The Toric-Boson model and quantum memory at finite temperature

A.H., C. Castelnovo, C. Chamon

Phys. Rev. B 79, 245122 (2009)

Overview

- Classical information can be stored for arbitrarily long times because of phase transitions
- Can quantum information be stored for arbitrarily long times in a passive way?
- Topological Order and robust memory for virtual processes: the Toric Code
- Thermal Fragility of the Toric Code
- The Toric-Boson model and finite T quantum memory

Memory and symmetry breaking: Weiss-Curie model

$$H = -\frac{J}{N} \left(\sum_{j} \sigma_{j}^{z}\right)^{2}$$

$$p(x \to x') \simeq p(x' \to x) e^{-\frac{\Delta F}{k_B T}}$$

 $h(x) = -x \ln x - (1-x) \ln(1-x)$

 $E(x) = -JNx^2$

$$F(x,T) = E - TS = N\left[-kTh\left(\frac{x+1}{2}\right) - Jx^2\right]$$

We can see a critical temperature T_c

What is Quantum information?

A qubit is a generic superposition $\alpha |0\rangle + \beta |1\rangle$ with $|\alpha|^2 + |\beta|^2 = 1$

Of course $|0\rangle \rightarrow |1\rangle$ is still an error

 $\frac{|0\rangle+|1\rangle}{\sqrt{2}} \rightarrow \frac{|0\rangle-|1\rangle}{\sqrt{2}}$ is an error! it will destroy coherence

we would end up with a state of the form $|\alpha|^2 |0\rangle \langle 0| + |\beta|^2 |1\rangle \langle 1|$

this is a classical state!

The quantum is fragile

Since we have two minima, we encode two quantum states $|0\rangle$ and $|1\rangle$ in them and we saw that the process $|0\rangle \rightarrow |1\rangle$ takes exponentially long time below the critical temperature

 $\frac{|0\rangle+|1\rangle}{\sqrt{2}}$ and $\frac{|0\rangle-|1\rangle}{\sqrt{2}}$ are only separated by a finite energy barrier

they are connected by an operator of the form $\sigma_i^z \otimes \prod_{j \neq i} I_j$

the entropy always prevails!

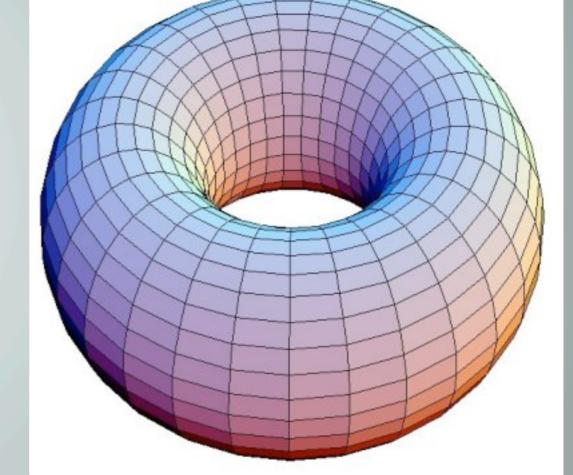
In the classical case, one can have long lived metastable states whose life time scales (exponentially) with the size of the system

- The thermodynamic limit yields a breaking of ergodicity, a phase transition
- In the quantum case, the superpositions are not long lived (scaling with the size of the system) even if there is a phase transition
- Does it have to be so? Is it a law of nature and we do need error correction?

Topological Order

 The environment always acts locally

 So perhaps one can put the information in some global degrees of freedom



The Z2 field

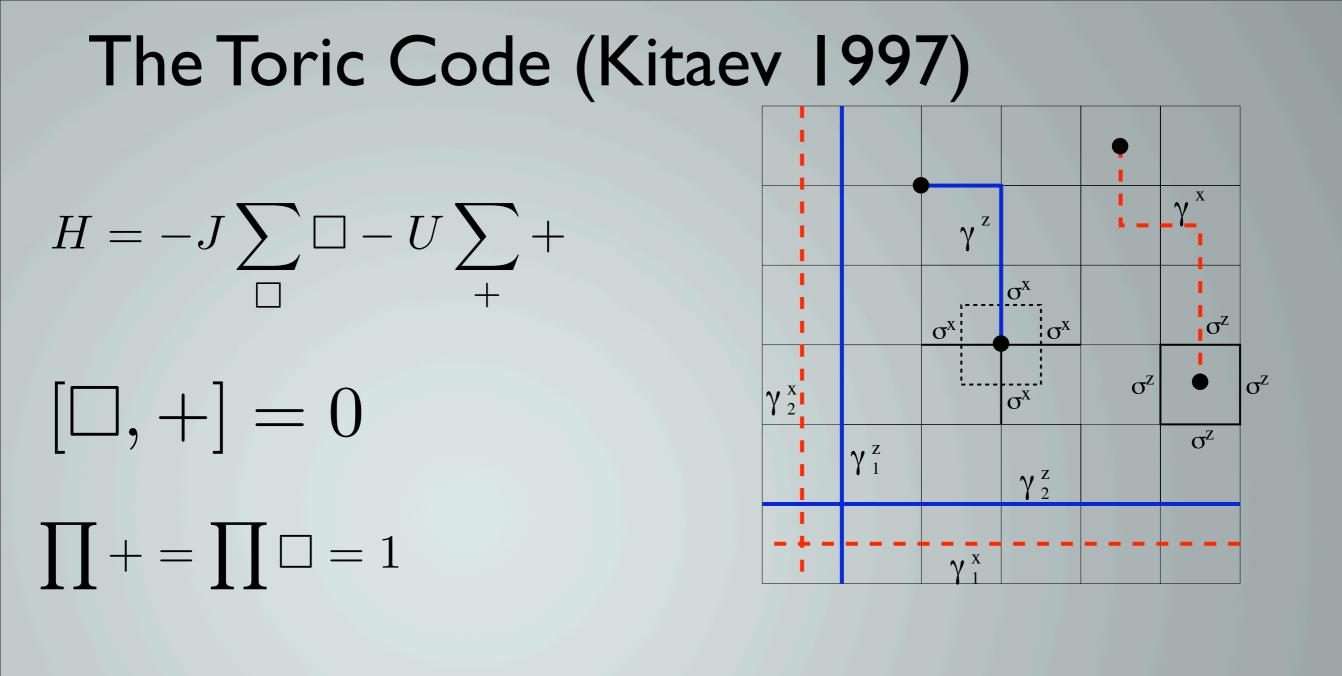
$$W_1^{(z)} = \prod_{j \in \gamma_1^z} \sigma_j^z$$
$$W_1^{(x)} = \prod_{j \in \gamma_1^x} \sigma_j^x$$

$$W_{1}^{(z)}|0\rangle_{1} = |0\rangle_{1}$$
$$W_{1}^{(z)}|1\rangle_{1} = -|1\rangle_{1}$$
$$W_{2}^{(x)}|0\rangle_{1} = |1\rangle_{1}$$
$$W_{2}^{(x)}|1\rangle_{1} = |0\rangle_{1}$$

this is the algebra of a spin $\frac{1}{2}$

If we exchange $1 \leftrightarrow 2$ we make another qubit

Now what we need is that these states span the ground state and we would like to have a gap



 $|+_1+_2\cdots+_{N-1}; \Box_1\Box_2\ldots\Box_{N-1}; W_1^{(z)}W_2^{(z)}\rangle$

The low energy of this theory is like a Z₂ gauge theory

Robust ground state degeneracy

$$\mathcal{L} = \operatorname{span}\{|W_1^{(z)}W_2^{(z)}\rangle\}$$

with g holes we would have g copies of it and dim $\mathcal{L} = 2^{2g}$

Introduce a perturbation $t \sum_{j} \sigma_{j}^{x}$

the splitting is $\Delta E \sim (\frac{t}{J})^L$

Thermal fragility

- The environment creates a finite density of defects and moves them around in a brownian motion
- When the defects wind around the torus and annihilate they have made an error
- Both defects are string-like objects, they move freely
- The time of recombination is microscopic: $t_{rec} \sim \exp(U/k_BT)$

Tension to the strings: if we confine the strings, we kill the topological order, the system has a quantum phase transition and the qubits are lost

- 3D model. One error is a membrane its energetics gives a phase transition, but the other error is a string. Just classical memory
- 4D model: now both errors are membranes and all works. But the real world is in 3D...
- So maybe in the real world, quantum mechanics is really microscopic! Or is it?

- What if there was a long range force between the defects that makes them attract
- then their energetics could imply a critical temperature under which they are confined
- the topological order would still be preserved because the force only sees the defects, not the spins

The Toric-Boson Model

- The recipe is to have a system made of the toric code immersed in a sea of phonons
- the phonons interact with the defects, and they experience an attractive force
- then the whole system is subject to a generic (but local) environment. Is the system robust?

we have a_k modes out of plane and b_k in plane modes

$$H_{\text{boson}} = \sum_{k \neq 0} \omega_k \ a_k^{\dagger} a_k + \sum_{\substack{k \neq 0, i = x, y}} \Omega_k \ b_k^{(i)\dagger} b_k^{(i)}$$

The interaction Hamiltonian reads

$$H_{int} = \sum_{\ell=s, p} n_{\ell} \left[\sum g_{\omega} \varphi(x_{\ell}) + g_{\Omega} \left(\partial_x \phi^x(x_{\ell}) + \partial_y \phi^y(x_{\ell}) \right) \right]$$

The defects are placed at positions x_l : $\rho(x) = \sum_l n_l \, \delta(x - x_l)$

The Fourier transform is $\tilde{\rho}(k) = \sum_{l} n_{l} e^{ik \cdot x_{l}}$

Now define the shifted operators:

$$\alpha_{k} \equiv a^{k} + \frac{g_{\omega} \tilde{\rho}^{\dagger}(k)}{\sqrt{2V} \omega_{k}^{3/2}}$$

$$\beta_{k}^{(i)} \equiv b_{k}^{(i)} + \frac{ig_{\Omega}k_{i} \tilde{\rho}^{\dagger}(k)}{\sqrt{2V} \Omega_{k}^{3/2}} \qquad (i = x, y)$$

the total Hamiltonian is

$$H = H_{\text{toric}} + \sum_{k \neq 0} \omega_k \, \alpha_k^{\dagger} \alpha_k + \sum_{k \neq 0, i=x,y} \Omega_k \, \beta_k^{(i)\dagger} \beta_k^{(i)}$$
$$- \frac{1}{V} \sum_{k \neq 0} |\tilde{\rho}(k)|^2 \left(\frac{g_{\omega}^2}{2\omega_k^2} + \frac{g_{\Omega}^2(k_x^2 + k_y^2)}{2\Omega_k^2} \right)$$

The last term generates a potential. If we use acousting phonons with dispersion $\omega_k = v_{\omega}|k|$ and $\Omega_k = v_{\Omega}|k|$, we obtain a gravitational potential

The gravitational potential

$$V_{\Omega}(r) + V_{\omega}(r) = \frac{g_{\omega}^{2}}{v_{\omega}^{2}} \frac{1}{2\pi} \ln \frac{|r|}{a}$$
(1)
+ $\left[\frac{g_{\Omega}^{2}}{v_{\Omega}^{2}} \frac{1}{V} - \frac{g_{\omega}^{2}}{v_{\omega}^{2}} \frac{1}{2\pi} \ln \frac{\xi_{L}}{a} \right]$ (2)
- $\frac{g_{\Omega}^{2}}{v_{\Omega}^{2}} \delta^{(2)}(r)$ (3)

 ξ_L scales with the size of the system, so canceling it in (2) is paid in (3) with an infinite chemical potential

$$\frac{g_{\Omega}^2}{v_{\Omega}^2} = \frac{g_{\omega}^2}{v_{\omega}^2} \frac{V}{2\pi} \ln \frac{\xi_L}{a} \sim L^2 \ln L$$

The role of the in-plane phonons is to prevent the arising of defects that scale with N^2

Attention! infinite couplings! But the theory is finite!

The final expression for the effective potential is

$$V_d(x_1, \dots, x_{2N}) = \frac{g_{\omega}^2}{v_{\omega}^2} \frac{1}{4\pi} \sum_{\ell, \ell'=1}^{2N} n_{\ell} n_{\ell'} \ln \frac{|x_{\ell} - x_{\ell'}|}{a}$$

Now we have a force. But is this force robust?

- The environment could create generic terms that open a gap in the dispersion relation for the phonons
- But phonons exist in nature!
- The dispersion relation is protected by symmetry: acoustic waves to propagate in mediums, even effective mediums with some broken translational symmetry

And now, is the quantum information preserved?

Beyond a critical temperature $T_c = NGm^2/4$

the partition function of N particles of mass m interacting gravitationally becomes divergent.

Gravitational forces overcome entropy and lead to a collapse, where all the particles coalesce in a single point. Gravitational forces increase with N, so N=2 gives the critical temperature

$$t_{\rm rec} \sim \exp[\alpha \ln(L)/T] \sim L^{\alpha/T}$$

The quantum memory lasts for a time that is polynomial in the system size

Conclusions

- Classical information is stable in a passive way because there are classical metastable states with long (scaling with L) lifetime
- The question is: are there metastable quantum states? In the sense that both the states and their coherence is long lived with a quantity scaling like L?
- The toric-boson model shows that quantum states can be long lived (but we also see why usually they have microscopic lifetimes)