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Strong interactions

Nuclear force holds protons/neutrons together
in a nucleus.

This is the force that makes the Sun shine.

Like van-der-Waals forces in ED, nuclear force is
a “shadow” of a much stronger force.

This force holds proton’s constituents together.

Like in ED the strong force field can carry waves – gluons.

Unlike ED the gluon-mediated force grows with separation. Confinement.
The “charge” comes in 3 varieties – colors.
The QFT of the gluons and quarks – Quantum Chromodynamics.

QCD is the most elegant piece of the Standard Model.
The quest to “solve” QCD produced the most advanced ideas and tools in
Theoretical Physics – from Lattice to String theory.
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Quark-Gluon Plasma

Can the gas of color-neutral nucleons be “ionized”?

Can the (confined) quarks be set free by heating the gas of hadrons to
extremely high temperature, revealing the QCD constituents and the “color”
forces?

Quark-Gluon Plasma.

What temperature would be needed?
kBT = ~c/Rproton ∼ 200 MeV (over 105 of T in the Sun’s core)

The Universe was that hot (and hotter) at the beginning.

Today we can recreate such conditions by smashing large atomic nuclei.

RHIC LHC
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Lattice

QCD is a quantum field theory, i.e., everything mea-
surable is, in principle, predictable: hadron masses,
scattering amplitudes, equation of state, etc.

The theory says “calculate path integral” (Feynman), i.e., a weighted sum
over all space-time trajectories of the variables, i.e., the fields.

It is an infinitely difficult problem (for a non-trivial theory), because the num-
ber of variables (and integrations) is ∞.

Lattice approach allows to reach this infinity gradually, by starting on a
coarse, finite lattice and refining it. QCD on the lattice (Wilson).

The question the lattice can answer is: what happens in QCD at finite T in
equilibrium?

E.g., how does energy density, pressure, entropy, etc. depend on T?

Does hardron gas become QGP at T ∼ 200 MeV? Yes, it does.

But non-equilibrium (e.g., transport) properties are still a challenge for to-
day’s lattice methods.
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Heavy-ion collision

Heavy-ion collision creates matter in not quite as
static a state as what we can study on the lattice.

The created fireball evolves (explodes): “little bang”.
Transport properties are important.

Detectors measure the particle type and momen-
tum distributions in the final state, when the density
drops so that the particles free-stream – freeze-out.

This state is thermal, with temperature about
160 MeV.

Similarity to BB and CMB.
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Hydrodynamic description
The hydrodynamic description of the heavy ion collision
goes back to Landau (1953).

Approach: take the equation of state, set
initial conditions, and solve hydrodynamic
equations to get particle yields, spectra, etc.

Good agreement with data.
Sensitive to viscosity. (Azimuthal asymmetry) 0 100 200 300 400
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Recent interest is due to the remarkably small implied value of viscosity.

Expressed as the ratio η/s it is much smaller than one would predict in a
weakly-coupled QCD plasma (Arnold-Moore-Yaffe, 2003).

The ratio η/s is a measure of the coupling strength.

For weak coupling
η

s
∼ 1

(coupling)2
– must be large.

AdS/CFT calculation in SYM theory at infinite coupling: η/s = 1/(4π).

QGP at RHIC is not a gas, but a very good (perfect?) liquid. sQGP.
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Fluctuations and viscosity
Can viscosity be measured in a different,
complementary way?

Idea: fluctuation-dissipation theorem re-
quires fluctuations (hydrodynamic noise) and
dissipation (viscosity) to be proportional to
each other.

The magnitude of fluctuations (correlations)

can be measured.

The hydrodynamic correlations can be deter-
mined theoretically and depend on viscosity.

Correlations over large ∆η are induced
by local fluctuations (hydrodynamic noise)
propagating with the speed of sound.

Similarity to the fluctuations in the CMB.
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Relativistic Hydrodynamics

Hydrodynamics: the effective theory for slow, long scale variations of the variables
characterizing local thermal equilibrium.

Variables: conserved quantities – energy, momentum, charge densities.

Equations: conservation laws – ∇µT µν = 0, ∇µJµ = 0.

Defining variables involves chosing the local rest frame: T 00 = ǫ, J0 = n.

Simplifying choice(s): T 0i = 0 (Landau) or J i = 0 (Eckart).

Use 3 components of uµ instead of momentum density.

The 4 equations involve 10 components of T µν . Thus the remaning 6 must be
expressed in terms of ǫ and uµ.

In equilibrium the medium is homogeneous and (T 00 = ǫ, T 11 = p, . . . )

T µν
eq = ǫuµuν − P (ǫ)(gµν − uµuν).

∇µT µν
eq = 0 is ideal hydrodynamics.
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Viscous hydrodynamics
Deviations from equilibrium are due to (slow) spatial variations of ǫ and uµ. I.e.,

T µν = T µν
eq + (gradients of ǫ and uµ)

| {z }

∆T µν

Subject to ∆T µνuν = 0 (T µνuν = ǫuµ by definition), the most general form is
(∆µ = hµν∇ν , hµν = gµν − uµuν )

∆T µν = η

»

∆µuν + ∆νuµ − 2

3
hµν(∇ · u)

–

− ζhµν(∇ · u)

Second law of thermodynamics for entropy s = β(ǫ + P ) flow

∇µ(suµ) = −β∆T µν∇µuν =
η

2T

»

∆µuν + ∆νuµ − 2

3
hµν(∇ · u)

–2

+
ζ

T
(∇ · u)2
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Fluctuations and Noise

So far hydro. eqns. describe evolution of the average values of the variables. In a
thermodynamic ensemble the variables fluctuate.

The origin of the noise is local, but these fluctuations propagate according to
hydrodynamic equations. I.e., hydrodynamics can describe long-range
correlations.

This means
∆T µν = ∆T µν

visc + Sµν .

Locality means
˙
Sµν(x)Sαβ(0)

¸
∼ δ4(x). The magnitude is determined by the

condition that the equilibrium distribution is given by eS (Einstein).
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Fluctuations and Noise

Generically, for a system of many variables xi, obeying

ẋi = −
X

j

γijXj + yi

where Xj = −∂S/∂xi, the required noise is 〈 yi(t)yj(0) 〉 = (γij + γji)δ(t).

Applying to xi ∼ ǫ, uµ one finds

D

Sµν(x)Sαβ(0)
E

= 2T

»

η
“

hµαhνβ + hµβhνα
”

+

„

ζ − 2

3
η

«

hµνhαβ

–

δ4(x)

This, with T µν = T µν
eq + ∆T µν

visc + Sµν defines a system of stochastic equations
∇µT µν = 0.

The correlation functions of T µν can be now calculated by solving in terms of Sµν .

Usually, this is applied to fluctuations around a static equilibrium solution. Our goal
is to apply this to determine correlations in an expanding fireball.

Hydrodynamic Noise and Bjorken Expansion – p. 11/22



Bjorken expansion

Bjorken (1983) suggested that the central region of the heavy-ion collisions can be
described by a solution of the hydrodynamic equations which is boost-invariant.

The Bjorken flow is conveniently viewed in Bjorken coordinates:

t = τ cosh ξ and z = τ sinh ξ.

In these coordinates the fluid is at rest locally: uµ = (1, 0,0⊥)Bj.
z

t

The average quantities depend only on τ . But the fluctuations depend also on ξ
and x⊥, e.g., ǫ = ǫ0(τ) + δǫ(τ, ξ,x⊥).

We integrate (average) over x⊥ and consider, effectively, a 1+1 dimensional
problem. In this case Sµνuν = 0 means

Sµν = w(τ)f(ξ, τ)hµν

where f is random noise (w = ǫ + p)

〈 f(ξ1, τ1)f(ξ2, τ2) 〉 =
2T (τ1)

Aτ1w2(τ1)

»
4

3
η(τ1) + ζ(τ1)

–

δ (τ1 − τ2) δ (ξ1 − ξ2)
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Hydrodynamic equations

The only nontrivial function is ǫ(τ), and it obeys

d(τs)

dτ
=

ν

τT
s

I.e., entropy per unit rapidity, τsA, increases only due to viscosity.

Convenient notation: ν ≡ (4η/3 + ζ)/s.

E.g., for s ∼ T 3 ⇒ T ∼ τ−1/3 + visc. corrections
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Hydrodynamic equations for fluctuations

Fluctuations, ǫ = ǫ0(τ) + δǫ(ξ, τ), uz = sinh(ξ + ω(ξ, τ)), obey

τ
∂δǫ

∂τ
+ δw + wf − δ(νs)

τ
+

h

w − 2
νs

τ

i ∂ω

∂ξ
= 0

τ
∂

∂τ

h

ω
“

w − νs

τ

”i

+2ω
“

w − νs

τ

”

+
∂

∂ξ

»

δP + wf − δ(νs)

τ

–

−νs

τ

∂2ω

∂ξ2
= 0 .

Easy to obtain by P → P + wf − νs
τ

“

1 + ∂ω
∂ξ

”

in ideal equations.

Convenient variable: ρ ≡ δs/s = δǫ/w. Also, Fourier transform ξ → k.

Solve for X = ρ, ω in terms of f .

X̃(k, τ) = −
Z τ

τ0

dτ ′

τ ′
G̃X(k; τ, τ ′)f̃(k, τ ′)

Then calculate correlations 〈XY 〉 using known 〈 ff 〉.
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Correlations
The equal-(proper)time correlation function at the freeze-out time τf :

CXY (ξ1 − ξ2; τf) ≡ 〈X(ξ1, τf) Y (ξ2, τf) 〉 =
2

A

τfZ

τ0

dτ

τ3

ν(τ)

w(τ)
GXY (ξ1 − ξ2; τf , τ) , (1)

where the Fourier transform of GXY (ξ; τf , τ) is given by

G̃XY (k; τf , τ) ≡ G̃X(k; τf , τ)G̃Y (−k; τf , τ) . (2)

Thus

GXY (ξ1 − ξ2; τf , τ) =

Z
∞

−∞

dξGX(ξ1 − ξ; τf , τ)GY (ξ2 − ξ; τf , τ) . (3)

ξ1 ξ2

τf

τ
ξ
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Solution: inviscid case, linear EOS

τ
∂ψ̃

∂τ
+Dψ̃ + ñ = 0,

with (for inviscid case)

ψ̃ =

„
ρ̃

ω̃

«

; D = D0 ≡
„

0 ik

ikvs
2 1 − vs

2

«

, ñ =

„
1

ik

«

f̃ .

ψ̃(k, τ) = −
Z τ

τ0

dτ ′

τ ′
Ũ (k; τ, τ ′)ñ(k, τ ′)

where

Ũ (k; τ, τ ′) = T exp



−
Z τ

τ ′

dτ ′′

τ ′′
D(k, τ ′′)

ff

If vs
2 ≡ dP/dǫ = const (linear EOS):

Ũ (k; τ, τ ′) =
(τ ′/τ)λ−

λ+ − λ−

„
λ+ −ik

−ikvs
2 −λ−

«

− (τ ′/τ)λ+

λ+ − λ−

„
λ− −ik

−ikvs
2 −λ+

«

.

Dψ̃± = λ±ψ̃± : λ± = α ± β; α =
1

2

`
1 − vs

2
´
; β =

p

α2 − vs
2k2.
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Response functions and sound horizon

G̃ρ(k; τ, τ ′) =

„
τ ′

τ

«α »

cosh
`
β ln(τ/τ ′)

´
+

„
α + k2

β

«

sinh
`
β ln(τ/τ ′)

´
–

Note: β =
√

α2 − vs
2k2 is pure imaginary if |k| > (1 − vs

2)/2vs.

Acoustic oscillations.

GX – meromorphic function of k. Sole singularity is at k = ∞.
Cauchy theorem gives:

GX(ξ; τ, τ ′) = 0 when |ξ| > vs ln(τ/τ ′) — sound horizon

In the local rest frame the velocity of the front, τdξ/dτ , equals vs.
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Singularities at the sound horizon
Oscillatory behavior at large k translates into sound front in ξ:

Gρρ(ξ; τf , τ) =

Z
∞

−∞

dk

2π
eikξG̃ρ(k; τf , τ)G̃ρ(−k; τf , τ) →

1

4vs
2

„
τ

τf

«2α
ˆ
δ′′(ξ − 2vs ln(τf/τ)) + δ′′(ξ + 2vs ln(τf/τ)) − 2δ′′(ξ)

˜

τf

τ

ξ = 2vs ln(τf/τ)
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The wake

Greg
ρρ ≡ Gρρ − Gsing

ρρ
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If the dispersion was linear, there would only be the sound front. However,
ω = iλ± = iα ±

√
vs

2k2 − α2.

Also note that one eigenvalue λ− ∼ k2, for k → 0.
Diffusion-like, but no dissipation.

Gρρ becomes Gaussian at large τf/τ . Width
˙
∆ξ2

¸
= 2vs

2/α · ln(τf/τ).

Sum rule:
R

∞

−∞
dξ Gρρ(ξ; τf , τ) = 1.
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Viscosity and taming of singularities
For ν = const can be solved by perturbation in

ν

τT
≪ 1.

Not assuming k2 × ν

τT
to be small.

G̃ρ(k; τ, τ ′) =

„
τ ′

τ

«α »

cosh
`
β ln(τ/τ ′)

´
+

„

α + k2 +
νk2

2τ ′T (τ ′)

«
sinh (β ln(τ/τ ′))

β

–

× exp

»

−νk2

4α

„
1

τ ′T (τ ′)
− 1

τT (τ)

«–

For GXX(ξ; τf , τ)) – Gaussian smearing with width

σ2 =
ν

α

„
1

τT
− 1

τfTf

«
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Freeze-out
Cooper-Frye prescription:

p0 dNs

d3p
= ds

Z

Σf

d3σµpµ fs(x,p); fs(x,p) =
“

ep·u/T ± 1
”−1

Fluctuations ρ and ω (i.e., T and u) translate into δN :

δ

„
dN

dη

«

=
dsAτfTf

3

(2π)2

Z

dξ
ρ vs

2 + ω tanh(η − ξ)

cosh2(η − ξ)
Γ

„

4,
m0

Tf

cosh(η − ξ)

«

Translation from ξ to η leads to additional (thermal) smearing.

fi

δ
dN

dη1

δ
dN

dη2

fl fi
dN

dη

fl−1

=
45ds

4π4Neff(T0)

ν

Tfτf

„
T 2

0

Tf
2

«vs
−2

−2

K(∆η) ,
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Conclusions and Outlook

Hydrodynamics predicts long range correlations induced by thermal noise.

Wake: magnitude is proportional to ν. Nontrivial consequence of expansion.
Magnitude of correlations in static equilibrium is determined by the static
(thermodynamic) quantities only.

Ridge: need to detemine φ-dependence. Expect a narrow (thermal) peak.

More realistic (numerical) calculations need to be compared with experiment.

Hydrodynamic Noise and Bjorken Expansion – p. 22/22


	Strong interactions
	Quark-Gluon Plasma
	Lattice
	Heavy-ion collision
	Hydrodynamic description
	Fluctuations and viscosity
	Relativistic Hydrodynamics
	Viscous hydrodynamics
	Fluctuations and Noise
	Fluctuations and Noise
	Bjorken expansion
	Hydrodynamic equations
	Hydrodynamic equations for fluctuations
	Correlations
	Solution: inviscid case, linear EOS
	Response functions and sound horizon
	Singularities at the sound horizon
	The wake
	Viscosity and taming of singularities
	Freeze-out
	Conclusions and Outlook

