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Introduction to String Theory

Point particle evolution : worldine
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∫
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Introduction to String Theory

String evolution : worldsheet

S = −T
∫

dτdσ

√
−(Ẋ ·Ẋ )(X ′ · X ′) + (X ′ · Ẋ )2 ∼ Area

S = −T
2

∫
dτdσ

√
− det hhαβ∂αX · ∂βX

T =
1

2πα′
α′ = Regge slope = l2s = string length2



Introduction to String Theory

String equations of motion = Wave equations

�X = Ẍ − X” = 0

Same as for a vibrating violin string!

Sviolin =

∫
dt

∫
dx

[
µ
2 (ẏ)2 − T

2 (y ′)2

]

Also, same as for a violin string, two types on endpoint conditions: free
(Neumann) or fixed (Dirichlet).



Introduction to String Theory

Modes of vibrations for the open and closed strings:

Energy levels for the quantum violin string

E

Just an infinite bunch of harmonic oscillators.



Introduction to String Theory

But, the relativistic string is more constrained: invariance under
reparametrizations of the worldsheet means that the energy as measured
on the worldsheet (and the stress tensor in general) is zero:

Ẋ · Ẋ + X ′ · X ′ = 0, Ẋ · X ′ = 0

The string spectrum is an infinite tower of particles, with arbitrarily high
spin classified by the Lorentz group
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And, the number of space-time dimensions is fixed (26 or 10).



Introduction to String Theory

Open string with Neumann (free) and Dirichlet (fixed) boundary
conditions:

D−brane

Α µΑ µ

X|| : Neumann b.c. and X⊥ : Dirichlet b.c.

At the massless level find a spin one particle (photon) and several (as
many as transverse directions to the D-brane) scalar particles.
The D-brane is dynamical (it fluctuates). Its action is derived by
requiring one-loop conformal invariance for the open string. Conformal
invariance: scaling symmetry (the theory looks the same at any scale).



For a space-time filling D-brane

S = − 1

4πα′

∫
ws

dτdσ ∂αXµ∂αXµ +

∫
bdy ws

dτ Aµ∂τX
µ

β = 0 −→ EOM of Born− Infeld action : L =
√

det(ηµν + 2πα′Fµν)

For small α′, get the Maxwell action

L =
1

4
FµνF

µν ∼ ~E 2 − ~B2



For closed strings, conformal (scale) invariance

S = − 1

4πα′

∫
ws

dτdσ

[
∂αXµ∂αX

νgµν(X ) + i∂αXµ∂βXµεαβBµν(X )

+ α′Φ(X )Rws

]

requires that the space-time metric satisfies Einstein equations

Rµν = B,Φ−sources, Rµν = 0 in vacuum

In general, conformal invariance implies the EOM of Einstein action
(+more)

L = 1
GN

√
− det ge−2Φ

[
R − 1

2HµνρH
µνρ + 4∂µΦ∂µΦ

]

It’s the tail wagging the dog! the string cannot exist in other spacetimes
than those compatible with general relativity.



Superstrings

Supersymmetry relates particles with different spin-statistics:

supermultiplet=(bosons, fermions)
Infinitesimal transformation

δf = ε∂b δb = εf ”δ2”b = ”ε2”∂b

Superstrings live in 10 dimensions. At the massless level (or α′ → 0) find

I open strings: superMaxwell multiplet (Aµ and a spin 1/2 field,
gaugino)

I closed strings: supergravity multiplet (gµν , a spin 3/2 field,
gravitino, plus a bunch of other fields)



D-branes in supergravity
D-branes have energy, they gravitate, and curve the space around them.
Mass/Energy ↔ Geometry/Metric.
This is much like having an object with a mass M source the Einstein
equation. In the limit of weak gravitational field, the geodesic motion of
some test particle yields Newtonian dynamics and gravity.

For flat D3-branes (extended in space-time) we have a dual description



How to think of AdS5 × S5?

S5 is a 5-dimensional constant positive curvature space (sphere):

Y 2
1 + Y 2

2 + Y 2
3 + Y 2

4 + Y 2
5 + Y 2

6 = R2

AdS5 is a 5-dimensional constant negative curvature space:

−X 2
−1 − X 2

0 + X 2
1 + X 2

2 + X 2
3 + X 2

4 = −R2



Back to D3’s

Dual perspective in the low energy limit (α′ → 0):

I Solutions of supergravity

ds2 =
√
h(r)dxµdxµ +

1√
h(r)

(dr2 + r2dΩ2
5)

h(r) = 1 +
4πNgsα

′2

r4
≡ 1 +

R4

r4

ds2 =
R2

z2
(dxµdxµ + dz2) + R2dΩ2

5 = ds2
AdS + ds2

S

I 4d field theory = maximally supersymmetric extension of QCD or
N = 4 superYang Mills

SU(N) gauge field Aµ, 4 spin 1/2 fields, and 6 scalars
All fields transform as in the adjoint representation of SU(N).



Holography

Maldacena: The 4d maximally susy gauge theory with gauge group
SU(N), at strong coupling, is dual to superstring theory on the curved
background AdS5 × S5.

I Identification of symmetries:
-conformal symmetry SO(4, 2) is a(n) symmetry (isometry) of the
AdS5 background
-R-symmetry SO(6) is a(n) symmetry (isometry) of the S5

background

I Identification of couplings

g2
YM

4π
= gs , g2

YMN =
R2

α′2
, α′ → 0, R �

√
α′

I This is a strong/weak duality. Difficult to prove, but powerful in its
applications. Simply replace the strongly coupled system by a
gravitational weakly coupled one.



Holograms of strings

Consider the field theory, and imagine that it interacts with a
gravitational wave. This coupling involves the metric fluctuation hµν with

the energy-stress tensor Tµν (recall that the energy density is ∼ ~E 2 + ~B2).

This metric fluctuation on the boundary of AdS propagates in the bulk.
Expectation values of the energy-stress tensor are computed by
evaluating the supergravity action on AdS5, pertubed by the boundary
fluctuation hµν .
Similarly, a background field Aµ will source a current ψ̄γµψ in the field
theory.
Expectation values of the current are computed by evaluating the
supergravity action, perturbed by the boundary fluctuation Aµ.
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More concretely,

〈Tµν(x1)Tρσ(x2)Tλτ (x3)〉 =
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I bulk gravitons - holograms of stress-energy tensor

I bulk gauge fields - holograms of currents

I other operators: bulk scalars with mass m - holograms of scalar
operators with conformal dimension ∆ = 2 +

√
4 + m2R2 etc.

I quarks? these particles transform in the fundamental representation
of SU(N) [In QCD there are 3 quarks, and 8 gluons, and the gauge
field is SU(3).] Need strings with one end on the D3’s and one end
on some other (”flavor”) D-brane:
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Still, this is not the holographic dual of a confining gauge theory.
For that, the AdS geometry needs to be replaced by something else.



I mesons? these are qq̄ bound states. holographic dual?
I for small spin - fluctuations of the flavor D-brane
I for large spin - open spinning strings

I baryons? these are qqq bound states. holographic dual?
A baryon vertex (wrapped D-brane on S5) with N open strings
connecting the boundary to it.
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Applications to strongly coupled hot plasmas
Quark-Gluon Plasma

I At room temperature, quarks and gluons are always confined inside
colorless objects (hadrons: baryons, mesons).

I At very high temperature, quarks and gluons deconfine and form a
QG plasma.

At T →∞ the interactions vanish and the quarks and gluons are
free, non-interacting particles (QGP gas).



In the lab, QGP is created in relativistic heavy ion collisions at RHIC
(Brookhaven National Lab) and LHC (Geneva, CERN).
RHIC: Au-Au collisions

√
sNN ∼ 200GeV , T ∼ 300MeV

LHC Pb-Pb collisions
√
sNN ∼ 2.76TeV , T ∼ 450MeV

Cartoon of a collision event



I Properties of the QGP: weakly or strongly coupled?
Collective behavior of the observed final-state hadrons (anisotropy of
the momenta distribution in the ellipse angle): suggests that RHIC
and LHC QGP is a fluid, which moreover exhibits a very small
viscosity (ideal, strongly coupled fluid).

0

h̄

4πkB

η

s

g2Nc

[Kovtun, Son, Starinets 2004]

I Probes of QGP? it exists for 5fm (or, in proper units, 10−23s), so
external probes cannot be used. Use hard probes created during the
collision - jet quenching.



If the deconfined quarks and gluons interact strongly, this is a strongly
coupled plasma. In a range of temperatures above Tc , hot QCD is similar
to hot superYang-Mills: non-supersymmetric, almost conformal.
So, its holographic dual is not unlike AdS at finite temperature, that is
AdS with a black hole in it.
Black holes radiate, and the (Hawking) radiation has a thermal spectrum,
with a temperature which can be computed from geometry.
Holographically, identify the Hawking temperature and the dual field
theory temperature.



Real-time AdS/CFT

We are interested in dynamical processes which happen near equilibrium.
Develop real-time AdS-CFT tools. In real-time (as opposed to
Euclidean/imaginary time) there is the issue of time-ordering:

Feynman correlator GF ∼ 〈T φ(x1)φ(x2)〉

∼ 1

(~x1 − ~x2)2 − (t1 − t2)2 + iε

Wightman correlator G+
W ∼ 〈φ(x1)φ(x2)〉

∼ 1

(~x1 − ~x2)2 − (t1 − t2 − iε)2

Causal Retarded correlator GR ∼ GF − G−W
support on the forward light− cone



Veltman’s circling rules can be transplanted to gravity on AdS

_

∆

∆

F

F

*

∆+

∆

Properties:

I Largest time identity: Sums of all diagrams with all vertices circled
or uncircled is zero

I Retarded n-point function: Assume that external leg 1 has the
largest time. Then the retarded n-point function is the sum of all
diagrams with vertices circled or un-circled, with the exception of 1
which remains uncircled.

In real-time finite temperature formalism, use Schwinger-Keldysh path

integration contour
β

t i ft

− iσt f
− it

i



Kobes & Semenoff: Trade the Schwinger-Keldysh propagator for circling
rules, which are the same as at zero temperature.
The retarded propagator determines completely all other components of
the SK propagator

GR =θ(t)〈e−βH [φ1(x), φ1(0)]〉
GF =Re(GR) + iIm(GR)coth(E/2T )

In AdS-CFT, causal propagators have specified incoming/outgoing
boundary conditions at the black hole horizon; the others can be
determined from them; also, one more prescription applies: the bulk
region is integrated only up to horizon.
Real-time 2-point functions known since 2002 [Son and Starinets, Son
and Herzog].
Real-time higher n-point functions known since 2010 [Arnold, Barnes,
DV, Wu].
Applications? Beyond linear response.



Jet quenching
Jet: a colimated spray of hadrons resulted from the QCD branching of a
hard parton.
Jet (here): the hard parton moving through the hot medium.
Jet quenching: jet interacts with the medium, leading to a marked
decrease in its energy.

Possibilities:
I the jet interacts weakly with the medium and with the emitted

radiation.
I the jet interact strongly with the medium, and weakly with the

emitted radiation.
I all interactions are strong.



Different kinds of jets:

I - heavy quarks and the drag force experienced due to medium
interactions - open strings with one end-point on the horizon,
dragged by an invisible hand such that it moves with constant
velocity, the other endpoint trailing behind, approaching the horizon

I - gluon-like jets - holograms of closed folded-back strings with both
ends through the horizon [Gubser et al 2008]

I - two light-quark jets moving in opposite directions - holograms of
open strings with the endpoints moving farther from each other,
falling in the black hole [Chesler et al 2008]
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All these scenarios begin by setting up the initial problem on the gravity
side. Not an easy translation to an initial condition on the field theory
side.



The question: how far does a localized, highly energetic excitation travel
through the hot plasma, before coming to a stop and thermalizing?
Answer: it depends. For a weakly coupled plasma, the stopping distance
dependence with the energy E is lstop ∼ E 1/2. [Arnold, Moore, Yaffe]
For a strongly coupled plasma, with long strings as the duals of the jet,
lstop ∼ [E/(T

√
λ)]1/3.

What about jets whose duals are short strings (supergravity
fluctuations)? [Arnold, Vaman 2010,2011] These are easily amenable to
an initial problem on the field theory side.
Example: perturb the boundary theory by some classical field, sourcing a
current.
Analogy

W
d

u
E

+

The qq̄ pair move to right, carrying conserved charges, isospin. Track
their location by doing an isospin measurement!
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The problem reduces to a computation of a 3-point current correlator
”〈boot|eye|boot〉”.
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The source
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Typical lstop ∼ E 1/4. Maximal lstop ∼ E 1/3.
Source (b) wavepacket localized in the bulk. Amenable to a classical
treatment: point particle following a geodesic trajectory

lstop ∼
(

E 2

−qµqµ

)1/4

.



Hydrodynamics of the strongly coupled plasma

The QCD plasma at RHIC and LHC is a ”perfect fluid”.
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Helium 0.1MPa
Nitrogen 10MPa
Water 100MPa

Viscosity bound

4π η
sh

[Kovtun,Son,Starinets, 2004]



Hydrodynamics- long wavelength/long distance effective description of a
classical or quantum many-body system at finite T .
Relativistic hydro - the quantum fluid is constrained by Lorentz (think
QGP)
Long wavelength modes - ω, k � T
Hydrodynamic equations - EOS and conservation laws (e.g.
energy-momentum tensor is conserved: ∇µTµν = 0) plus an expansion in
small gradients (small ω, k). The coefficients of this expansion are called
hydro coefficients.
At linear order - viscosity (shear + bulk).

Holographic bound (which later it was found to be violated by 1/N terms
in a large class of examples) for the shear viscosity η/s = 1/(4π).
[Kovtun, Son, Starinets].
QGP: η/s ∼ (1− 2)× 1/(4π).



Decompose the stress tensor of a CFT into an equilibrium piece and a
non-equilibrium part, with the latter expanded in gradients, which are
taken to be small:

Tµν = Tµν
eq + Πµν , Tµν

eq = (ε+ P)UµUν + Pgµν

Πµν = −ησµν + ητΠ

(
〈U · ∇σµν〉 + 1

3∇ · Uσ
µν

)
+κ

(
R〈µν〉 − 2UρUσR

ρ〈µν〉σ
)

+λ1σ
〈µ
ρσ

ν〉ρ + λ2σ
〈µ
ρΩν〉ρ + λ3Ω〈µρΩν〉ρ + . . .

where σ and Ω are the fluid’s shear and vorticity tensors:

σµν = 2∇〈µUν〉 ≡ 1
2 ∆µρ∆νσ(2∇ρUσ + 2∇σUρ)− 1

3 ∆µν∆ρσ2∇ρuσ
Ωµν = 1

2 ∆µρ∆νσ(∇ρUσ −∇σUρ)

and where ∆µν are transverse (to the fluid’s velocity) projectors.



I Compute the fluid’s response to a small, slowly varying gravitational
perturbation, and derive Kubo-type formulae for 2nd order hydro
coefficients. [Moore, Sohrabi 2010]

〈Tµν(z)〉h = 〈Tµν〉h=0 − 1
2

∫
d4x Gµν ρσ

ra (z ; x)hρσ(x)

+ 1
8

∫
d4x

∫
d4y Gµν ρσ τζraa (z ; x , y)hρσ(x)hτζ(y) + . . .

I Solve the conservation law ∇µTµν = 0, iteratively, in the fluid’s
velocity Uµ, and order-by-order in the metric fluctuations =⇒ get
Kubo-type formulae! [Arnold, DV, Wu, Xiao, 2011]



lim
ω1→0
ω2→0

∂ω1∂ω2 lim
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G xy xz yz = −λ1 + ητΠ
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∂k2∂ω1 lim
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k1→0

G xy yz tx = − 1
4λ2 + 1

2ητΠ

lim
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∂k1∂k2 lim
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G xy 0x 0y = − 1
4λ3
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lim
k1→0
k2→0

G xy yz xz
AdS =

N2
c

24π2

[
1

23
− i

ω1 + ω2

22
−

(ω1ω2 + ω2
1 + ω2

2)(ln 2− 1)

22
+ . . .

]

lim
k1→0
k2→0

G xy yz xz
hydro =

N2
c

24π2

[
1
3
ε̄−iη(ω1+ω2)+ητΠ(ω2

1+ω2
2+ω1ω2)− 1

2
κ(ω2

1+ω2
2)−λ1ω1ω2+. . .

]

I λ1: λ1 =
N2
c

26π2 ,⇒ λ1 =
N2
cT

2

16
.

lim
ω1→0
ω2→0

G xy ty tx
AdS =

N2
c

26π2

[
−

1

2
+ (k2

1 + k2
2 ) + . . .

]

lim
ω1→0
ω2→0

G xy ty tx
hydro = − 1

3
ε̄+ 1

2
κ(k2

2 + k2
1 )− 1

4
λ3k1k2 + . . .

I λ3: λ3 = 0.

lim
k1→0
ω2→0

G xy yz tx
AdS =

N2
c

26π2
ω1k2 + . . .

lim
k1→0
ω2→0

G xy yz tx
hydro = (− 1

4
λ2 + 1

2
ητΠ)ω1k2 + . . .

I λ2: λ2 = − N2
c

25π2 ln 2⇒ λ2 = − 1
8
N2

cT
2 ln 2.



Building AdS/CFT bottom-up: Aging Dynamics

Non-equlibrium criticality/ Aging
Hankel, Pleimling: A physical many-body system will undergo aging if
the relaxation process towards its stationary state(s) exhibits
-slow dynamics (non-exponential relaxation)
-breaking of time-translation invariance
-dynamical scaling.
Example: take a feromagnetic spin system, which is prepared in a high
temperature state, then quenched below its critical temperature and left
to evolve freely. The size of the clusters of ordered spins, which form and
grow, is time-dependent: L ∼ t1/z .
Features: two-point correlation functions depend on both times, not only
on their difference.



Start with the symmetries.
Schrodinger group

t → t ′ =
αt + β

γt + δ
,~r → ~r ′ =

R~r + ~vt +~a

γt + δ

αδ − βγ = 1

where R is a rotation matrix. The various Schrodinger group
transformations are: time and spatial-translation (β,~a), spatial rotations
(R), Galilei transformations (~v), dilatations (δ) and special Schrodinger
transformation (γ).
For Aging, eliminate time-translations. Compute 2 and 3-point
correlation functions (for scalar operators they are left invariant by the
Aging algebra generators). [Minic, DV, Wu].
To construct the holographic dual, ask that the algebra of the Age
generators is the algebra of the Killing vectors (generators of metric
symmetries). Reverse-engineer the algebra to give you a metric. Ask if
the metric derived yields compatible expressions for 2 and 3-point
correlators.



Conclusions

AdS/CFT and its various extensions AdS/QCD, gauge/string duality,
AdS/CMT have given us an analytic window into strongly coupled
systems. There are many string theory constructions dual to confining
gauge theories, but none is yet hailed as the QCD holographic dual.

However, the strongly coupled plasma studied at RHIC and LHC and
finite temperature AdS/CFT have similar characteristics. Therefore
calculations performed using AdS/CFT techniques (e.g. hydrodynamic
coefficients, jet quenching) are in fairly good agreement with
experimental results.

Currently, many people are exploring and extending these techniques to
various condensed matter systems.
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