Search of Magnetic Monopoles with the NOVA Detector

NOvA Collaboration

Zukai Wang
University of Virginia

Out Line

- Introduction to Magnetic Monopoles
- Motivation of Searching Magnetic Monopoles
- NOvA Project and NOvA Far Detector
- Simulation of Magnetic Monopole
- Data Driven Trigger
- NOvA's Potential on monopole
- Outlook

Introduction: Dirac String

P.A.M Dirac (1902-1984) Zukai Wang

Video obtained at: http://moedal.web.cern.ch/

Introduction: Dirac String

Assume an electron is transported along a closed path enclosing the Dirac String, the phase transition of its wave function should be:

$\Longrightarrow g=\frac{n \hbar c}{2 e}=n \frac{\alpha}{2} e \quad$ Dirac Quantization condition
$\Longrightarrow g_{D}=\frac{\alpha}{2} e \quad \underset{\substack{\text { Dirac Charge } \\ \text { Mononocess }}}{\Longrightarrow}$

Introduction: GUT Monopole

Standard Model
 $S U(3)_{C} \times\left[S U(2)_{L} \times U(1)_{Y}\right]$

Grand Unified Theory

$$
S U(5)
$$

Introduction: GUT Monopole

Grand Unified Theory

$$
S U(5)
$$

Motivation: Symmetry Broken by Symmetry

To accommodate magnetic monopoles in classic electromagnetism, let's rewrite the Maxwell Equations in a symmetric way:

$\nabla \cdot \vec{D}=4 \pi \rho_{e}$

Scalar
$\nabla \cdot \vec{B}=4 \pi \rho_{m}$
pseudoscalar

$$
-\nabla \times \vec{E}=\frac{1}{c} \frac{\partial \vec{B}}{\partial t}+\frac{4 \pi}{c} \vec{J}_{m}^{\downarrow}
$$

Motivation: Symmetry Broken by Symmetry

If you accept the idea of magnetic charge, you may notice the following Duality Transforms are completely trivial:

$$
\begin{aligned}
& \binom{\rho_{e}}{\rho_{m}}=\left(\begin{array}{cc}
\cos \xi & \sin \xi \\
-\sin \xi & \cos \xi
\end{array}\right)\binom{\rho_{e}^{\prime}}{\rho_{m}^{\prime}} \\
& \binom{\vec{j}_{e}}{\vec{j}_{m}}=\left(\begin{array}{cc}
\cos \xi & \sin \xi \\
-\sin \xi & \cos \xi
\end{array}\right)\binom{\vec{j}_{e}^{\prime}}{\vec{j}_{m}^{\prime}} \\
& \binom{\vec{E}}{\vec{H}}=\left(\begin{array}{cc}
\cos \xi & \sin \xi \\
-\sin \xi & \cos \xi
\end{array}\right)\binom{\vec{E}^{\prime}}{\vec{H}^{\prime}}
\end{aligned}
$$

It is just our convention to say a particle possessing an electric charge or magnetic charge.
What really matters is the fraction...

CP violation is a necessary consequence of the existence of a particle carrying both electric charge and magnetic charge.

Monopole Physics: Interaction

$$
\begin{gathered}
\vec{F}=g(\vec{B}-\vec{\beta} \times \vec{E}) \\
\frac{d \sigma}{d \Omega}=\frac{d \sigma}{d \Omega}_{R}+\frac{d \sigma}{d \Omega}
\end{gathered}
$$

$$
\frac{d \sigma}{d \Omega}_{R}=\frac{g^{2} e^{2}}{4 p^{2} c^{2} \sin ^{4}(\psi / 2)}
$$

Rutherford Scattering
$\frac{d \sigma}{d \Omega}_{\Delta}$
Correction by considering the electron spin (Y. Kazama, C. N. Yang, and A. S. Goldhaber, Phys. Rev. D 15, 2287 (1977))

Monopole Physics: Energy Loss in Matter

a single Dirac charge in Silicon. experimental data open circle for protons in Silicon are also shown. The solid curves are calculated from the corresponding theoretical work mentioned in parentheses. The solid curve inside the shaded region shows the Ahlen and Kinoshita result for monopoles. The figure is reprinted from D. E. Groom's 1986 review article.

Monopole Physics: Energy Loss in Matter

Simuletion: Monopole Physics: Energy Loss

Geant4 simulation of monopole transportation in Silicon.
And the a linear interpolation was implemented to the unknown region.

Simulation: Energy Loss of Monopole: In All Related Material

Neutrino Oscillation

http://arxiv.org/abs/1006.2359

NOvA: NUMII Off-Axis ve Appearance

NOvA Far Detector

NOVA Far Detector Construction Status

NOvA Far Detector

NOvA Far Detector

NOvA Far Detector Technology

16-cell PVC extrusions ($15 \% \mathrm{TiO}_{2}$). Each NOvA cell:
$3.9 \mathrm{~cm} \times 6.0 \mathrm{~cm} \times 15.6 \mathrm{~cm}$

32 in a sealed module. Alternating X / Y planes.

Read out by wavelength-shifting fiber into one pixel of a 32-pixel avalanche photodiode (APD)

NOvA Monopole Search Strategy

1. Look for highly-ionizing, penetrating particles

- Covers the high- β range: $\beta>10^{-\mathbf{2}}$

2. Look for sub-luminal, penetrating particles

- Covers the low- β range: $\beta<10^{-2}$

NOvA Far Detector Technology

ASIC: Application Specific Integrated Circuit

$$
A D C=N \times \exp \left[-\left(t-t_{0}\right) / F\right]\left\{1-\exp \left[-\left(t-t_{0}\right) / R\right]\right\}
$$

Simulated APD Response to A Muon CellHit

Sipnulอగోำ: Detector Response

Calibration: Single Cell Hit of a slow Monopole

Predicted APD response for a slow magnetic monopole

Illustration of APD response of a monopole with $\beta=10^{-3}$ passing through a cell horizontally described by an analytical expression.

Simulation: Event Display of High Energy Muon

Simulation: Event Display of Single Monopole

Simulation: Event Display of Single Monopole

Simulation: Event Display of Single Monopole

DAO \& DDT: Architecture

11520 FEBs
(368,4600 det. channels)

Calib. Pulser ($50-91 \mathrm{~Hz}$)

DDT: Framework

DDT: PatRec Algorithm

- "3D" Hough Transform
- Take all pairs of hits and find three voting parameters for each.
- DOCA • Ordinary straight
- $\cos \theta \int \begin{aligned} & \text { track recon } \\ & \text { algorithm }\end{aligned}$

- This additional parameter implies a timing cut in recognizing a track with certain velocity
- In this 3D Hough space monopoles are identified as clusters of points, "noise" is randomly spread out

Background pair.

DDT:Structure of Trigger With PatRec

DDT: Structure of Trigger With PatRec

DDT: Algorithm: Logic Flow

- Partition by DCM and Time Slice: this step reduces the
- Transform results of each pair are put into corresponding containers
- Making selections of each container to register a peak(track)

DDT: Algorithm: Why Partition?

$$
\begin{gathered}
C_{S}\left(N_{s}\right)=N_{s}\left(N_{s}-1\right) / 2 \\
C_{b}\left(N_{s}, N_{b}\right)=\left(N_{b}+N_{s}\right)\left(N_{b}+N_{s}-1\right) / 2-C_{s}\left(N_{s}\right)=N_{b}\left(N_{b}+2 N_{s}-1\right) / 2
\end{gathered}
$$

DDT: Algorithm: Why Partition?

Algorithm Illustration

Here is an example of simulated cosmic events in $500 \mu \mathrm{~s}$, containing $\sim 10,000$ hits.

Our goal is to quickly pick out the all the hits belonging to any track.

Illustration: Cosmic Raw Hits

3D Hough Space of Cosmic Tracks

Combinations with Vpro > 7ns/cm have been cut off (supposed to contain all hits of cosmic rays).

Reconstruction::Algorithm::"Ground Floor" of Hough Space

No Slow Monopoles on this floor
Zukai Wang

Illustration: Reconstructed 2D Tracks

Result

- A test using a cosmic simulation of 50 ms live time has been done: containing $\sim 5,000$ cosmic tracks with 1,004,344 hits in FD.
- Timing \& Overall Performance:

Finds all tracks that hit more than 2 planes
~5 times faster than previous reconstruction module

	\# of total tracks	\# of tracks longer than 2 planes
MC Truth	4840	2987
Reco Info	3272	$2987(100 \%$ reconstructed!)

Limit: NOvA Potential: Overburden

Limit: NOvA Potential

The NOvA potential curve is generated with a toy MC with a simplified calculation of energy loss of monopqlespopoesm pyter space.

Sensitivity: NOvA Potential

- Sensitivity goes as surface area: $\pi F A$, where F is the flux
- Our acceptance is not yet known: we hope we can do better for 80\% for high-mass monopoles and perhaps half that for low-mass
- Eventually, if the acceptance is large enough, we can beat MACRO
- Should be able to beat SLIM for intermediate-mass monopoles

Outlook: Problems To Be Solved

- Simulation: Overlay Mechanism;
- Reconstruction \& Trigger: Current pattern recognition package is still not fast enough;
- Efficiency Estimation

Acknowledgement

- Vladimir Ivanchenko: advices in using Monopole package of Geant4
- Eric Katsavounidis: his PHD thesis(1995 in Caltech) on MACRO and advices
- Fermilab Artists (Chris Green, Mark F Paterno, etc)
- UVA Folks (Craig Dukes, Craig Group, Ralf Ehrlich, Martin Frank, etc)

Back Up: Problem 1: Split Tracks

Back Up: Problem: Split Tracks

doca

No matter how loose the binning is, you always have a chance to split the Hough peak. To prevent looping over all hits again, the binning is predetermined.

Potential Solution: Combining Grids

Defining Adjacent Grids

- Now we have $v \times c \times d$ grids in the cube (v bins in vpro, etc), and each grid can be labeled as:

$$
\left(v_{i}, c_{i}, d_{i}\right)
$$

- The distance of the two $\operatorname{grids}\left(v_{i}, c_{i}, d_{i}\right)$ and $\left(v_{j}, c_{j}, d_{j}\right)$ is defined as following:

$$
\left(v_{i}-v_{j}\right)^{2}+\left(c_{i}-c_{j}\right)^{2}+\left(d_{i}-d_{j}\right)^{2}
$$

- Two grids are adjacent to each other if their distance is below 4.

Algorithm: General Organizing

Platoon: hit list, which contains all the hits in a track (if perfectly done).

Back Up::Problem 2: Fake Tracks

Back Up: Problem 2: Fake Tracks

Back Up: Path Length Inside Cell

the pathlength inside cell

200,000 Isotropic generated monopole's distribution.

Back Up:Number of Cells Hits per Monopole in FD

200,000 Isotropic generated monopole's distribution.

Back Up:Number of Saturated Cells Hits per Monopole in FD

Note: assuming hits with PE >1500 will be saturated, without

Back Up: Energy Deposit per Monopole in FD

200,000 Isotropic generated monopole's distribution.

Back Up: Path Length Inside FD

200,000 Isotropic generated monopole's distribution.

Back Up: Monopole Physics: Ahlen Formula

$$
\frac{4 \pi N_{e} g^{2} e^{2}}{m_{e} c^{2}}\left[\ln \frac{2 m_{e} c^{2} \beta^{2} \gamma^{2}}{I_{m}}+\frac{K(|g|)}{2}-\frac{1}{2}-\frac{\delta_{m}}{2}-B(|g|)\right]
$$

Mean Ionization Potential:

$$
I m=\exp \left\{\frac{2}{\pi \omega^{2}} \int_{0}^{\infty} \omega \Im[\varepsilon(\omega)] \ln \hbar \omega d \omega\right\}
$$

Shifting Parameters:

$\|g\| / g_{D}$	1	2	3	4	5	6
B	0.248	0.672	1.022	1.243	1.464	1.685
K	0.406	0.346	0.346	0.346	0.346	0.346
$\quad g_{D}=\frac{\alpha}{2} e$						

Back Up: Monopole Physics:Lindhard Technique

Assuming the monopole passes through a degenerate Fermi gas of noninteracting electrons (this assumption is applicable when the monopole is slow enough: $\beta<0.01$):
as the monopole's velocity decreases, fewer electrons of the Fermi sea are "available" for ionizing.

$$
\begin{aligned}
& \frac{d E}{d x}=C g^{2} v \\
& C=C\left(\omega_{p}, v_{F}\right)
\end{aligned}
$$

Monopole Sensitivity

- Sensitivity roughly proportional to detector area
- Very high-mass monopoles come isotropically from all sides, unlike cosmic rays, lower mass monopoles from above
- The observed isotropic rate is: $R=\pi F A \varepsilon$
- F is the flux of monopoles $\left(\mathrm{cm}^{-2} \mathrm{sr}^{-1}\right)$

- A is the total detector area (cm^{2})
- ε is the detector efficiency, livetime, etc.
- What we are after is not R, but the flux $F=R / \pi A \varepsilon$
- If we see no monopoles assume $R=2.3$ to get the 90\% CL limit:
- $F(90 \% C L)=2.3 / \pi A \varepsilon$

DDT::Algorithm: General Organizing

- Assume each cell hit is a soldier...

DDT::Algorithm::Mission

- Assume each cell hit is a soldier...

DDT::Algorithm::Mission

- Assume each cell hit is a soldier...

DDT::Algorithm::Mission

- Assume each cell hit is a soldier...

DDT::Algorithm::Partitioning

DDT::Algorithm::Partitioning

DDT::Algorithm::Mission

Algorithm: Aristophanes' Process

Remember, the elements we pushed back into the companies are pairs of cell hits.

We need to pick out all the individual hits from a regiment to form a platoon.

The challenge is to avoid pushing back a same hit twice. And this is achieved by using "unordered_set".

The statue of Aristophanes and Menander

Algorithm: Uniqueness

Hash function compares the unique id (64 bits) of every soldier:

| $0101101 \ldots 0010001$ | 000101111110 | 10111001 |
| :--- | :--- | :--- | :--- |
| Last 44 bits of TDC | 12 bits: Plane 8 bits: Cell | |

time

```
space
```

Almost impossible for an ID collision of 2 hits in a time slice.

Note: this is theoretically possible only when the slice is longer than $2^{18} s$......

