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Overview
Classical information can be stored for 
arbitrarily long times because of phase 
transitions

Can quantum information be stored for 
arbitrarily long times in a passive way?

Topological Order and robust memory for 
virtual processes: the Toric Code  

Thermal Fragility of the Toric Code

The Toric-Boson model and finite T 
quantum memory



Memory and symmetry 
breaking: Weiss-Curie model
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We can see a critical temperature Tc



What is Quantum 
information?

A qubit is a generic superposition α|0〉 + β|1〉 with |α|2 + |β|2 = 1

|0〉+|1〉√
2

→ |0〉−|1〉√
2

is an error! it will destroy coherence

we would end up with a state of the form |α|2|0〉〈0| + |β|2|1〉〈1|

this is a classical state!

Of course |0〉 → |1〉 is still an error



The quantum is fragile

Since we have two minima, we encode two quantum states |0〉 and |1〉 in them
and we saw that the process |0〉 → |1〉 takes exponentially long time below the
critical temperature

|0〉+|1〉√
2

and |0〉−|1〉√
2

are only separated by a finite energy barrier

they are connected by an operator of the form σz
i ⊗

∏
j $=i Ij

the entropy always prevails!



In the classical case, one can have long lived 
metastable states whose life time scales 
(exponentially) with the size of the system

The thermodynamic limit yields a breaking 
of ergodicity, a phase transition

In the quantum case, the superpositions 
are not long lived (scaling with the size of 
the system) even if there is a phase 
transition

Does it have to be so? Is it a law of nature 
and we do need error correction?



Topological Order
The environment 
always acts 
locally

So perhaps one 
can put the 
information in 
some global 
degrees of 
freedom

For example, the 



The Z2 field

this is the algebra of a spin 1
2
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W (x)
2 |0〉1 = |1〉1

W (x)
2 |1〉1 = |0〉1

If we exchange 1↔ 2 we make another qubit

Now what we need is that these states span the ground state

and we would like to have a gap
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The Toric Code (Kitaev 1997)

The low energy of this theory is like a Z2 gauge theory
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Robust ground state 
degeneracy

L = span{|W (z)
1 W (z)

2 〉}

with g holes we would have g copies of it and dimL = 22g

Introduce a perturbation t
∑

j σx
j

the splitting is ∆E ∼ ( t
J )L



Thermal fragility
The environment creates a finite density of 
defects and moves them around in a 
brownian motion

When the defects wind around the torus 
and annihilate they have made an error

Both defects are string-like objects, they 
move freely

The time of recombination is microscopic: 
trec ∼ exp(U/kBT )



Tension to the strings: if we confine the strings, 
we kill the topological order, the system has a 
quantum phase transition and the qubits are 
lost

3D model. One error is a membrane its 
energetics gives a phase transition, but the 
other error is a string. Just classical memory

4D model: now both errors are membranes 
and all works. But the real world is in 3D...

So maybe in the real world, quantum mechanics 
is really microscopic! Or is it?



What if there was a long range force 
between the defects that makes them 
attract

then their energetics could imply a critical 
temperature under which they are 
confined

the topological order would still be 
preserved because the force only sees the 
defects, not the spins



The Toric-Boson 
Model

The recipe is to have a system made of the 
toric code immersed in a sea of phonons

the phonons interact with the defects, and 
they  experience an attractive force

then the whole system is subject to a 
generic (but local) environment. Is the 
system robust?



Hboson =
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we have ak modes out of plane and bk in plane modes
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∑
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The interaction Hamiltonian reads



The defects are placed at positions xl: ρ(x) =
∑

l nl δ(x− xl)

The Fourier transform is ρ̃(k) =
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(i = x, y)

Now define the shifted operators:



H = Htoric +
∑

k !=0

ωk α†
kαk +

∑

k !=0,i=x,y

Ωk β(i)†
k β(i)

k

− 1
V

∑

k !=0

|ρ̃(k)|2
(

g2
ω

2 ωk
2

+
g2
Ω(k2

x + k2
y)

2Ω2
k

)

the total Hamiltonian is

The last term generates a potential. If we use acousting phonons with dispersion
ωk = vω|k| and Ωk = vΩ|k|, we obtain a gravitational potential



The gravitational 
potential
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ξL scales with the size of the system, so canceling it in (2) is paid in (3) with
an infinite chemical potential
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The final expression for the 
effective potential is

Vd (x1, . . . , x2N ) =
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Attention! infinite couplings! But the theory is finite!

The role of the in-plane 
phonons is to prevent the 

arising of defects that 
scale with N^2



Now we have a force. But is this force 
robust? 

The environment could create generic 
terms that open a gap in the dispersion 
relation for the phonons

But phonons exist in nature!

The dispersion relation is protected by 
symmetry: acoustic waves to propagate in 
mediums, even effective mediums with 
some broken translational symmetry



And now, is the quantum information 
preserved?

the partition function of N particles of mass m 
interacting gravitationally becomes divergent.

Gravitational forces overcome entropy and lead 
to a collapse, where all the particles coalesce in 
a single point. Gravitational forces increase with 

N, so N=2 gives the critical temperature 

Beyond a critical temperature Tc = NGm2/4

trec ∼ exp[α ln(L)/T ] ∼ Lα/T

The quantum memory lasts for a time that is polynomial 
in the system size



Conclusions

Classical information is stable in a passive way 
because there are classical metastable states 
with long (scaling with L) lifetime

The question is: are there metastable quantum 
states? In the sense that both the states and 
their coherence is long lived with a quantity 
scaling like L?

The toric-boson model shows that quantum 
states can be long lived (but we also see why 
usually they have microscopic lifetimes)


