A |0,..0,0,..)
r =(s:u)Al0,..0,0,.%0,.,0,.]

For an intrinsic multimode state |
there IS no such basis



Criterion for a single mode state

N. Treps, V. Delaubert, A. Maitre, J.M. Courty, C. Fabre Phys. Rev A71 013820 (2005)

A
]|

a ‘Y> (or ar ) are proportional

U ‘g(l)(r,r(,t,t()‘ =1

where

<é<'>(r DED(r ¢t<9>

g®(r,rét,tQ =

JEQ T DED (r,0)(EC (r 6t9EW) (r 6t9)

Whatever the light state, whatever the mode shape,
one always has perfect first order coherence



Intrinsic number of modes

dimension of space spanned by {é \Y >} {é r}

Example Y ) =

11)is an intrinsic two-mode state

- cannot be written as \ 2,0>

-will not produce perfect first order interference fringes




How to count Iintrinsic modes ?

Difficult task experimentally

A sufficient criterion for a non-single mode state:

In a single mode field, all the observables
have the same spatio-temporal variation

In a non-single mode field
the noise and the mean have not the same variation



Non single mode non-classical light
M. Martinelli, et al Phys. Rev. A67, 023808 (2003)
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Non single mode non-classical light
M. Martinelli, et al I?ths. Rev. A67, 023808 (2003) Also V. Boyer et al
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B « SUPERMODES »



Twin photons

, ¢

] ] . ~ Nm ~ 2 * - 2
Diagonalization H = L m( ) +L m( r;)
of matrix G: m=1 ~

6+

m

0)=|1:m) photon in « supermode » W, = U u



Generated gquantum state

Nm

H = Lm(lﬁm)2 +L*m(l:3;])2
m=1

\Y} tensor product of squeezed states
Intrinsic number of modes :

= dimension of space spanned by {Bm ‘ Y >}

= number N, of non zero L _



Link with Schmidt modes

Part 1: modes {Ul }
Case of the m P
bipartite system P

Part 2: modes{u }

2m

T A A * At A+
H = (Gm,palmaZp +G m’palmaZp)
m, p

Bloch-Messiah decomposition

Parker et al PRA 61, 032305 (2000) Law Eberly, PRL 92, 127903 (2004)

A

H=Cc /pb,+Hc)
I

Schmidt modes defined in each part

Degree of entanglement : Schmidt number



Example: the « SPOPO »

Synchronously Pumped type | Optical Parametric Oscillator

Jmm .

10° frequency N
modes In pump

| N
< AN

MHTM




Hamiltonian of the system

ATy

W W W

m g

a

W

a

qu = C(Wm’ Wq) apump(wm T Wq)

Crystal phase matching coefficient /

pump spectral amplitude

q
(10° 10° matrix)

G

mq




‘ TAILORING HAMILTONIANS



Eigenmodes, Gaussian case
Gaussian variation of qu . analytical solution

G(m,q) matrix E;genvalues, $1=30, $2=300, n1=0, n2=0
0.5
. k
? L, =L o(' r)
-0.5
-1 - - out of 10°,
0 10 20 30

only roughly 30
non zero eigenvalues

Hermite-Gauss
supermodes



Eigenmodes, non-Gaussian case

Degenerate collinear type | phase-matched BIBO
at 0.4pm with t,=100fs and I=5mm (long crystal)

supermode 1 supermode 2

01l ‘ '
012} ]
01y ] 0.05}
0.08} ]
0.06} 1 ] 0
004 S < 7o ]
o.02k | -0.05} ]
0
04} ]

0.0 L . . .
76 0.78 08 0.82 0.84 0.76 0.78 0.8 0.82 0.84
A um] A [um]

150 non zero eigenvalues




Tailoring supermodes and Hamiltonians

By changing pump and/or nonlinear medium shape
It is possible to taylor at will the number and the
spectrum of eigenvalues

100} r— oo Nm
2000 = 4 ) N
3000 '. .' . N
400} > & -0.9 pom
500 b A R } | |
100 200 300 400 500 0 10 20 30
Gm‘q matrix " eigenvalues L,



What about entanglement ?

Any mixing of n up to Ng squeezed supermodes
yields entanglement

Mixed modes U, = &Uand U = (sgnlL,)a,u,

|
are EPR entangled

Yields also multipartite entanglement

Another way to produce CV cluster states ?



‘ MODES AND MEASUREMENTS



generic optical measurement

..

detection

Estimator of p



An example: super-resolution

Image of fluorescent proteins by
conventional high resolution microscopy

Super-resolution image

Imaging Intracellular Fluorescent
Proteins at Nanometer Resolution
E. Betzig et al Science 313 1642 (2006)




Measurement strategy

I mage ||
Bl | % processing %o
Resolution:
Fluorescent Microscope POt ccp about 2 nm
molecule Spread -gmera
localized Function
at centered on
Xo=P Xo

Relevant information is distributed over many pixels



Best possible accuracy on p ?

_ .

optical system

Multipixel
detection
and
processing

The Cramer Rao bound gives the minimum variance on p
-given the input light state

-independently of measurement strategy

When input state is a coherent state, one can determine
the «Standard Cramer Rao bound » (SCRD)



The « noise mode »

..

optical system

Multipixel
detection
and
processing

The quantum noise on the estimator E(p) comes
from a single « noise mode » u;(X,y)

N. Treps, V. Delaubert, A. Maitre, J.M. Courty, C. Fabre Phys. Rev A71 013820 (2005)
One can build a basis of transverse functions starting with U; (X, Y)

Quantum fluctuations on E(p) come only from mode U, (X, Y)



Beyond the SCRDb

o .

I\ Multipixel
optical system detection

P 4 and
processing

Solution:
superimpose to the input light beam
a squeezed vacuum in mode u, (X,y)

Two-mode state: - one for « illumination »
- one for noise reduction



Back to the intrinsic number of modes

N Intrinsic number of modes
defined In twin-photon generation

allows us to improve simultaneously
N, Independent measurements,
and never more



- MEASUREMENTS IN IMAGES



A simple example :
spatial nanopositioning
In transverse plane




Usual technique using split detector

1,(t)
z{>—»
i5(t)

1,(D)- 1,()=E(p)

Mp

~

shot noise limit in split detector technique:

_V8 w,
PEo N




Beyond the standard quantum limit
by squeezing the noise mode

___________

Gaussian beamTEM,,

-

Noise mode

C. Fabre, J.-B. Fouet, A. Maitre, Optics Letters 25, 76 (2000)

to go beyond the shot noise limit:

TEM,, beam

A

sgueezed vacuum
INn noise mode

o o Photons spatially ordered two by two



Experimental implementation

Very small oscillation Collaboration
at > MHz N with ANU
\A o Australia

g L8 N. Treps et al, PRL 88, 203601 (2002)

, Science, 301, 940 (2003)

Oscillation amplitude



What about the SCRb ?

V. Delaubert, N. Treps, C. Fabre, H. Bachor, P. Réfrégier,
“Quantum limits in image processing” Europhys. Letters 81 44001 (2008)

Wo

(Dp)s CRb — ﬁ

N : total number of photons measured

W, : beam waist

_V8 W, _
(Dp)split _ 0 m — 1'22(Dp)SCRb

The split detector method is not the best technique !



Optimal technique 1

E(p)= dxdyixy, p)g(xy)

optimized choice of 9(X,Y) for a TEM,, beam:

g(Xxy) =X instead of

a(x,y)
+ g(Xy) I

+1

X X

Standard Cramer Rao Bound reached



Optimal technique 2
l E(p)

\4

optimized choice of local oscillator for a TEM,, beam:
U o (X y) =TEM,,
V. Delaubert et al Phys. Rev A 74 053823 (2006)

Standard Cramer Rao Bound reached again

In both cases, no other shot noise limited
measurement strategy can do better !



Beyond the SCRDb

Noise mode : the TEM,;,mode

E(p)

TEM,, In squeezed
vacuum state

The upper and lower parts of the beams are entangled

Experimental implementation:

M. Lassen et al. Phys. Rev Letters 98, 083602 (2007)



‘ MEASUREMENTS WITH FREQUENCY COMBS



A related measurement:
clock synchronization

“) G

$

time transfer problem

Implementation of Einstein’s protocol for
clock synchronization



SCRD in clock synchronization ?

B. Lamine, C. Fabre, N. Treps, Phys. Rev. Letters 101 123601 (2008)

In the case of a Gaussian coherent pulse:

(Dt)s- CRb —

1

1

N : total number of photons

JN 2\/1/1/5 +Du?| W :mean frequency
'T‘ A

Dw: frequency spread

A 4

[ —)

shift of pulse enveloppe maximum

V

shift of oscillation at optical frequency




Optimal measurement

Local Oscillator of optimized temporal shape
Standard Cramer Rao bound reached

no other measurement can do better on a shot noise limited pulse

Ultimate sensitivity ?
10mWw, 10 fs, 1s integration time
SCRb = 20 yoctoseconds



Beyond the SCRD

Observer A sends a squeezed vacuum state in noise mode:

-

Much better sensitivity
than by sharing entangled light between A and B



Generation of required squeezed states
Use the Synchronously pumped OPO

&

M H i

Jﬁm H i

t

% &

mode 1

§ mode 2



=) CONCLUSION



Mode-independent properties of quantum states
have been defined

Extract « eigenmodes » of a problem is always fruitful
Possibility of generating at will

Interesting multimode quantum states states
by tailoring the pump shape

Whatever its shape a given mode can be measured
destructively by homodyne technique

How to isolate physically a given « supermode » ?






