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A typical experiment in traditional Condensed Matter 

physics (equillibrium)

1. Take a piece of junk:

3. Measure linear response to a small perturbation:

e.g transport σij (T,ω) , κ(T ) or scattering intensity S(q,ω)

2. Cool it down



And (sometimes) a miracle occurs !



Observe beautiful universal behavior insensitive to sample 

details

Example: precise quantization

of the Hall resistivity in the

Quantum Hall effect

Transition of ρxx on going 

from plateau to step:

Emergent universal behavior is what allows predictive power in spite of the underlying 

complexity of materials



How do such miracles arise?

Can we expect to find them in quantum systems out of 

thermal equilibrium (e.g. cold atoms)?



Outline

• Universality in low temperature equilibrium physics:  

Renormalization and quantum phases.

• Ultracold atomic systems as a non equilibrium laboratory

• Focus questions: 

- Are there generic systems that do not thermalize? 

- Phase transitions from a non thermalizing to a thermalizing state?

• From Anderson localization to many-body localization:

- Renormalization group perspective on quantum dynamics

- Emergent integrals of motion



Low temperature equilibrium physics

Fermi liquid Broken symmetry ?

Universality classes 

= quantum phases

Renormalization = How the 

system appears to a probe with 

low spatiotemporal resolution.

TEe /−

The system itself samples

only low energies thanks to 

the Boltzmann factor



Far from equilibrium

Inject the system with 

high energy. 

e.g by rapid change of 

system parameters or 

by continuous drive E0

Dynamics involves all energy 

scales

Can the complexity of quantum dynamics generate emergent universal phenomena far 

from equilibrium?

Can one still define quantum phase transitions?



Ultracold atoms – a new class of CM system 

Extremely dilute, 

interaction naturally weak 
JILA 95

BEC

Low dimensions Optical lattice Dipolar molecules

Various ways devised to enhance quantum correlations:



Ultracold atoms – a new class of CM system 

Low dimensions Optical lattice Dipolar molecules

• Highly tunable (Hamiltonian and state engineering)

• Almost toally isolated (Closed systems)

• Long natural timescales (KHz compared to GHz -THz in solids)

Ideal laboratory for studying non-equilibrium quantum dynamics

A typical experiment:

1. Prepare a well defined initial state

2. Unitary evolution with a known Hamiltonian.

3. Observe at varying times



Example 1:

- Is there a simple description of the time evolution?

- What is the nature of the steady state?

- Does the system eventually thermalize?

Constant non-thermal momentum distribution seen at long times  

(Take a 1d gas and kick it in the balls)

n(p)

Nature (2006)



The “quantum Newton’s cradle” experiment 

is a quantum analogue

of the famous FPU problem



The system is close to an integrable KdV equation. 

Long lived soliton solutions delay thermalization
Kruskal and Zabusky (1965 ).

No equipartition of energy:



Example 2: Sudden quench from weak to strong lattice

Greiner et. al. Nature 415, 2002; 

ibid 419, 2002

U>>J U<<J

Equilibrium phases:

Mott insulator Superfluid

Quench: Decaying oscillations of 

phase coherence

- What determines decay time?

- Nature of steady state seen in exp.?

Greiner et. al. Nature 419, 2002 

Non-thermal!  (Kollath, Lauchli & EA PRL 07)



Lessons from the classical world

1. Things tend to thermalize

(Approach maximal entropy)

Simple messy Thermal

2. The “mess” can have interesting structure 

amenable to theory
Mixing turbulence

Non thermal 

fixed point

Thermal

Initial state

The experiments in the previous slides probably represent a similar 

trajectory interrupted before the advent of true equilibration.



Can thermalization be avoided altogether?

At least it can be avoided in somewhat pathologic systems: 

Integrable system = Infinite number of “local” conserved quantities 

Example: free fermions

Maximum entropy subject to infinite set of constraints:

Conjectured Equilibration to Generalized Gibbs ensemble:

Lagrange multipliers βn fixed by initial values 

Jaynes, Phys. Rev. (57), Rigol et. al. PRL (07)  



Can thermalization be avoided more generically?

Situation where weak breaking of integrability is irrelevant for the long 

time evolution

Integrable Thermal
Critical point of 

dynamics

Remainder of this talk: a concrete example



From Anderson localization to 

many-body localization



Single particle localization



Anderson was actually interested in many-body localization (problem of quantum 

spin diffusion).

Used a single particle model as a (over) simplification.



Conductivity in Anderson “insulators” (T>0)

� = ��

��

Phonon assisted hopping (Mott):

Q: Can intrinsic collective modes (plasmons) replace phonons as the bath?

Closed system with interactions (no phonon bath) :

A: These modes can be localized, have a discrete local spectrum, 

and thus fail to serve as a bath



Many-Body Localization transition

Basko, Aleiner, Altshuler (2005):

Insulating phase stable below a critical temperature, metal above it. 

Disorder tuned transition at		� = ∞	 in a system with bounded spectrum

Oganesyan and Huse (2007), Pal and Huse (2010)

delocalized

thermalizing

Localized (κ =0, σ =0)

non thermalizing

� = ∞

Disorder strength

�
• Arguments not fully 

controlled

• Nature of transition?

• Of localized phase?



Experiments with ultra-cold atoms

J. Billy et. al. Nature 2008 (Inst. Opt.) 

G. Roati et. al. Nature 2008 (LENS)

Ready…Set…Go!

Many-body localization?

Ready…Set…Go!

Anderson localization:



Setup of a model calculation

= random spin chain:

Disordered fermion chain:

Initial state: particles in well defined positions

Ready…Set…Go!

hopping Interaction On site 

disorder



Entropy growth following the quench

Growing entanglement between the two halves is 

measured by the Von-Neuman entropy:

A B

clean system

SA

t

Bounded entanglement 

allows efficient numerics

(using DMRG).

localized system (?)

SA

t

Ssaturation ~ ξlocalization



Numerical simulation – Entropy growth

Earlier numerical studies: De Chiara et. al. (2006); Znidaric et. al. (2008)  

Bardarson, Pollmann & Moore. PRL (2012)

Surprise!

With interaction:

• Log(t) increase.

• Delay time ~ 1/∆J~1/Jz

∆=
SA(t)

Unbounded log growth 
(saturation only for finite L

or without interaction)



Numerical simulation – Check thermalization

Bardarson, Pollmann & Moore. PRL (2012)

Computed the saturation value of the entropy in a finite system (L).

Saturation entropy is extensive, but 

much smaller than thermal entropy Ssat= s0L 

Ssat=const

interacting

noninteracting

Even the interacting system does not thermalize!



Goals for theory

• Explain the universal evolution of the entanglement entropy 

in this “localized” state as seen in numerics. 

• Description of the non thermal state at long times



Renormalization group perspective

Initial state:

We want to compute:

Ronen Vosk and EA, arXiv:1205.0026

Model:

Anisotropy (=interaction)Random exchange



Renormalization group perspective

Ronen Vosk and EA, arXiv:1205.0026

Short times (� ≈ 1 Ω)⁄ :

Pairs on strong bonds J=Ω perform rapid oscillations

Other spins essentially frozen on this timescale.

�(Ω)

Longer times (� ≫ 1 Ω)⁄ :

Eliminate rapid oscillations perturbatively.

Obtain effective evolution for longer timescales

�(Ω − �Ω)

Jeff

Similar idea for ground states: Dasgupta & Ma 1980, D. Fisher 1994



RG results I – Entropy growth

Renormalized chain 

at time t (scale Ω=1/t): 

� � ~[	log � 	]�

� � ~	[log � ]� �⁄ Θ � − ��� !" + log log �

~1/%&

Very slow growth of decimated (dynamic) clusters

Explains universal features in numerical result



RG results II – flow to infinite randomness

Renormalized chain 

at time t (scale Ω=1/t): 

1/(disorder strength)
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Flows to infinite-randomness 

fixed point. RG is asymptotically exact 

at long times.



RG results III – Emergent conservation laws

Approximate integrals of motion: 

Approach exact conservation rules at long times

In every decimated pair of spins the states         and

are never populated therefore S(L)<(L/2)ln2 

Non-thermalization - asymptotic generalized Gibbs ensemble 



• Ultracold gases: novel laboratory

for quantum dynamics. 

Closed systems.

• Prospects for universal behavior

– Prethermalization:

– Non-thermalization in many body localization:

Summary

Integrable Thermal

Q: nature of the Critical point ?

Greiner et. al. Nature 419, 2002 

Non thermal FP

ThermalInitial state



Uµ

Non thermal 
steady state thermal

UJ /

Non thermal regime

Is this a thermal steady state ?

DMRG calculation of: 

Compare correlations in steady state 

to expected equilibrium correlations

The answer depends on 

final interaction strength

Thermalization is an “emergent scale in this regime

Thermal regime


