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About Me

Phillip Szepietowski (can call me Phil, but not Dr. Phil)

» Graduated May 2011 - University of Michigan, advisor - Jim Liu

» Started at UVA: last month!

Research Interests
Gauge/gravity duality — both applications and conceptual questions

My Work

> Higher derivative corrections in the AdS/CFT correspondence

» Consistent truncations of |IB supergravity <~ most of this talk
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Strongly Coupled Field Theories

Examples of Strongly Coupled Systems

> QCD near Agecp ~ 200MeV

» Various condensed matter models have tunable
parameters/couplings
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Strongly Coupled Field Theories

Examples of Strongly Coupled Systems

> QCD near Agecp ~ 200MeV

» Various condensed matter models have tunable
parameters/couplings

What'’s a theorist to do when coupling constants get large?

> Perturbative expansion in Feynman diagrams breaks down

» How to compute?

> Lattice? non-perturbative methods? How does one extract
dynamics?
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Best known example:
String Theory on AdSs x S® =2 N = 4 SU(N) Super Yang-Mills theory

Simplified by taking two limits:

1. g; — 0 with gs/V held fixed — large number of colors, N >>1
(suppresses string loop expansion, so supergravity description valid)
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derivative terms within supergravity)
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A modern technique — The AdS/CFT Correspondence

Best known example:
String Theory on AdSs x S® =2 N = 4 SU(N) Super Yang-Mills theory

Simplified by taking two limits:

1. g; — 0 with gs/V held fixed — large number of colors, N >>1
(suppresses string loop expansion, so supergravity description valid)

2. Large 't Hooft coupling A = gsN >> 1 (suppresses higher
derivative terms within supergravity)

In these particular limits the duality becomes a weak/strong duality:

AdSs =2 CFT,

Other examples exist, present feeling is that AdSy,1 = CFT, — how
general is this?
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Pictorial View of Holography

[image from Scientific American (Alfred T. Kamajian)]
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“Experimental” Successes 1 — Hydrodynamics at Strong
Coupling
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By placing a black hole in AdS can use AdS/CFT techniques to study
thermal /hydrodynamic properties of a strongly coupled plasma:
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“Experimental” Successes 1 — Hydrodynamics at Strong
Coupling
By placing a black hole in AdS can use AdS/CFT techniques to study
thermal /hydrodynamic properties of a strongly coupled plasma:

KSS Bound [Kovtun, Son, and Starinets]

n/s > 1/4w

> Bound saturated for any system with an Einstein gravity dual [suchel,

Liu]
» Perhaps a “universal” feature of strongly coupled plasmas

> Higher curvature terms known to violate bound 1/s = 1/4x[1 — 8]
for Gauss-Bonnet corrections

> Computed perturbative effects of addition of U(1) chemical
potential — charged black hole — in higher derivative gauged
SUpergraVity: [Cremonini, Hanaki, Liu, PS]

n/s = 1/4x[1 — 8a(1l + q)]



“Experimental” Successes 1 — Hydrodynamics at Strong
Coupling

/33



“Experimental” Successes 1 — Hydrodynamics at Strong
Coupling

What is n/s for usual fluids?

/33



“Experimental” Successes 1 — Hydrodynamics at Strong
Coupling

200 ,‘
| T
4nn | i
Tis | !
| I
! {
150 ! 4
i !
i !
\ !
. . 1
I
What is /s for usual fluids? -l ' YR
\
t /
[Kovtun, Son, Starinets] Y /{
¥
\\\ /
s0f- \ / .
_ S/
Viscosity bound N
0 .
10 100 1000

T,K



“Experimental” Successes 1 — Hydrodynamics at Strong
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“Experimental” Successes 1 — Hydrodynamics at Strong

Coupling

What is /s for usual fluids?

[Kovtun, Son, Starinets]

T.K

What is measured at RHIC? (\/g = 2OOGeV)[Luzum and Romatschke]
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“Experimental” Successes 2 — Condensed Matter Phenomena

Holographic Superconductors
Perhaps a descriptions of high T, superconductors?

Systems with non-relativistic scaling

Low temperature phase of some condensed matter systems exhibit a
non-relativistic scaling symmetry, this has been realized in holographic
examples as well.

Non-Fermi Metals
Progress towards understanding so-called non-Fermi liquids (Fermi liquid
theory of electrons/holes breaks down) in terms of a dual system
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Theoretical Motivations — (for this work)
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Supersymmetric Generalizations of AdSs; x S°

Will consider reductions of IIB supergravity on five-dimensional
Sasaki-Einstein manifolds

» Truncations presented will be generic for any SEs which includes
S5, THL YPA etc...

» AdSs x SEs is a solution of 1IB — convenient to consider an effective
five-dimensional theory which has AdSs solutions

> From AdS/CFT perspective these reductions generically have less
supersymmetry than S° reduction

> Nice to have a consistent five-dimensional theory containing matter
fields for AdS/CFT applications

12/33



Motivation — Applied AdS/CFT
Provide further effective theories to explore holographic techniques
Window into quantum gravity?

Potential applications for phenomenology?

Descriptions of strongly coupled SCFTS?
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Motivation — Applied AdS/CFT

Provide further effective theories to explore holographic techniques

Window into quantum gravity?
Potential applications for phenomenology?

Descriptions of strongly coupled SCFTS?

AdS/CMT (Condensed Matter Theory)

» Holographic techniques provide insight into strongly coupled
regimes of certain condensed-matter like systems

e Holographic superconductors — charged bulk scalar acquires
vacuum expectation value in thermal background

e Non-relativistic geometries — bulk metric has anisotropic
scaling symmetry — (t, x) ~ (A?t, Ax)

e Including fermions provide a potential description of
non-Fermi metals

13/33



HOWEVER

> AdS/CMT typically takes phenomenological approach — take mass,
charge, etc of matter fields as free parameters but require specific
ranges for desired effects.
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duals?
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HOWEVER

> AdS/CMT typically takes phenomenological approach — take mass,
charge, etc of matter fields as free parameters but require specific
ranges for desired effects.

» How can we be sure these models have well defined holographic
duals?

> Useful and instructive to embed these into string theory where:
1. The dual theory is precisely known and the duality is “under
control”
2. Can systematically include “stringy” /quantum effects

3. Gain insight as to in what sense gauge/gravity duality persists
beyond AdSs x S°

14 /33
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Consistent Truncations of 1B Supergravity on
Sasaki-Einstein Manifolds
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1B Supergravity

Bosonic Sector of IIB supergravity
Described by the following (pseudo) action:

1 1 1 . .

Lup = m/d“&(ﬂ’* 1-— ng/\ *dT — EM,-J-F3 A xF
1= I= 1 i Jj

—ZF5/\*F5—ZG,~J~C4/\F3/\F3),

supplemented with the self-duality constraint:

*F5 = F5.

T = Gy + ie”? — axi-dilaton (complex scalar),
Fi — SL(2,R) doublet of three-forms.
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Fermionic Sector of 11B Supergravity

Supersymmetry variations:

o = grAaATe 2- FAE“‘QV,-FA"\BCe7
oWy = Dye= (VM + 5/\/171 + 16 5 rABCDEFABCDErM)
+91—6 (FMABC — 95;\“/,FBC) ViFigces
Equations of motion:
0 = Dy - ﬁrMNPQRFMNPQRA,
0 = MPDywp + éFNPQFMv,* FiipA — 4—izr’vr"”a,vmc

A —dilatino, Wy, — gravitino
All Weyl spinors — 116 = €
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AdSs x S° Solution of 1B supergravity

AdSs x S° is a solution to the equations of motion of
IIB supergravity:
2 r’ L, 2 102
dsip = pnwjdx“dx” + r—2dr + L°dQs

Fy — %(1 +#)vol(S%)

» Recall — this shows up as near horizon region of the black 3-brane.

» Can replace S® with any Einstein space — in particular SEs.

> SEs nice — well defined killing spinors — preserves 1/4 SUSY in
AdSs vacuum

18/33



Sasaki-Einstein Manifolds

Defined such that the cone metric over ds*(SEs) is that of a
Calabi-Yau-cone

ds*(CYs) = dr® + r?ds®(SEs)
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Sasaki-Einstein Manifolds

Defined such that the cone metric over ds*(SEs) is that of a
Calabi-Yau-cone

ds*(CYs) = dr® + r?ds®(SEs)

Just as for S°, SEs can be realized as a U(1) fibration over a
Kabhler-Einstein base B:

ds*(SEs) = ds?(B) + (dv + A)?,  dA=2J
Also SU(2) structure exists on SEs defined by holomorphic

(2,0)-form Q and (1,1)-Kahler form J on B which satisfy:

JAQ=0, QAQ=2JAJ =41,
*4J:J7 *49297
dJ=0,  d9=3i(dy+A)AQ

19/33



Dimensional Reduction

Philosophy

» Instead of simply analyzing the AdSs x SEs solution,
dimensionally reduce theory on SEs to produce an
effective five-dimensional theory — i.e. an effective
Lagrangian.

» Replace ds?(AdSs) — ds? and reduce field content on
SEs.

» Obvious method — Kaluza-Klein reduction.

20/33



Kaluza-Klein Reduction

Expand 10-dimensional fields along complete set of harmonics on internal
space.

d(x,y) = Z dn(X)Ya(y), Ya(y) = internal harmonic

» Reduced theory is equivalent to the higher dimensional theory
> Effective theory contains infinite tower of massive states

> In simple cases (circle or torus reductions) can completely decouple
massive modes by taking compact dimension to be small:

m~1/L— o0

how general is this? — relies on existence of mass-gap between zero
modes and KK-modes

Note: theory after decoupling is no longer equivalent to original higher

dimensional theory.

21/33



Consistent truncation

A non-linear reduction of original theory such that solutions of lower

dimensional equations of motion necessarily solve the original equations
of motion

» This can be difficult — want to retain only a finite set of fields in
Kaluza-Klein tower

> One can always truncate to singlets on internal space —
®(x,y) = ¢o(x) — e.g. massless modes of circle reductions

> Furthermore, it is consistent to truncate to singlets under a

transitively acting subgroup of the isometry group of the internal
manifold

e.g. for S°, take singlets under SU(3) x U(1) C SU(4) = SO(6)



KK reduction of IIB on S°

[Kim, Romans, van Nieuwenhuizen]
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KK reduction of IIB on S°

[Kim, Romans, van Nieuwenhuizen]
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[Kim, Romans, van Nieuwenhuizen]
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> Lowest modes not massless — mass due to non-zero curvature of S°
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KK reduction of IIB on S°

[Kim, Romans, van Nieuwenhuizen]
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FIG. 1. Mass spectrum of vectors.

FIG. 3. Mass spectrum of antisymmetric tensors.

> Lowest modes not massless — mass due to non-zero curvature of S°

» Many KK towers - not trivial to see consistent truncation

> Even truncation to maximal A = 8 supergravity not obvious
although various sub-truncations have been worked out explicitly
[Cvetic,Lu,Pope,Sadrzadeh, Tran]
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KK reduction of IIB on S°

[Kim, Romans, van Nieuwenhuizen]
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FIG. 1. Mass spectrum of vectors.

FIG. 3. Mass spectrum of antisymmetric tensors.

Lowest modes not massless — mass due to non-zero curvature of S®

Many KK towers - not trivial to see consistent truncation

> Even truncation to maximal A = 8 supergravity not obvious
although various sub-truncations have been worked out explicitly
[Cvetic,Lu,Pope,Sadrzadeh, Tran]

» Truncation presented will correspond to keeping a subset of the
lowest modes of KK tower
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Reduction of Bosonic fields on Sasaki-Einstein Manifolds
Metric: Gauge U(1)-fiber add A; — graviphoton [BuchelLiu)

ds?y = dsz + ds?(B) + (dyp + A+A;)?
——

Ui
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Reduction of Bosonic fields on Sasaki-Einstein Manifolds

Metric: Gauge U(1)-fiber add A; — graviphoton [BuchelLiu)
also — add “breathing” and “squashing” modes, p, o [Bremer,Duff,Lu,Pope Stelle]

ds?) = e 107/3ds2 + e*’[e7ds?(B) + e *7(dyp + A+A;1)?]

n
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Reduction of Bosonic fields on Sasaki-Einstein Manifolds

Metric: Gauge U(1)-fiber add A; — graviphoton [BuchelLiu)
also — add “breathing” and “squashing” modes, p, o [Bremer,Duff,Lu,Pope Stelle]

ds?) = e 107/3ds2 + e*’[e7ds?(B) + e *7(dyp + A+A;1)?]

n

Form Fields — expand using SU(2)-structure
Bj = by + b A(n+ A1)+ byQ+ bQ,  Fj=dBj
Fs = (L )[4+ 60) +a LA (1 + Av) + Ay Akl
+ P ANJAN(M+ A1)+ @ AQA (n+ Al) + h.c]
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Reduction of Bosonic fields on Sasaki-Einstein Manifolds

Metric: Gauge U(1)-fiber add A; — graviphoton [guchel Liu]
also — add “breathing” and “squashing” modes, p, o [Bremer,Duff,Lu,Pope Stelle]

ds?) = e 107/3ds2 + e*’[e7ds?(B) + e *7(dyp + A+A;1)?]

n

Form Fields — expand using SU(2)-structure
Bj = by + b A(n+ A1)+ byQ+ bQ,  Fj=dBj

+ P ANJAN(M+ A1)+ @ AQA (n+ Al) + h.c]

Expanding only along SU(2)-structure guarantees consistency, recall:
JAQ =0, QAQ=2JAJ=4x,41,
xgd = J, %40 = Q,
dJ =0, dQ = 3in A Q.
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Reduction of |IIB Fermions

Decompose IIB spinors along killing spinor on Sasaki-Einstein, 7, and its
charge conjugate, 1<:

1 1
v, = e, en® {0] +e ML en @ {0}’
\U —A/Zs 1 —A/2 / c 1
s = € UV QTN & 0 +e PV RTN ® ol
P —A/2 0 —A/2y/ c 0
= e ARN® 1 +e NN ® 11’
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Reduction of |IIB Fermions

Decompose IIB spinors along killing spinor on Sasaki-Einstein, 7, and its
charge conjugate, 1<:

1 1
\Ua = e_A/21/)u ®N& |:O:| + e_A/21/Jg ® nc & |:0:| ;
—A/2 1 —A/2,1 c 1
Vv, = eV emme 0 +e VY @t ® ol
—A/2 0 —A/2y/ c 0
A = e ARN® 1 +e AN RN ® Rk

[IB susy parameter — appropriate for A" = 2 supersymmetry:

e:eA/25®n® {é]
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Reduction of |IIB Fermions

Decompose IIB spinors along killing spinor on Sasaki-Einstein, 7, and its
charge conjugate, 1<:

1 1
v, = e, ane [o] +e ML on® M
—A/2 1 —A/2,1 c 1
vV, = e P RTNXD 0 +e Y RTaN" ® ol
—A/2 0 —A/2y/ c 0
A = e ARN® 1 +e AN RN ® Rk

[IB susy parameter — appropriate for A" = 2 supersymmetry:
1
€= eA/25®n® [ ]
0
Again SU(2) structure helps:

opn="3%n,  n=-n Ty = iTan,
°Q.m =0, Q. = 27.m°.

25
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Five-dimensional multiplet structure

n|Multiplet State Field

0 [supergraviton D{4,1,1)o Ty
D35 L4+ D3 E i,
D(3, 4. %o Ap+ 24y

0|LH+RH chiral D(3,0,0)1 ==
D33, 4,00 + D350, 5) 4| X
D(4,0,0)p + 4,00} T

1|LE+RI massive gravitino| D(54, 4, 1)1 + D(54, 1, §)-1 |4,
D53 ho+ D5 A4 |8
D(5,.0,1)s + D(5. 1.0 |m
D(6,0, 1)o + D(6,1,0) by
D{45,0, $)1 + D(4g, 5.0)_ [rm=5/2
D(53.0,4) 4 + D51 Loy |

2 |massive vector D7, 1 ‘E‘ 5o Ay
D(61, 3,001 + D(81,0, 1 )¢ |grm=—92
D177 0, fJ 171 Dlw} 5001 ym=11/2
D(6,0,0) a
D(7,0,0)22 =2
D(8,0,0) p

[Cassani, Dall'Agata, Faedo; Gauntlett, Varela; Bah, Faraggi, Jottar, Leigh, Pando Zayas]
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Five-dimensional multiplet structure

n|Multiplet State Field
0 [supergraviton D{4,1,1)o Ty
D33, 1,31 + D335 |
D3 30 4 i Reducing equations of motion
O[LH+RH chiral D(3,0,0)1 PR yields consistent truncation
D(35,4.0) + D(34,0, )4 [A
D(4,0,0)p + D{4,0,0) |7
1|LE+RI massive gravitino| D(54, 4, 1)1 + D(54, 1, §)-1 |4,
D53 ho+ D5 A4 |8
D501} + D(5.1.0)_a  |m
D(6,0,1)0 + D(6.1,000 |t
D(44.0, 1)1 + DL, 10)_g fyrm=sr2
D(53,0,3) 1+ D(53, L 0| A
2 |massive vector DT, 3. 5lo Ay
D(64, 2,001+ D(6},0, )y |ym=—8/
D(73.0, %)=y + D(73, §,0)y |ym=1112
D(6,0,0)y o
D(7,0,0)22 =2
D(E.0.0) p

[Cassani, Dall'Agata, Faedo; Gauntlett, Varela; Bah, Faraggi, Jottar, Leigh, Pando Zayas]
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Five-dimensional multiplet structure

n|Multiplet State Field
0 [supergraviton D{4,1,1) By

D341, 41 + D34, & 1|

DG 3 3o 48 » Reducing equations of motion
0|LH+RH chiral D(3,0,0)45 == . . .

, yields consistent truncation

D(34.4.00 + D(34,0,4) 4|

DI4,0,0)g + D400 |7 » Lagrangian too long to show
1[LH+ RH massive gravitino| D(54, 4, 1); + D(58,1, )1 |+, explicitly

D53 ho+ D5 A4 |8

D(5,0,1)2 + D{5.1,0)_2 g2

D(6,0,1)0 + D{6.1,0)0 b

D(44.0, 1)1 + DL, 10)_g fyrm=sr2

D(53,0,3) 1+ D(53, L 0| A
2 |massive vector D(7, § i—)n Ay

D63, 3,00y + D(B1,0, 1)y |wm=-92

D(73.0, %)=y + D(73, §,0)y |ym=1112

D(6,0,0)g o

D(7,0,0)22 pr=2t

D(8,0.0) g

[Cassani, Dall'Agata, Faedo; Gauntlett, Varela; Bah, Faraggi, Jottar, Leigh, Pando Zayas]
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Five-dimensional multiplet structure

n|Multiplet State Field

0 [supergraviton D{4,1,1) Ty
D341, 41 + D34, & 1|
D(3,3 3o A+ Ay

0|LH+RH chiral D{3,0,0)12 pe=—3

D(35,4.0) + D(34,0,§) 4|

D(4,0,0)0 + D(4,0,0)g

1|LH+RH massive gravitino J’.JIG%:%. h + 1’.?-_'5%: 1, -.é—j_| LL
D53 ho+ D5 A4 |8
D(5,0,1)2 + D{5.1,0)_2 g2
D(6,0,1)0 + D(6,1,0)0 by
D{45,0, $)1 + D(4g, 5.0)_ [rm=5/2
D(53,0,3) 1+ D(53, L 0| A

2 |massive vector DiT. 4. 5o Ay
D(63, 3011 + D(63,0, ;)1|ym="2
D(75,0, )2y + D74, 5, 0)g [yrm=112
D(6,0,0)y o
D(7,0,0)22 =2
D(E.0, P

» Reducing equations of motion
yields consistent truncation

» Lagrangian too long to show

explicitly

» Five-dimensional N/ =2

gauged supergravity coupled to

various multiplets

[Cassani, Dall'Agata, Faedo; Gauntlett, Varela; Bah, Faraggi, Jottar, Leigh, Pando Zayas]
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Five-dimensional multiplet structure

n|Multiplet State Field
0 |supergraviton D{4,1,1)o Ty
D35 L4+ D3 E i,
D@3.Lt Aq 4 1p . . .
220 —T*  » Reducing equations of motion
O|LH+RH chiral D(3,0,0)42 e

o yields consistent truncation
D(35,4.0) + D(34,0, )4 [A

D{4,0,0)0 + D400 |7 » Lagrangian too long to show
1|LE+RI massive gravitino| D(54, 4, 1)1 + D(54, 1, §)-1 |4, explicitly

DL ho+ 05,140 |8 . . .

S » Five-dimensional N =2

DE.0, 10+ D600 |6 gauged supergravity coupled to

D(1L,0, 41 + Db, 3,0)_i|um=sr2 various multiplets

D(53,0,4) 4 + D53, L 0y (A . .

e > Various further truncations

2 |massive vector DiT. 4. 5o Ay

exist — in particular can
truncate out massive gravitino

D64, 2,001+ D(61,0, L))

D(74,0, )2y + D74, 5, 0) [ym=1112 K
D(6,0,0)y o mU|t|p|et
D(7,0,0)22 =2

D(8,0,0) P

[Cassani, Dall'Agata, Faedo; Gauntlett, Varela; Bah, Faraggi, Jottar, Leigh, Pando Zayas]
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Recall KK reduction of I1IB on S°

21

[Kim, Romans, van Nieuwenhuizen]
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FIG. 2. Mass spectrum of scalars.
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FIG. 3. Mass spectrum of antisymmetric tensors.
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> Perform linearized analysis to determine masses and identify

spectrum
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> Perform linearized analysis to determine masses and identify
spectrum
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> All belong to SU(4) reps containing singlets under SU(3) C SU(4)
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FIG. 1. Mass spectrum of vectors.

FIG. 3. Mass spectrum of antisymmetric tensors.

> Perform linearized analysis to determine masses and identify

spectrum

» All modes in consistent truncation lie at bottom of KK-towers

> All belong to SU(4) reps containing singlets under SU(3) C SU(4)

» Note that much of the massless N/ = 8 multiplet does not include

an SU(3) singlet.
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Applications

A holographic supersymmetric superconductor?

L=Ly+ L
6(2—3 dx A *d 1+ x)dr A #d7 3 Aq A A
Ly, = Rt X Xz)fx >2<*7( )T 2T7—F2/\*F271712
(1—=x) 2(1 - x) 2(1 = x)73 2 2(1 = x)
8moDb A xDb 2i -
i (BDb A d7 — bDb A d7) — Ay A Fo A Fa,
1—x 1-—x
eTlLr = Par*PIDgve + Fda (v +26%P8"7) Fgpta + X7 Dok + I Fuu A

+1e748 (37-2(bD“E — BDub)Ay" A + 3(1+ 872\b|2)5\>\)
+€4B(—%@ava”wa+wa@Dﬁb—bDﬁB¢awaﬂ”wa)

+T21/2€7AB (DpbPavv* X+ 3bpa vy X + h.c.)

—2B
e - -
+ 7 (=b0ar®P7 05705 + 13 2 har 0Ty A + he), € =1 dn|b)?
T
2

Embedded a holographic superconductor model into N = 2 supergravity

[Gubser, Herzog, Pufu, Tesileanu]
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Useful for other types of compactifications?

Can "pull-in" radial coordinate and relate these truncations to cone
compactifications:

ds?y = eYOh,, (x)dx"dx” 4+ eXX([dr? +-e22() ds? (SEST#hed)]

2
dsg
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Useful for other types of compactifications?

Can "pull-in" radial coordinate and relate these truncations to cone
compactifications:

ds?y = eYOh,, (x)dx"dx” 4+ eXX([dr? +-e22() ds? (SEST#hed)]

2
dsg

Allows for relation to some classes of flux compactifications

» For SEs = T can reproduce the Klebanov-Strassler solution

» Perhaps these truncations can be utilized to find other such
solutions?

> Application is somewhat limited — can only describe dependence on
radial “cone” coordinate - r.
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Some loose ends and future work...
What about stability of these truncations?
> Should analyze spectrum of fluctuations of these truncations about

vacuum solutions — AdSs x S® vacuum is stable — what about other
solutions?
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Some loose ends and future work...
What about stability of these truncations?

> Should analyze spectrum of fluctuations of these truncations about
vacuum solutions — AdSs x S® vacuum is stable — what about other
solutions?

» Similar non-supersymmetric solutions of truncations in M-theory
found to be unstable [Bobev, Halmagyi, Pilch, Warner]

» Maybe supersymmetric solutions stable?

» Perhaps analyzing superpotentials could lead to new
supersymmetric solutions?

Constructing non-relativistic solutions

» There has been work relating these truncations and similar
constructions to non-relativistic geometries [Narayan, Balasubramanian;

Gauntlett, Donos; Kraus, Perlmutter; Cassani, Faedo; Halmagyi, Petrini, Zaffaroni]
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Some loose ends and future work...

Truncations on the five-sphere?

Given the relative ease of these constructions can one consider going
back to S® and working out consistent truncation to the full massless
sector of the N' = 8 theory?
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Some loose ends and future work...

Truncations on the five-sphere?

Given the relative ease of these constructions can one consider going
back to S® and working out consistent truncation to the full massless
sector of the N' = 8 theory?

» Truncation to 20’ scalars and 15 vectors known
[Cveti,Lii,Pope,Sadrzadeh, Tran]

» 1+ 1 scalars from axi-dilaton
» 10 + 10 scalars and 6 + 6 tensors come from 3—forms

> Keeping entire massless sector of A/ = 8 perhaps not as bad as
anticipated?
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Thank you!
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