

Exploring the Nature of Matter Jefferson Lab and its plans

Hugh Montgomery

September 2009

Acknowledgements

This talk was compiled from the work of many others. In particular I have liberally used several transparencies from talks presented by my colleagues at Jefferson Laboratory and others from whom they in turn have "borrowed".

I have also made use of the Nuclear Science Advisory Committee (NSAC) long range plan from 2007.

The Talk

- Introduction
 - Electron as a Probe of Nuclei and Nucleons
 - Quarks, Partons and Gluons
 - Technologies of Jefferson Laboratory
 - 12 GeV Upgrade Project
- Hadron (Nuclear and Nucleon) Structure
- Precision Electroweak Measurements
- Hadron Spectroscopy
- A Future Machine?
- Conclusions

The Ultimate Constituents

4

Electron Scattering: Microscope for Nuclear Physics

- Electrons are point-like
- The interaction (QED) is well-known
- The interaction is weak

Vary *q* to map out Fourier Transforms of charge and current densities:
 λ ≃ 2π/q (1 fm ⇔ 1 GeV/c)

$$S_{fi} = \frac{-e^2}{\Omega} \,\overline{u}(k_2) \,\gamma^{\mu} \,u(k_1) \frac{1}{q^2} \int e^{iq \cdot x} \langle f | \hat{J}_{\mu}(x) | i \rangle d^4 x$$

 $\vec{q} = \vec{k_1} - \vec{k_2}$ = Momentum Transfer $\omega = E_p - E_{p'}$ = Energy Transfer $Q^2 = -q^2 = 4$ -Momentum Transfer

Nuclear Charge Distributions

Electron Scattering: A picture

Nucleon Structure Functions

A Surprise: The EMC Effect

Unexpected

- Despite the high momentum transfers involved
- the measured F₂^N depends on the nucleus!!!!!
- Lots of post-data wisdom from theorists!!
- Also from experimentalists (Arie Bodek)

Nucleon Nucleon Correlations

Experiment from Jefferson Lab Graphics from CERN Courier

Jefferson Lab

Superconducting radiofrequency (SRF) cavities undergo vertical testing.

Jefferson Lab

Cryomodules in the accelerator tunnel

An aerial view of the recirculating linear accelerator and 3 experimental halls.

Spin, Current, and Beam Delivery @CEBAF

12

Polarized Targets at JLab

G_Eⁿ, SSAs Transversity

Hall B: eg1

Dynamically polarized NH₃ ND_{3.}

Q² evolution of Nucleon Spin Structure, DVCS

Hall B: FROST

Frozen Spin Target, Butanol

"Missing" N* Search.

Hall C: Dynamically polarized, NH₃ND₃

$$G_E^n$$
, SANE, g_1^p , $g_1^{d \xrightarrow{\bullet}}$

HDIce from BNL under development: Polarized neutron target for N* expts.

12 GeV Upgrade

12 GeV Upgrade

Exciting new scientific opportunities – continue world leadership

- Discover the spectrum and properties of exotic mesons in mass range 1.5-2.6 GeV in order to explore the physical origins of quark confinement
- Define the spin and flavor structure of the nucleon in the valence region, hence test theories of di-quarks, pQCD....

- Determine the orbital angular momentum carried by up and down quarks and explore potential of Generalized Parton Distributions for tomographic imaging
- Exploit the unique capabilities of CEBAF at 12 GeV to explore the structure of nuclei at the level of quarks and gluons – understand the EMC effect
- Probe potential new physics (beyond the Standard Model) through precise test of evolution of sin² θ_{W} from Z-pole

Four Halls

Hall B - understanding nucleon structure via generalized parton distributions

Hall C - precision determination of valence quark properties in nucleons and nuclei

Hall D - exploring origin of confinement by

Hall A – short range correlations, form factors, hyper-nuclear physics, future new experiments

12 GeV SCHEDULE

Charged Pion Electromagnetic Form Factor

Where does the dynamics of the q-q interaction make a transition from the strong (confinement) to the perturbative (QED-like) QCD regime?

• It will occur earliest in the simplest systems \rightarrow the pion form factor $F_{\pi}(Q^2)$ provides our best chance to

determine the relevant distance scale experimentally

To measure $F_{\pi}(Q^2)$:

- At low Q² (< 0.3 (GeV/c)²): use π + e scattering $\rightarrow R_{rms} = 0.66$ fm
- At higher Q²: use ${}^{1}H(e,e'\pi^{+})n$

Scatter from a virtual pion in the proton and 1) extrapolate to the pion pole
→ large uncertainty
2) use a realistic pion electroproduction model

Super BigBite Spectrometer

19

12 GeV in Hall A:Scientific Plans

GEP-15 Experiment (approved by August PAC32):

Goal: Measure F_2/F_1 on proton up to $Q^2 = 15 \text{ GeV}^2$ Method: Recoil Polarization on elastic ep scattering Expected Result: Relative accuracy ~ 3% Physics Impact:

- Study spin flip part of the hadron current
- Constrain Generalized Parton Distributions at high t
- Critical test of Form Factor models and reaction dynamics

Requires a new spectrometer

Other relevant physics experiments

(same detectors as G_E^P , different configurations):

- G_Eⁿ to 7 GeV² (double present knowledge)
- Nucleon Spin structure via Deep Inclusive and Semi-Inclusive Deep Inelastic Scattering
- J/ Ψ photo-production

$$\left(G_{E}^{p}/G_{M}^{p}\propto-P_{x}/P_{z}\right)$$

Measuring High-x Structure Functions

Hall B: The CEBAF Large Acceptance Spectrometer (CLAS)

Present-day CLAS

CLAS12 Central Detector

Neutron counters IN2P3/INFN

conceptual phase)

Generalized Parton Distributions (GPDs)

x

 b_1

 $f(x,b_1)$

Sz.

xp

x

Proton form factors, transverse charge & current densities

Correlated guark momentum and helicity distributions in transverse space - GPDs

Structure functions, guark longitudinal momentum & helicity distributions

Deep Inelastic and Deep Exclusive Scattering

Tests of the Handbag Dominance

- To study the combined spatial and momentum distributions, need to measure GPDs
 - But must demonstrate that the conditions for factorization apply!
- One of the most stringent tests of factorization is the Q² dependence of the π electroproduction cross section

- σ_L scales to leading order as Q⁻⁶

- σ_T scales as Q⁻⁸
- As Q² becomes large: $\sigma_L \gg \sigma_T$
- Factorization theorems for meson electroproduction have been proven rigorously only for longitudinal photons [Collins, Frankfurt, Strikman, 1997]

$$2\pi \frac{d\sigma}{dtd\phi} = \frac{d\sigma_{T}}{dt} + \varepsilon \frac{d\sigma_{L}}{dt} + \sqrt{2\varepsilon (1+\varepsilon)} \frac{d\sigma_{LT}}{dt} \cos\phi + \varepsilon \frac{d\sigma_{TT}}{dt} \cos2\phi$$

Electron Scattering: A picture

Parity Violating Asymmetries

 $A_{PV} \sim 8 \times 10^{-5} Q^2$ 0.1 to 100 ppm SLAC E122: parity-violating deep inelastic scattering integrating liquid detector precision 20 GeV Deuterium monitors longitudinally **R** asymmetry ~ 10⁻⁴ polarized error ~ 10^{-5} electrons C.Y. Prescott et.al. 1978 Steady progress in technology $\Delta A_{LR}(ppm)$ Rate_ • part per billion systematic control 1% normalization control 10⁵ SLAC-E122 part per million JLab now takes the lead 1 -New results from HAPPEX Mainz-⁹Be E-05-007 HAPPEX 1 MHz_ -Photocathodes HAPPEX-He 0.1 107 SAMPLE Bates-¹²C -Polarimetry Mainz-A4 100 MHz -- Targets **G**0 HAPPEX-H -Diagnostics 2<mark>08</mark>Pb **10**⁹ 0 01 E 10 parts per billion -Counting Electronics

28

Extraction of *Q^pweak*

The Qweak experiment measures the parity-violating analyzing power Az

• Q^pweak is a well-defined experimental observable

• Q^pweak has a definite prediction in the electroweak Standard Model

Weak Couplings

Møller & Deep Inelastic Scattering Parity Violation

- Semi-Inclusive Program?

400 Z, cm

-400

-300

-200

-100

0

100

200

300

$sin^2\theta_W$

PREX: ²⁰⁸Pb Radius Experiment

Low Q² elastic e-nucleus scattering

- (E = 850 MeV, $\Theta = 6^{\circ}$) (Weak Interaction) couples mainly to neutrons
- Measure a Parity Violating Asymmetry

$$A = \frac{G_F Q^2}{2\pi \alpha \sqrt{2}} \left[1 - 4\sin^2 \theta_W - \frac{F_n (Q^2)}{F_P (Q^2)} \right]$$

- Fundamental check of Nuclear Theory
- Input to Atomic PV Expts
- Neutron Star Structure

$$\frac{dA}{A} = 3\% \quad \rightarrow \quad \frac{dR_n}{R_n} = 1\%$$

Symptotic Freedol

Small Distance High Energy

Perturbative QCD

High Energy Scattering

Large Distance Low Energy

Strong QCD

Spectroscopy

Gluonic Degrees of Freedom Missing

Hybrid mesons and mass predictions

q a Jpc q Lattice -+ 1.9 GeV 2+- 2.1 GeV 0+- 2.3 GeV

Lowest mass expected to be $\pi_1(1^{-+})$ at 1.9±0.2 GeV

35

GlueX uses Coherent Bremsstrahlung

Finding the Exotic Wave

 $\gamma \rightarrow V(ector Meson)$ S = 1 (Double-blind M. C. exercise)

An exotic wave $(J^{PC} = 1^{-+})$ was generated at level of 2.5 % with 7 other waves. Events were smeared, accepted, passed to PWA fitter.

Electron Ion Collider

- Recommended as a generic capability by:
 - NSAC Long Range Report
 - IUPAP WG9 Working Group on world-wide nuclear facilities
- Candidate Facilities with different key characteristics
 - LHeC at CERN
 - eRHIC at Brookhaven National Laboratory
 - ELIC ELectron Ion Collider at Jlab
 - MANUEL at FAIR-GSI
 - Plus several new ideas!!!!
- Natural Extension of Jlab nuclear physics agenda
- Issues
 - Physics Case(s) not yet broadly accepted
 - Cost scale is thought to be large
- Jefferson Lab and BNL: Joint EIC Advisory Committee reports to Laboratory Directors

ELectron Ion Collider

Medium Energy Electron Ion Collider

Map the spin and 3D quark-gluon structure of protons Discover the role of gluons in atomic nuclei Understand the creation of the quark-gluon matter around us

Potential Physics Program Elements

- Inclusive DIS
 - Unpolarized: EMC effect, gluons in nuclei
 - Polarized: ΔG, Δq
- Semi-Inclusive DIS
 - Unpolarized: flavor decomposition of sea, strangeness
 - Polarized: orbital angular momentum in TMDs, flavor separation of Δq
- Exclusive (GPDs: transverse spatial distributions, orbital angular momentum)
 - Diffractive: gluons from DVCS and J/ψ; DVCS on nuclei
 - Non-diffractive: sea quarks from light mesons

Experimental requirements

MEIC Exclusive Process Kinematics

- · Electrons scattering angles are large compared with fixed-target kinematics.
- Large *e-p* momentum asymmetry would require e/π discrimination at large angles in order to reach Q² ~ 10 GeV² (ensuring factorization).
- Small-angle coverage only needed for symmetric collisions and photoproduction.

EIC Working Group/Initiative at Jefferson Lab

Coordinators

- UGBOD Chair Zein-Eddine Meziani
- Jefferson Lab AD for Accelerators Andrew Hutton
- Jefferson Lab AD for Physics Larry Cardman
- Goals
- Physics/Detectors
- **Explore the case for a high luminosity** (10³⁴ -- 10³⁵ cm⁻² sec⁻¹, High Polarization (80% e, 70%p) collider with moderate energy reach.
- **Delineate those physics goals** which can be achieved, and enumerate those which are not addressed. Concentrate on key experiments, the real physics drivers.
- **Explore at least one concept** study and propose solutions for high luminosity.

Machine

- A concept for a machine with high luminosity, high polarization and moderate energy has been developed. The machine is somewhat novel:
- Validate the existing conceptual design of the machine.
- Develop ideas and an R&D program which will address any deficiencies.
- Report
- Write a white paper which documents the physics case and which describes the machine and detectors.
- Timescale
- To be maximally useful, the report should be available by the **beginning of summer 2010**. It would then permit a rational discussion of the potential for such a machine

Nuclear Physics at Jefferson Laboratory

Exploring the Nature of Matter

JLAMP Spares

JLAMP Follows

Jefferson Lab Free Electron Laser

JLAMP

JLAMP Layout

Spares Follow

Abstract

Thomas Jefferson National Accelerator Facility (Jefferson Lab) is one of the premier facilities for nuclear and hadronic physics in the world. With high luminosity and high polarization continuous wave electron beams, the 6 GeV physics program has produced exciting results during the past decade. Currently the laboratory is executing an upgrade of the accelerator from 6 GeV to 12 GeV: this project was recommended as the top priority in the most recent US nuclear physics long-range plan. The upgrade, which also includes changes to the experimental facilities, will open new avenues of investigation. Beyond this upgrade Jefferson Lab is preparing the case for a future Electron Ion Collider.

Electron Scattering

- 1950: Does the proton have finite size and structure?
 - Elastic electron-proton scattering
 - ⇒ the proton is not a point-like particle but has finite size
 - charge and current distribution in the proton, G_E/G_M
- Nobel prize 1961- R. Hofstadter
- 1960-1980: What is the internal structure of the proton?
 - Deeply inelastic scattering
 - ⇒ discover quarks in 'scaling' of structure functions
 - quark longitudinal momentum distribution
 - quark helicity distribution
- Nobel prize 1990 J. Friedman, H. Kendall, R. Taylor

