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About Me

Phillip Szepietowski (can call me Phil, but not Dr. Phil)

I Graduated May 2011 - University of Michigan, advisor - Jim Liu

I Started at UVA: last month!

Research Interests
Gauge/gravity duality – both applications and conceptual questions

My Work

I Higher derivative corrections in the AdS/CFT correspondence

I Consistent truncations of IIB supergravity ← most of this talk
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Strongly Coupled Field Theories

Examples of Strongly Coupled Systems

I QCD near ΛQCD ∼ 200MeV

I Various condensed matter models have tunable
parameters/couplings

What’s a theorist to do when coupling constants get large?

I Perturbative expansion in Feynman diagrams breaks down

I How to compute?

I Lattice? non-perturbative methods? How does one extract
dynamics?
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A modern technique – The AdS/CFT Correspondence

Best known example:
String Theory on AdS5 × S5 ∼= N = 4 SU(N) Super Yang-Mills theory

Simplified by taking two limits:

1. gs → 0 with gsN held fixed – large number of colors, N >> 1
(suppresses string loop expansion, so supergravity description valid)

2. Large ’t Hooft coupling λ = gsN >> 1 (suppresses higher
derivative terms within supergravity)

In these particular limits the duality becomes a weak/strong duality:

AdS5
∼= CFT4

Other examples exist, present feeling is that AdSd+1
∼= CFTd – how

general is this?
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Pictorial View of Holography

[image from Scientific American (Alfred T. Kamajian)]
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“Experimental” Successes 1 – Hydrodynamics at Strong
Coupling

By placing a black hole in AdS can use AdS/CFT techniques to study
thermal/hydrodynamic properties of a strongly coupled plasma:

KSS Bound [Kovtun, Son, and Starinets]

η/s ≥ 1/4π

I Bound saturated for any system with an Einstein gravity dual [Buchel,

Liu]

I Perhaps a “universal” feature of strongly coupled plasmas

I Higher curvature terms known to violate bound η/s = 1/4π[1− 8α]
for Gauss-Bonnet corrections

I Computed perturbative effects of addition of U(1) chemical
potential – charged black hole – in higher derivative gauged
supergravity: [Cremonini, Hanaki, Liu, PS]

η/s = 1/4π[1− 8α(1 + q)]
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“Experimental” Successes 1 – Hydrodynamics at Strong
Coupling

What is η/s for usual fluids?
[Kovtun, Son, Starinets]

What is measured at RHIC? (
√
s = 200GeV)[Luzum and Romatschke]
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“Experimental” Successes 2 – Condensed Matter Phenomena

Holographic Superconductors

Perhaps a descriptions of high Tc superconductors?

Systems with non-relativistic scaling

Low temperature phase of some condensed matter systems exhibit a
non-relativistic scaling symmetry, this has been realized in holographic
examples as well.

Non-Fermi Metals
Progress towards understanding so-called non-Fermi liquids (Fermi liquid
theory of electrons/holes breaks down) in terms of a dual system

10 / 33



Outline

“Real World” Motivations – gauge/gravity duality

Theoretical Motivations – (for this work)

Consistent Truncations of IIB Supergravity on
Sasaki-Einstein Manifolds

Final Comments

11 / 33



Supersymmetric Generalizations of AdS5 × S5

Will consider reductions of IIB supergravity on five-dimensional
Sasaki-Einstein manifolds

I Truncations presented will be generic for any SE5 which includes
S5, T 1,1, Y p,q, etc...

I AdS5 × SE5 is a solution of IIB – convenient to consider an effective
five-dimensional theory which has AdS5 solutions

I From AdS/CFT perspective these reductions generically have less
supersymmetry than S5 reduction

I Nice to have a consistent five-dimensional theory containing matter
fields for AdS/CFT applications
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Motivation – Applied AdS/CFT

Provide further effective theories to explore holographic techniques

Window into quantum gravity?

Potential applications for phenomenology?

Descriptions of strongly coupled SCFTS?

AdS/CMT (Condensed Matter Theory)

I Holographic techniques provide insight into strongly coupled

regimes of certain condensed-matter like systems

• Holographic superconductors – charged bulk scalar acquires
vacuum expectation value in thermal background

• Non-relativistic geometries – bulk metric has anisotropic
scaling symmetry – (t, x) ∼ (λz t, λx)

• Including fermions provide a potential description of

non-Fermi metals
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HOWEVER

I AdS/CMT typically takes phenomenological approach – take mass,
charge, etc of matter fields as free parameters but require specific
ranges for desired effects.

I How can we be sure these models have well defined holographic
duals?

I Useful and instructive to embed these into string theory where:

1. The dual theory is precisely known and the duality is “under
control”

2. Can systematically include “stringy”/quantum effects

3. Gain insight as to in what sense gauge/gravity duality persists

beyond AdS5 × S5
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IIB Supergravity

Bosonic Sector of IIB supergravity
Described by the following (pseudo) action:

LIIB =
1

16πκ2

∫
d10x

(
R ∗ 1− 1

2τ 2
2

dτ ∧ ∗d τ̄ − 1

2
MijF

i
3 ∧ ∗F

j
3

−1

4
F̃5 ∧ ∗F̃5 −

1

4
εijC4 ∧ F i

3 ∧ F j
3

)
,

supplemented with the self-duality constraint:

∗F̃5 = F̃5.

τ = C0 + ie−φ – axi-dilaton (complex scalar),

F i
3 – SL(2,R) doublet of three-forms.
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Fermionic Sector of IIB Supergravity

Supersymmetry variations:

δλ =
i

2τ2
ΓA∂Aτε

c − i

24
ΓABCviF

i
ABC ε,

δΨM = DMε ≡
(
∇M +

i

4τ2
∂Mτ1 +

i

16 · 5!
ΓABCDE F̃ABCDEΓM

)
ε

+
i

96

(
ΓM

ABC − 9δAMΓBC
)
viF

i
ABC ε

c

Equations of motion:

0 = ΓMDMλ−
i

8 · 5!
ΓMNPQRFMNPQRλ,

0 = ΓMNPDNΨP +
i

48
ΓNPQΓMv∗i F

i∗
NPQλ−

i

4τ2
ΓNΓM∂Nτλ

c

λ – dilatino, ΨM – gravitino
All Weyl spinors – Γ11ε = ε
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AdS5 × S5 Solution of IIB supergravity

AdS5 × S5 is a solution to the equations of motion of
IIB supergravity:

ds2
10 =

r2

L2
ηµνdx

µdxν +
L2

r2
dr2 + L2dΩ2

5

F̃5 =
4

L
(1 + ∗)vol(S5)

I Recall – this shows up as near horizon region of the black 3-brane.

I Can replace S5 with any Einstein space – in particular SE5.

I SE5 nice – well defined killing spinors – preserves 1/4 SUSY in
AdS5 vacuum
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Sasaki-Einstein Manifolds

Defined such that the cone metric over ds2(SE5) is that of a
Calabi-Yau-cone

ds2(CY6) = dr2 + r2ds2(SE5)

Just as for S5, SE5 can be realized as a U(1) fibration over a
Kahler-Einstein base B:

ds2(SE5) = ds2(B) + (dψ +A)2, dA = 2J

Also SU(2) structure exists on SE5 defined by holomorphic
(2,0)-form Ω and (1,1)-Kahler form J on B which satisfy:

J ∧ Ω = 0, Ω ∧ Ω̄ = 2J ∧ J = 4 ∗4 1,

∗4J = J, ∗4Ω = Ω,

dJ = 0, dΩ = 3i(dψ +A) ∧ Ω.

19 / 33



Sasaki-Einstein Manifolds

Defined such that the cone metric over ds2(SE5) is that of a
Calabi-Yau-cone

ds2(CY6) = dr2 + r2ds2(SE5)

Just as for S5, SE5 can be realized as a U(1) fibration over a
Kahler-Einstein base B:

ds2(SE5) = ds2(B) + (dψ +A)2, dA = 2J

Also SU(2) structure exists on SE5 defined by holomorphic
(2,0)-form Ω and (1,1)-Kahler form J on B which satisfy:

J ∧ Ω = 0, Ω ∧ Ω̄ = 2J ∧ J = 4 ∗4 1,

∗4J = J, ∗4Ω = Ω,

dJ = 0, dΩ = 3i(dψ +A) ∧ Ω.

19 / 33



Sasaki-Einstein Manifolds

Defined such that the cone metric over ds2(SE5) is that of a
Calabi-Yau-cone

ds2(CY6) = dr2 + r2ds2(SE5)

Just as for S5, SE5 can be realized as a U(1) fibration over a
Kahler-Einstein base B:

ds2(SE5) = ds2(B) + (dψ +A)2, dA = 2J

Also SU(2) structure exists on SE5 defined by holomorphic
(2,0)-form Ω and (1,1)-Kahler form J on B which satisfy:

J ∧ Ω = 0, Ω ∧ Ω̄ = 2J ∧ J = 4 ∗4 1,

∗4J = J, ∗4Ω = Ω,

dJ = 0, dΩ = 3i(dψ +A) ∧ Ω.

19 / 33



Dimensional Reduction

Philosophy

I Instead of simply analyzing the AdS5 × SE5 solution,
dimensionally reduce theory on SE5 to produce an
effective five-dimensional theory – i.e. an effective
Lagrangian.

I Replace ds2(AdS5)→ ds2
5 and reduce field content on

SE5.

I Obvious method – Kaluza-Klein reduction.
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Kaluza-Klein Reduction

Expand 10-dimensional fields along complete set of harmonics on internal
space.

Φ(x , y) =
∞∑
n

φn(x)Yn(y), Yn(y) = internal harmonic

I Reduced theory is equivalent to the higher dimensional theory

I Effective theory contains infinite tower of massive states

I In simple cases (circle or torus reductions) can completely decouple
massive modes by taking compact dimension to be small:

m ∼ 1/L→∞

how general is this? – relies on existence of mass-gap between zero
modes and KK-modes

Note: theory after decoupling is no longer equivalent to original higher

dimensional theory.
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Consistent truncation

A non-linear reduction of original theory such that solutions of lower
dimensional equations of motion necessarily solve the original equations
of motion

I This can be difficult – want to retain only a finite set of fields in
Kaluza-Klein tower

I One can always truncate to singlets on internal space –
Φ(x , y) = φ0(x) – e.g. massless modes of circle reductions

I Furthermore, it is consistent to truncate to singlets under a
transitively acting subgroup of the isometry group of the internal
manifold

e.g. for S5, take singlets under SU(3)× U(1) ⊂ SU(4) ∼= SO(6)
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KK reduction of IIB on S5

[Kim, Romans, van Nieuwenhuizen]

I Lowest modes not massless – mass due to non-zero curvature of S5

I Many KK towers - not trivial to see consistent truncation

I Even truncation to maximal N = 8 supergravity not obvious
although various sub-truncations have been worked out explicitly
[Cvetic,Lu,Pope,Sadrzadeh,Tran]

I Truncation presented will correspond to keeping a subset of the
lowest modes of KK tower
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Reduction of Bosonic fields on Sasaki-Einstein Manifolds
Metric: Gauge U(1)-fiber add A1 – graviphoton [Buchel,Liu]

ds2
10 = ds2

5 + ds2(B) + (dψ +A︸ ︷︷ ︸+A1)2

η

Form Fields – expand using SU(2)-structure

B i
2 = bi2 + bi1 ∧ (η + A1) + bi0Ω + b̄i0Ω̄, F i

3 = dB i
2

F̃5 = (1 + ∗)[(4 + φ0) ∗4 1 ∧ (η + A1) + A1 ∧ ∗41

+ p2 ∧ J ∧ (η + A1) + q2 ∧ Ω ∧ (η + A1) + h.c .]

Expanding only along SU(2)-structure guarantees consistency, recall:

J ∧ Ω = 0, Ω ∧ Ω̄ = 2J ∧ J = 4 ∗4 1,

∗4J = J, ∗4Ω = Ω,

dJ = 0, dΩ = 3iη ∧ Ω.
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∗4J = J, ∗4Ω = Ω,

dJ = 0, dΩ = 3iη ∧ Ω.
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Reduction of IIB Fermions
Decompose IIB spinors along killing spinor on Sasaki-Einstein, η, and its
charge conjugate, ηc :

Ψα = e−A/2ψα ⊗ η ⊗
[

1

0

]
+ e−A/2ψ′α ⊗ ηc ⊗

[
1

0

]
,

Ψa = e−A/2ψ ⊗ τaη ⊗
[

1

0

]
+ e−A/2ψ′ ⊗ τaηc ⊗

[
1

0

]
,

λ = e−A/2λ⊗ η ⊗
[

0

1

]
+ e−A/2λ′ ⊗ ηc ⊗

[
0

1

]
,

IIB susy parameter – appropriate for N = 2 supersymmetry:

ε = eA/2ε⊗ η ⊗
[

1

0

]
Again SU(2) structure helps:

∂ψη = 3i
2 η, τ 9η = −η, τbJabη = iτaη,

τbΩabη = 0, τbΩ̄abη = 2τaη
c .
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Five-dimensional multiplet structure

I Reducing equations of motion
yields consistent truncation

I Lagrangian too long to show
explicitly

I Five-dimensional N = 2
gauged supergravity coupled to
various multiplets

I Various further truncations
exist – in particular can
truncate out massive gravitino
multiplet

[Cassani, Dall’Agata, Faedo; Gauntlett, Varela; Bah, Faraggi, Jottar, Leigh, Pando Zayas]
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Recall KK reduction of IIB on S5

[Kim, Romans, van Nieuwenhuizen]

I Perform linearized analysis to determine masses and identify
spectrum

I All modes in consistent truncation lie at bottom of KK-towers

I All belong to SU(4) reps containing singlets under SU(3) ⊂ SU(4)

I Note that much of the massless N = 8 multiplet does not include
an SU(3) singlet.
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Applications

A holographic supersymmetric superconductor?

L = Lb + Lf

Lb = R ∗ 1 +
6(2− 3χ)

(1− χ)2
−

dχ ∧ ∗dχ
2(1− χ)2

∗ 1−
(1 + χ)dτ ∧ ∗d τ̄

2(1− χ)τ2
2

−
3

2
F2 ∧ ∗F2 −

A1 ∧ ∗A1

2(1− χ)2

−
8τ2Db ∧ ∗Db̄

1− χ
−

2i

1− χ
(b̄Db ∧ ∗d τ̄ − bDb̄ ∧ ∗dτ)− A1 ∧ F2 ∧ F2,

e−1Lf = ψ̄αγ
αβσDβψσ + 3i

8
ψ̄α

(
γ
αβρσ + 2gαβgρσ

)
Fβρψσ + 1

2
λ̄γ
αDαλ + 3i

16
λ̄γ
µνFµνλ

+ 1
2
e−4B

(
3τ2(bDµ b̄ − b̄Dµb)λ̄γµλ + 3

2
(1 + 8τ2|b|

2)λ̄λ
)

+e−4B
(
− 3

2
ψ̄αγ

ασ
ψσ + τ2(b̄Dβb − bDβ b̄)ψ̄αγ

αβσ
ψσ

)
+τ

1/2
2 e−4B (

Dµbψ̄αγ
µ
γ
α
λ + 3bψ̄αγ

α
λ + h.c.

)
+

e−2B

τ
1/2
2

(
−bψ̄αγ

αβσ
∂βτψ

c
σ + τ

1/2
2 ψ̄αγ

µ
∂µτγ

α
λ
c + h.c.

)
, e4B = 1− 4τ2|b|

2

Embedded a holographic superconductor model into N = 2 supergravity

[Gubser, Herzog, Pufu, Tesileanu]
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Outline

“Real World” Motivations – gauge/gravity duality

Theoretical Motivations – (for this work)

Consistent Truncations of IIB Supergravity on
Sasaki-Einstein Manifolds

Final Comments
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Useful for other types of compactifications?

Can “pull-in” radial coordinate and relate these truncations to cone
compactifications:

ds2
10 = e2Y (r)hµν(x)dxµdxν + e2X (r)[dr2︸ ︷︷ ︸+e2Z(r)ds2(SE squashed

5 )]

ds2
5

Allows for relation to some classes of flux compactifications

I For SE5 = T 1,1 can reproduce the Klebanov-Strassler solution

I Perhaps these truncations can be utilized to find other such
solutions?

I Application is somewhat limited – can only describe dependence on
radial “cone” coordinate - r.
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Some loose ends and future work...

What about stability of these truncations?

I Should analyze spectrum of fluctuations of these truncations about
vacuum solutions – AdS5 × S5 vacuum is stable – what about other
solutions?

I Similar non-supersymmetric solutions of truncations in M-theory
found to be unstable [Bobev, Halmagyi, Pilch, Warner]

I Maybe supersymmetric solutions stable?

I Perhaps analyzing superpotentials could lead to new
supersymmetric solutions?

Constructing non-relativistic solutions

I There has been work relating these truncations and similar
constructions to non-relativistic geometries [Narayan, Balasubramanian;

Gauntlett, Donos; Kraus, Perlmutter; Cassani, Faedo; Halmagyi, Petrini, Zaffaroni]
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Some loose ends and future work...

Truncations on the five-sphere?

Given the relative ease of these constructions can one consider going
back to S5 and working out consistent truncation to the full massless
sector of the N = 8 theory?

I Truncation to 20′ scalars and 15 vectors known
[Cvetič,Lü,Pope,Sadrzadeh,Tran]

I 1 + 1̄ scalars from axi-dilaton

I 10 + 1̄0 scalars and 6 + 6̄ tensors come from 3−forms

I Keeping entire massless sector of N = 8 perhaps not as bad as
anticipated?
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Thank you!
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