Physics with Tagged Forward Protons using the STAR Detector at RHIC

- The Relativistic Heavy Ion Collider
- The pp2pp Experiment 2002-2003
- STAR 2009

Elastic and Diffractive Processes

Elastic scattering

- Detect protons in very forward direction with Roman Pots

Single diffractive dissociation

- Detect one proton with RP and M_{x} in forward STAR detector

Central production

- Detect both protons in forward direction plus M_{x} in central STAR detector (SVT, TPC, ...)

The RHIC Accelerator

Designed for colliding heavy ion beams
\rightarrow Need two separate beam lines with individual transport magnets except in the interaction regions
\rightarrow Can also collide identical particles, like polarized protons

For collision of polarized proton beams need

- Polarized proton source
- Magnets to maintain polarization as much as possible (vertically)
- Polarization measurement (to about 5\%)
- Magnets to change polarization from transverse to longitudinal

Birds Eye View of RHIC

The RHIC Accelerator

The RHIC pp Run 09

- 111 proton bunches per beam (120 bunch structure)
- $1.5 \cdot 10^{11}$ protons per bunch (design $2 \cdot 10^{11}$)
- Beam momentum $100 \mathrm{GeV} / c$ (design up to $250 \mathrm{GeV} / \mathrm{c}$)
- Fill life time about one shift of eight hours
- Polarization about 0.6 (design 0.7)

Elastic pp-Scattering at RHIC

Studies the dynamics and spin dependence of the hadronic interaction through elastic scattering of polarized protons in unexplored cms energy range of $50 \mathrm{GeV}<\sqrt{ } s<500 \mathrm{GeV}$, in the range of $4 \cdot 10^{-4} \mathrm{GeV}^{2} \leq|t| \leq 1.5 \mathrm{GeV}^{2}$, covering region of

Coulomb interaction for $|t|<10^{-3} \mathrm{GeV}^{2}$
Measure total cross section $\sigma_{\text {tot }}$ and access imaginary part of scattering amplitude via optical theorem
Hadronic interaction for
$5 \cdot 10^{-3} \mathrm{GeV}^{2} \leq|t| \leq 1 \mathrm{GeV}^{2}$
Measure forward diffraction cone slope b

Interference between Coulomb and

 hadronic interaction (CNI-region)Measure ratio of real and imaginary part of forward scattering amplitude ρ_{0} and extract its real part using measured $\sigma_{\text {tot }}$

Differential Elastic Cross Section

For Proton-Proton Scattering

$$
\begin{aligned}
\frac{d N}{d t} & \approx \frac{4 \pi\left(\alpha G_{E}^{2}\right)^{2}}{t^{2}} \\
& +\frac{\left(1+\rho^{2}\right) \sigma_{\mathrm{tot}}^{2} e^{+b t}}{16 \pi} \\
& +\frac{(\rho+\Delta \Phi) \alpha G_{E}^{2} \sigma_{\mathrm{tot}} e^{+\frac{1}{2} b t}}{t}
\end{aligned}
$$

$\Delta \Phi=$ Coulomb Phase
$G_{E}=$ Proton Electric Form Factor
Input: $\sigma_{\text {tot }}=52 \mathrm{mb}$
$\rho=0.13$
$b=14 \mathrm{GeV}^{-2}$
Values for $\sqrt{ } \mathrm{s}=200 \mathrm{GeV}$

pp Elastic Scattering Amplitudes

The helicity amplitudes describe elastic proton-proton scattering

$$
\begin{array}{rlrl}
\phi_{1}(s, t) \propto<++|M|++> & \phi_{n}(s, t) \propto<h_{3} h_{4}|M| h_{1} h_{2}> \\
\phi_{2}(s, t) \propto<++|M|--> & \text { with } h_{x}=s-c h a n n e l \\
\phi_{3}(s, t) \propto<+-|M|+-> & p_{1}=-p_{2} \text { incoming proty } \\
\phi_{4}(s, t) \propto<+-|M|-+> & & p_{3}=-p_{4} \text { scattered protons } \\
\phi_{5}(s, t) \propto<++|M|+->\left(=\phi_{\text {filp }}\right) & \phi_{+}(s, t)=\frac{1}{2}\left(\phi_{1}(s, t)+\phi_{3}(s, t)\right)=\phi_{r}
\end{array}
$$

Measure $\quad \sigma_{\text {tot }}=\frac{8 \pi}{s} \quad \operatorname{Im}\left[\phi_{+}(s, t)\right]_{t=0}$

$$
\frac{d \sigma}{d t}=\frac{2 \pi}{s^{2}} \quad\left(\left|\phi_{1}\right|^{2}+\left|\phi_{2}\right|^{2}+\left|\phi_{3}\right|^{2}+\left.\left|\phi_{4}\right|^{2}|+4| \phi_{5}\right|^{2}\right)
$$

$$
\Delta \sigma_{\mathrm{T}}=-\frac{8 \pi}{s} \operatorname{Im}\left[\phi_{2}(s, t)\right]_{t=0}=\sigma^{\uparrow \downarrow}-\sigma^{\uparrow \uparrow}
$$

$$
2 \pi \frac{d^{2} \sigma}{d t d \varphi}=\frac{d \sigma}{d t} \quad\left(1+\left(P_{\mathrm{B}}+P_{\mathrm{Y}}\right) A_{\mathrm{N}} \cos \varphi+P_{\mathrm{B}} P_{\mathrm{Y}}\left(A_{\mathrm{NN}} \cos ^{2} \varphi+A_{\mathrm{SS}} \sin ^{2} \varphi\right)\right)
$$

Single Spin Asymmetry

- Single spin asymmetry A_{N} of transversely polarized protons arises in CNI region from interference of hadronic non-flip with electromagnetic spin-flip amplitude
- Measure dependence of $|t|$ to probe for interference contribution from hadronic spin-flip amplitude with electromagnetic amplitude
- Disentangle Real and Imaginary part of hadronic spin flip contribution by measuring shift or slope change of A_{N} with possible zero crossing

$$
\begin{array}{rlr}
A_{N}(t) & =\frac{1}{P_{\mathrm{Y}} \cdot \cos \varphi} \frac{N_{\uparrow \uparrow}(t)+N_{\uparrow \downarrow}(t)-N_{\downarrow \downarrow}(t)-N_{\downarrow \uparrow}(t)}{N_{\uparrow \uparrow}(t)+N_{\uparrow \downarrow}(t)+N_{\downarrow \downarrow}(t)+N_{\downarrow \uparrow}(t)} & \text { for small } t \\
& \propto \frac{\operatorname{Im}\left(\phi_{\text {flip }}^{\text {em } *} \phi_{\text {no-flip }}^{\text {had }}+\phi_{\text {flip }}^{\text {had } *} \phi_{\text {no-flip }}^{\text {em }}\right)}{d \sigma / d t} & \text { With } N(t)=\frac{d N}{d t} \\
r_{5} & =\frac{m_{p}}{\sqrt{-t}} \frac{\phi_{5}^{\text {had }}}{\operatorname{Im}\left(\phi_{+}^{\text {had }}\right)} & \varphi=\text { beam pol. }
\end{array}
$$

Double Spin Asymmetries

Measure $A_{\text {NN }}$ and $A_{\text {SS }}$ with transversely polarized protons to find limit on detectable Odderon, $C=-1$ partner of the Pomeron, contribution to interference between ϕ_{1} and ϕ_{2}
Pomeron and Odderon out of phase by about 90° at $t=0$

$$
\begin{aligned}
& A_{\mathrm{NN}}(t)=\frac{1}{P_{\mathrm{Y}} \cdot P_{\mathrm{B}} \cdot \cos ^{2} \varphi} \frac{N_{\uparrow \uparrow}(t)+N_{\downarrow \downarrow}(t)-N_{\uparrow \downarrow}(t)-N_{\downarrow \uparrow}(t)}{N_{\uparrow \uparrow}(t)+N_{\downarrow \downarrow}(t)+N_{\uparrow \downarrow}(t)+N_{\downarrow \uparrow}(t)} \propto \frac{\mathcal{R e}\left(\phi_{\text {no-flip }} \phi_{2}{ }^{*}\right)}{d \sigma / d t} \\
& A_{\mathrm{SS}}(t)=\frac{1}{P_{\mathrm{Y}} \cdot P_{\mathrm{B}} \cdot \sin ^{2} \varphi} \\
& \frac{N_{\uparrow \uparrow}(t)+N_{\downarrow \downarrow}(t)-N_{\uparrow \downarrow}(t)-N_{\downarrow \uparrow}(t)}{N_{\uparrow \uparrow}(t)+N_{\downarrow \downarrow}(t)+N_{\uparrow \downarrow}(t)+N_{\downarrow \uparrow}(t)} \propto \frac{\operatorname{Re}\left(\phi^{*}{ }_{\text {no-flip }} \phi_{2}\right)}{d \sigma / d t}
\end{aligned}
$$

Beam Polarization Measurement

Measuring the analyzing power A_{N} by scattering one (polarized) proton beam off a polarized hydrogen jet of known polarization at $V_{s}=13.7 \mathrm{GeV}$ and $V_{s}=6.7 \mathrm{GeV}$ Used for simultaneous calibration of proton-carbon CNI polarimeter

Jet-Target Results for $\boldsymbol{A}_{\mathrm{N}}$ and A_{NN}

Measurement of A_{N} at $\sqrt{s}^{s}=13.7 \mathrm{GeV}$ in agreement with assumption of no hadronic spin-flip contribution to scattering amplitude
Not the case for measurement at $\sqrt{s}=6.7 \mathrm{GeV}$ (statistically limited)
Measurement of $A_{\text {NN }}$ consistent with zero

H. Okada et al., AIP Conf.Proc.915:681 (2007)

Experimental Technique

- Elastically scattered protons have very small scattering angle Θ^{*}, hence beam transport magnets determine trajectory of scattered protons
- The optimal position for the detectors is where scattered protons are well separated from beam protons
- Need Roman Pot to measure scattered protons close to the beam without breaking accelerator vacuum

Principle of Measurement

Elastically forward scattered protons have very small scattering angle θ^{*}
Beam transport magnets determine trajectory of beam and scattered protons
Scattered protons need to be well separated from the beam protons
Need Roman Pot to measure scattered protons close to beam

Beam transport equations relate measured position at detector to scattering angle $x=a_{11} x_{0}+L_{\text {eff }} \theta_{x}^{*} \rightarrow$ Optimize so that a_{11} small and $L_{\text {eff }}$ large $\theta_{x}=a_{12} x_{0}+a_{22} \theta_{x}^{*} \rightarrow x_{0}$ can be calculated by measuring $\theta_{x}\left(2^{\text {nd }} R P\right)$

Similar equations for y -coordinate
Neglect terms mixing x - and y-coordinate
in above equations
x : Position at Detector
$\boldsymbol{\theta}_{\mathrm{x}}$: Angle at Detector
x_{0} : Position at Interaction Point
$\boldsymbol{\theta}_{\underset{*}{x}}$: Scattering Angle at IP

Beam Transport

pp2pp Experimental Setup 2003

STAR Experimental Setup 2009

Silicon Detector

400 micron thick Silicon
Good Position Resolution with Strip Pitch ~100 micron
Distance between first strip and edge about 500 micron

2009 Data Taking

Conditions
Five days of data taking with high $\beta^{*}=21 \mathrm{~m}$ beam tune
Beam momentum $p=100 \mathrm{GeV} / c$
111 proton bunches per beam
Beam scraped to emittance $\varepsilon \approx 12 \pi \cdot 10^{-6} \mathrm{~m}$ and luminosity $\leq 2 \cdot 10^{28} \mathrm{~cm}^{-2} \mathrm{sec}^{-1}$
Beam polarization $P_{B}+P_{Y}=1.224 \pm 0.038 \pm 4.4 \%$
Very high detector efficiency with 5 dead/noisy strips in 14,000 active strips
20 million reconstructed elastic scattering events
Background less than 1\%

Silicon Detector Efficiency

- After excluding hot/noisy strips
- 5 dead strips for $\sim 14,000$ strips in active area (acceptance)

Elastic Hit Pattern

Hit distribution of scattered protons within 3σ-correlation cut reconstructed using the nominal beam transport
Agreement between Monte Carlo simulation and data

Elastic events angular distribution

Experimental Raw Asymmetries

All four possible relative spin orientations available
Can use square-root formula to avoid normalization for A_{N}

$$
\begin{aligned}
& \varepsilon_{N}(\varphi)=\frac{\left(P_{B}+P_{Y}\right) A_{N} \cos \varphi}{1+\delta(\varphi)}=\frac{\sqrt{N^{++}(\varphi) N^{-}(\pi+\varphi)}-\sqrt{N^{-}(\varphi) N^{++}(\pi+\varphi)}}{\sqrt{N^{++}(\varphi) N^{--}(\pi+\varphi)}+\sqrt{N^{-}(\varphi) N^{++}(\pi+\varphi)}} \\
& \varepsilon_{N}^{B}(\varphi)=P_{B} A_{N} \cos \varphi=\frac{\sqrt{N_{B}^{+}(\varphi) N_{B}^{-}(\pi+\varphi)}-\sqrt{N_{B}^{-}(\varphi) N_{B}^{+}(\pi+\varphi)}}{\sqrt{N_{B}^{+}(\varphi) N_{B}^{-}(\pi+\varphi)}+\sqrt{N_{B}^{-}(\varphi) N_{B}^{+}(\pi+\varphi)}} \\
& \varepsilon_{N}^{\prime}(\varphi)=\frac{\left(P_{B}-P_{Y}\right) A_{N} \cos \varphi}{1-\delta(\varphi)}=\frac{\sqrt{N^{+}(\varphi) N^{+}(\pi+\varphi)}-\sqrt{N^{+}(\varphi) N^{+-}(\pi+\varphi)}}{\sqrt{N^{+}(\varphi) N^{+}(\pi+\varphi)}+\sqrt{N^{+}(\varphi) N^{+-}(\pi+\varphi)}} \\
& \delta(\varphi)=P_{B} P_{Y}\left(A_{N N} \cos ^{2} \varphi+A_{S S} \sin ^{2} \varphi\right)<0.01 \ll 1
\end{aligned}
$$

Analyzing Power Measurement 2009

$$
\varepsilon_{N}=A_{N} \cdot P \text { for one bin with }<-t>=0.0077 \mathrm{GeV} / c^{2}
$$

Analyzing Power Measurement 2009

$\varepsilon_{N}=A_{N} \cdot P$ for one bin with $\langle-t\rangle=0.0077 \mathrm{GeV} / c^{2}$

Analyzing Power Measurement 2009

$$
A_{N}(t)=\frac{\sqrt{-t}}{m} \frac{\left[\kappa(1-\rho \delta)+2\left(\delta \operatorname{Re} r_{5}-\operatorname{Im} r_{5}\right)\right] \frac{t_{c}}{t}-2\left(\operatorname{Re} r_{5}-\rho \operatorname{Im} r_{5}\right)}{\left(\frac{t_{c}}{t}\right)^{2}-2(\rho+\delta) \frac{t_{c}}{t}+\left(1+\rho^{2}\right)}
$$

$$
r_{5}=\frac{m_{p}}{\sqrt{-t}} \frac{\phi_{5}^{\text {had }}}{\operatorname{lm}\left(\phi_{+}^{\text {had }}\right)}
$$

Comparison with Calculations

Impact picture calculation predicts $b=16.25 \mathrm{GeV}^{-2}$

C. Bourrely, J. Soffer, T.T. Wu,
arXiv: $0707.2222(2007)$

Expectation for A_{N} at $V_{S}=500 \mathrm{GeV}$

Double Spin Asymmetry Ass $_{\text {ss }}$

- Prediction for $A_{\text {SS }}$ at cms energy of 200 GeV for different spin-flip coupling constants β and zero nonflip coupling
- Solid line for zero spin-flip coupling
- Data points from pp2pp measurement 2003
- Cannot rule out Odderon with modest spin-flip coupling

Double Spin Asymmetry $\varepsilon_{\text {NN }}$

- Cannot use square-root formula
- Use normalized count rates K
- Use STAR beam-beam counters and vertex position detectors
- Both covering 2π acceptance
- Good agreement for single-spin asymmetries analyzed both ways

$$
\begin{aligned}
& \varepsilon_{N N}(\varphi)=P_{B} P_{Y}\left(A_{N N} \cos ^{2} \varphi+A_{S S} \sin ^{2} \varphi\right)= \\
& =\frac{\left(K^{++}(\varphi)+K^{--}(\varphi)\right)-\left(K^{+-}(\varphi)+K^{-+}(\varphi)\right)}{\left(K^{++}(\varphi)+K^{--}(\varphi)\right)+\left(K^{+-}(\varphi)+K^{-+}(\varphi)\right)}
\end{aligned}
$$

Double Spin Asymmetry $\varepsilon_{\text {NN }}$

- Both double spin asymmetries A_{NN} and A_{SS} very small
- Need more systematic studies

$$
\begin{aligned}
& \varepsilon_{N N}(\varphi)=P_{B} P_{Y}\left(A_{N N} \cos ^{2} \varphi+A_{S S} \sin ^{2} \varphi\right)= \\
& =\frac{\left(K^{++}(\varphi)+K^{--}(\varphi)\right)-\left(K^{+-}(\varphi)+K^{-+}(\varphi)\right)}{\left(K^{++}(\varphi)+K^{--}(\varphi)\right)+\left(K^{+-}(\varphi)+K^{-+}(\varphi)\right)}
\end{aligned}
$$

Nuclear Seminar, UVa, October 2011

Adding Roman Pots to STAR

Phase I very similar to setup at BRAHMS

- Added STAR central detection capability very good central particle ID and p_{T} resolution
- Study elastic and diffractive scattering

Phase II adding Roman Pots between dipole magnets DX and D0

- Extends kinematic range ($-t<1.5 \mathrm{GeV}^{2} / c^{2}$ for $\sqrt{ }=500 \mathrm{GeV}$)
- Beam pipe between dipole magnets needs to be rebuild

Central Production at STAR

- Detect both scattered protons in Roman Pots
- Resonance state at mid-rapidity depends on transferred transverse momentum $d p_{\mathrm{T}}=\left|p_{\mathrm{T} 1}-p_{\mathrm{T} 2}\right|$ (CERN WA 102)
- For large $d p_{\mathrm{T}} q \bar{q}$ meson states are dominant
- For small $d p_{\mathrm{T}}$ resonances may include glueball candidates produced in Double Pomeron Exchange
- Glueballs likely to decay with emission of η mesons

Central Production at STAR

In central region use Central Trigger Barrel to

- veto cosmic events (top and bottom veto)
- select low multiplicity events in north and south quadrants of STAR

Low Multiplicity Events at STAR

- ρ^{0} virtual photoproduction in ultra peripheral Au-Au collisions at 200 GeV cms energy
- Select events with two tracks $\left(\pi^{+} \pi^{-}\right)$of the same vertex in opposite quadrants of STAR

Phase II Simulated Kinematic Range for Elastically Scattered Protons

- Data taking concurrent with standard proton beam tune (using $\beta^{*}=1 \mathrm{~m}$)
- Using Hector simulation program (J. de Favereau, X. Rouby)
- Detector positioned between DX and D0 (around $z=18 \mathrm{~m}$)
- $200 \times 100 \mathrm{~mm}^{2}$ sensitive silicon detector area (15 mm distance to beam)
$100 \mathrm{GeV} / \mathrm{c}$ proton beam momentum

$250 \mathrm{GeV} / \mathrm{c}$ proton beam momentum

Nuclear Seminar, UVa, October 2011

Phase II Simulated Acceptance for Elastically Scattered Protons

- $|t|$-Acceptance integrated over the azimuthal angle ϕ
$100 \mathrm{GeV} / \mathrm{c}$ proton beam momentum

$250 \mathrm{GeV} / \mathrm{c}$ proton beam momentum

Outlook

Phase I

- Measure in Run 09 and future runs elastic and diffractive scattering at cms energy of 200 GeV and $0.003(\mathrm{GeV} / \mathrm{c})^{2}<-t<$ $0.038(\mathrm{GeV} / \mathrm{c})^{2}$ and 500 GeV
- Need special data taking run with proton beam tune of $\beta^{*} \approx 20 \mathrm{~m}$

Phase II

- Add Roman Pot detectors between DX and D0 magnets at 17 and 18 m positions to increase t - range to a maximum of $-t<1.5$ $(\mathrm{GeV} / \mathrm{c})^{2}$ for cms energy of 500 GeV
- Data taking for Phase II does not require special beam tune

Additional Slides

Double Spin Asymmetry Result A $_{\text {NN }}$

$$
\begin{aligned}
& \text { Average }\left\langle t>=-0.0185(\mathrm{GeV} / \mathrm{c})^{2}\right. \\
& A_{\mathrm{NN}}=0.030 \pm 0.017 \text { (stat.+nor.) } \\
& \pm 0.005 \text { (sys.) }
\end{aligned}
$$

Large errors do not really allow to discriminate between model predictions

Curves for

$$
\begin{aligned}
& \sqrt{ } \mathrm{s}=14 \mathrm{GeV} \\
& \sqrt{ } \mathrm{~s}=200 \mathrm{GeV} \\
& \sqrt{ } \mathrm{~s}=500 \mathrm{GeV} \\
& ----
\end{aligned}
$$

(c)

Double Spin Asymmetry Result Ass $^{\text {s }}$

Average $<t>=-0.0185(\mathrm{GeV} / \mathrm{c})^{2}$
$A_{\text {ss }}=0.004 \pm 0.008$ (stat. + nor.) ± 0.003 (sys.
But

$\langle-t\rangle$	0.013	0.018	0.024
$A_{\text {SS }}$	0.001	0.008	0.002
$\Delta A_{\text {SS }}$ (stat.)	0.007	0.006	0.006

Results maybe weakly favour no or weak Odderon spin coupling

```
T. L. Trueman, arXiv:hep-ph/0604153 (2006)
a) No Odderon spin coupling
b) Weak Odd'eron spin coupling (like Pomeron)
c) Strong Odderon spin coupling
```


Phase I at STAR with 200 GeV

- Special beam tune of $\beta^{*}=20 \mathrm{~m}$
- Luminosity $2 \cdot 10^{29} \mathrm{~cm}^{-2} \mathrm{sec}^{-1}$
- Four days of data taking
- Two Roman Pot stations at each 58 m position from IP
- Elastic rate of 400 Hz (3.1 $\cdot 10^{7}$ events)
- DPE rate of $8 \mathrm{~Hz}\left(6.3 \cdot 10^{5}\right.$ events)
- Elastic trigger using Roman Pot co-linearity
- DPE trigger using Roman Pot trigger in same hemisphere plus STAR detector Central Trigger Barrel (or future ToF)

Phase I Elastic Scattering with STAR at 200 GeV

Expand -t range to $0.003-0.038 \mathrm{GeV}^{2} / \mathrm{c}^{2}$

- Maximum of A_{N} for 200 GeV is at $-t=0.002 \mathrm{GeV} 2 / c^{2}$
- Need to constrain shape of A_{N}, not only maximum value

Phase I Elastic Scattering with STAR at 200 GeV

Expected uncertainties for elastic scattering

- Nuclear slope parameter $\Delta b=0.3(\mathrm{GeV} / c)^{-2}$
$1.6(\mathrm{GeV} / \mathrm{c})^{-2}$ from $1^{\text {st }}$ measurement
- Total cross section $\Delta \sigma=3 \mathrm{mb}$
- ρ-parameter $\Delta \rho=0.01$
- Analyzing power $\Delta A_{N}=0.0017$
not measured so far
not measured so far
0.0023 from $1^{\text {st }}$ measurement
- Double spin asymmetries $\Delta A_{\mathrm{NN}}=\Delta A_{\mathrm{SS}}=0.0053$
0.017 (0.008) from $1^{\text {st }}$ measurement

