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Introduction - Heavy Ion Collisions → QGP or QGL?

• RHIC has made extensive studies of the matter generated during
heavy ion collisions, T0 ∼ 400 MeV ∼ 2Tc.

• LHC will continue this investigation at even higher temperatures,
T0 ∼ 800-1000 MeV ∼ 4 − 5Tc.

• Early RHIC data hinted that the perturbative approach was
insufficient to explain observations, and that a strongly-coupled
nearly perfect liquid may be more appropriate. LHC?

• Should we be surprised since at RHIC and LHC the running
coupling expected is gs ∼ 2 or αs ∼ 0.3?

• Strong coupling limit has some very nice features, but gs ≪ ∞.

• Can perturbative QCD results reproduce lattice data
thermodynamic functions at such “intermediate” couplings
(gs ∼ 2)?



Introduction - Perturbative Thermodynamics

Perturbative QCD free energy vs temperature. (πT ≤ µ ≤ 4πT )
QCD with Nc = 3 and Nf = 2.

4-d lattice results from Karsch et al, 03.

(Here αs = g2
s/4π)

• The weak-coupling expansion of the
QCD free energy, F , has been
calculated to order α3

s log αs. 1,2,3,4

• At temperatures expected at RHIC
energies, T ∼ 0.3 GeV, the running
coupling constant αs(2πT ) is
approximately 1/3, or gs ∼ 2.

• The successive terms contributing to
F can strictly only form a decreasing
series if αs

<∼ 1/20 which corresponds

to T ∼ 105 GeV.

1 Arnold and Zhai, 94/95.

2 Kastening and Zhai, 95.

3 Braaten and Nieto, 96.

4 Kajantie, Laine, Rummukainen and Schröder, 02.



Introduction - NLO HTLpt result

LO and NLO HTLpt free energy of QCD with Nc = 3 and Nf = 2

together with the perturbative prediction accurate to g5.

• Hard-thermal-loop (HTL) perturbation
theory 4,5 is a systematic,
self-consistent and gauge-invariant
reorganization of thermal quantum
fields.

• Hard-thermal-loop perturbation theory
is formulated in Minkowski space,
therefore it is in principle possible to
carry out real time calculations.

• Interested in T > 2 − 3 Tc.

4 Andersen, Braaten, Strickland, 99/99/99.
5 Andersen, Braaten, Petitgirard, Strickland, 02;

Andersen, Petitgirard, Strickland, 03.



But there is still work to do!

• Problems remain:

◦ g4 and g5 terms can’t be fully fixed at NLO.

◦ For example, when the NLO HTLpt is expanded in a truncated
series in g, it is found that the g5 term has approximately the
right magnitude, but the wrong sign when comparing to the
known weak-coupling expansion.

◦ Running coupling doesn’t enter at NLO. At this order, running
coupling needs to be put in by hand.

• Can be fixed by going to NNLO.

Time to roll up your sleeves . . .



Anharmonic Oscillator

• Consider the perturbation series for the ground state energy, E, of
a simple anharmonic oscillator with potential

V (x) =
1
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4
x4 (ω2, g > 0)

• Weak-coupling expansion of the ground state energy E(g) is
known to all orders (Bender and Wu 69/73)
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• Because of the factorial growth, the expansion is an asymptotic
series with zero radius of convergence!



Anharmonic Oscillator



Variational Perturbation Theory (Janke and Kleinert 95/97)

• Split the harmonic term into two pieces and treat the second as
part of the interaction

ω2 → Ω2 +
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ω2 − Ω2
)

=⇒ EN (g, r) = Ω
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Variational Perturbation Theory



Finite Temperature QED/QCD Primer

• Long-wavelength chromoelectric fields with momentum
k ∼ λ−1 ∼ gT are “screened” by an induced mass called the
Debye mass mD.

• At high temperatures particles → massive quasiparticles

• k ∼ gT defines the soft scale, k ∼ T defines the hard scale.

• The inverse Debye mass is called the “Debye screening length”, ie
rD = 1/mD.

VColoumb → VDebye ∼
e−mDr
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e−r/rD
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Hard Thermal Loops: Propagator Resummation



Finite Temperature QED/QCD Primer

• At leading order in the coupling constant m2
D = g2T 2 for QCD and

m2
D = e2T 2/3 for QED; however, this is not the end of the story.

• Since QCD and QED are gauge theories, there are relationships
between the n-point functions which must be maintained in order
to preserve gauge invariance.

• These are called Ward-Takahashi or Slavnov-Taylor identities, e.g.
pµΓµ(p, q, r) = S−1(q) − S−1(r) must be obeyed by the
fermion-gauge field vertex function Γµ and propagator S.

• All n-point functions of the theory must be consistently derived.

LHTL = −
1
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DTr
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Finite Temperature QED/QCD Primer

LYM + LHTL =
1

4
GµνGµν −

1

2
m2

DTr

(

Gµα

〈

yαyβ

(y · D)2

〉

y

Gµ
β

)

• Gµν = ∂µAν − ∂νAµ + ig[Aµ, Aν ]

• Dµ = ∂µ + igAµ

• Expanding to quadratic order in A gives propagator (2-point
function)

• Expanding to cubic order in A gives dressed gluon three-vertex

• Expanding to quartic order in A gives gressed gluon four-vertex

• Contains an infinite number of higher order vertices



Hard-Thermal-Loop Perturbation Theory (HTLpt)

• Hard-thermal-loop perturbation theory is a reorganization of the
perturbative series for QCD which is similar in spirit to variational
perturbation theory

LHTLpt = (LQCD + LHTL)

∣
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The HTL “improvement” term is
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where 〈· · · 〉y indicates angle average



HTLpt: 1-loop free energy for pure glue

• Separation into hard and soft contributions (d = 3 − 2ǫ)
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HTLpt: 1- and 2-loop diagrams for QCD

1- and 2-loop QCD diagrams contributing to HTLpt



HTLpt: 1- and 2-loop free energy for pure glue

4d Lattice "Pure Glue" (Boyd et al)

   Hard Thermal Loop
   Perturbation Theory
   (Andersen, Braaten, 
   Petitgirard, Strickland)

NLO Approximately 

Self-Consistent

HTL Phi-Derivable

(Blaizot, Iancu, Rebhan)

LO and NLO HTLpt free energy of pure glue vs temperature

Andersen, Braaten, Petitgirard, Strickland, 02.



HTLpt: naive pert. expansion of QED free energy

Perturbative QED free energy



HTLpt: 1- and 2-loop diagrams for QED

1- and 2-loop QED diagrams contributing to HTLpt



HTLpt: 3-loop diagrams for QED

3-loop QED diagrams contributing to HTLpt



HTLpt: 3-loop diagrams for QED

3-loop HTLpt QED diagrams which can be neglected in our approach since we make a dual

expansion in e and mD assuming mD ∼ e at leading order.



HTLpt: 3-loop thermodynamic potential for QED

• The NNLO thermodynamic potential reads

ΩNNLO = −π2T4
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PURELY ANALYTIC!

• To eliminate the mD and mf dependence, the gap equations are
imposed

∂
∂mD

Ω(T, α,mD,mf , δ = 1) = 0

∂
∂mf

Ω(T, α,mD,mf , δ = 1) = 0



HTLpt: 2- and 3-loop free energy for QED

NLO and NNLO HTLpt predictions for QED free energy



HTLpt: comparison of different methods/schemes

Comparison of three different predictions for the QED free energy at µ = 2πT

3-loop Φ-derivable result is taken from Andersen and Strickland, 05



NNLO HTLpt thermodynamic functions for pure glue
• Together with Jens Andersen (Trondheim, Norway) and my

graduate student Nan Su (Frankfurt Institute for Advanced
Studies, Frankfurt Germany) we have recently completed a three
loop calculation of the HTLpt thermodynamic potential
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• For the Debye mass above we use the NLO expression for
Π00(P = 0) which was derived using effective field theory methods
(Braaten and Neito, 1995).

• For αs we use the standard 3-loop running.



NNLO Pressure (Andersen, Strickland, Su, forthcoming)
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NNLO Energy (Andersen, Strickland, Su, forthcoming)
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NNLO Entropy (Andersen, Strickland, Su, forthcoming)
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Conclusions and Outlook

• The problem of bad convergence of finite temperature
weak-coupling expansion is generic.

• It does not just occur in gauge theories, but also in scalar theories,
and even in quantum mechanics.

• Variational perturbation theory and hard-thermal-loop perturbation
theory can improve the convergence of perturbative calculations in
a gauge-invariant manner which is formulated in Minkowski space.

• The NNLO results for pure-glue SU(3) Yang-Mills look very good
for T > 2 − 3Tc! Especially considering that there are no free
parameters to play with.

• Once the NNLO full QCD thermodynamics is obtained (COMING
SOON!) we can start trying to use the HTLpt reorganization to
calculate dynamic quantities such as momentum diffusion,
viscosities, etc.
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