Emergent Phenomena And Universality In Quantum
Systems Far From Thermal Equilibrium
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A typical experiment in traditional Condensed Matter
physics (equillibrium)

1. Take a piece of junk:

2. Cool it down

3. Measure linear response to a small perturbation:
e.g transport g (T, &) , K(T) or scattering intensity S(q, &)



And (sometimes) a miracle occurs !
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Observe beautiful universal behavior insensitive to sample

details
Example: precise quantization Transition of p,, on going
of the Hall resistivity in the from plateau to step:
Quantum Hall effect
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Emergent universal behavior is what allows predictive power in spite of the underlying

complexity of materials



How do such miracles arise?

Can we expect to find them in quantum systems out of
thermal equilibrium (e.g. cold atoms)?

MIRACLES

Oz

MIRACLES

“You Be The Miracle”
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Outline

Universality in low temperature equilibrium physics:
Renormalization and quantum phases.

Ultracold atomic systems as a non equilibrium laboratory

Focus questions:
- Are there generic systems that do not thermalize?

- Phase transitions from a non thermalizing to a thermalizing state?

From Anderson localization to many-body localization:
- Renormalization group perspective on quantum dynamics
- Emergent integrals of motion



Low temperature equilibrium physics
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Renormalization = How the E / H mie_
system appears to a probe with A J \
low spatiotemporal resolution.

The system itself samples
only low energies thanks to
the Boltzmann factor -
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Universality classes

= guantum phases

Fermi liquid Broken symmetry :




Far from equilibrium

Inject the system with E H mie
high energy. A / ! \
e.g by rapid change of

system parameters or

by continuous drive E, —F
\ 4 ‘ ‘
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Dynamics involves all energy
scales

-_ - - - e - -
- -

-

Can the complexity of quantum dynamics generate emergent universal phenomena far
from equilibrium?

Can one still define quantum phase transitions?



Ultracold atoms — a new class of CM system
1~ 10" em™2  Tgpe ~ 1uK

Extremely dilute,
interaction naturally weak

Various ways devised to enhance quantum correlations:

Low dimensions Optical lattice Dipolar molecules
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Ultracold atoms — a new class of CM system

Low dimensions Optical__lattice

Dipolar molecules

15 um

+

el

+
- 60 nm

Highly tunable (Hamiltonian and state engineering)
e Almost toally isolated (Closed systems)

 Long natural timescales (KHz compared to GHz -THz in solids)

» Ideal laboratory for studying non-equilibrium quantum dynamics

A typical experiment:

1. Prepare a well defined initial state

2. Unitary evolution with a known Hamiltonian. |(t)) = e o)

3. Observe at varying times



Example 1: A quantum Newton'’s cradle

Toshiya Kinoshita', Trevor Wenger' & David S. Weiss'  Nature (2006)

(Take a 1d gas and kick it in the balls)

51/8
. » n(p)

a 05
31/8

0.4 |
r/4 03l

r/8 02}

0.1 F

4

Constant non-thermal momentum distribution seen at long times

- Is there a simple description of the time evolution?
- What is the nature of the steady state?

- Does the system eventually thermalize?



The “quantum Newton’s cradle” experiment
IS @ quantum analogue
of the famous FPU problem

STUDIES OF NON LINEAR PROBLEMS

E. FErRMI, J. PASTA, and S. ULAM
Document LA-1940 (May 1955).

A one-dimensional dynamical system of 64 particles with forces between neighbors.
containing nonlinear terms has been studied on the Los Alamos computer MaNIAC [. The
nonlinear terms considered are quadratic, cubic, and broken linear types. The results are
analyzed into Fourier components and plotted as a function of time.

The results show very little, if any, tendency toward equipartition of energy among
the degrees of freedom. -
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No equipartition of energy:

300

1 1
_l 2 \
g |\ 4 \ I
5 | 3L [V [ [
200 | \ [T}
\\5' X SA\ Il :
NI
\ LT
100 5 1] 5 VLY
\ \ \ \
\ \ )f \ ]
, \\ / \}m,_ VAWIREE
o[ %@a\%@/\ S

t IN THOUSANDS OF CYCLES

The system is close to an integrable KdV equation.

mP ong lived soliton solutions delay thermalization
Kruskal and Zabusky (1965 ).



Example 2: Sudden quench from weak to strong lattice

H=—J) (bb; +He)+ UZ ni(n; — 1)
) i

(ij

Equilibrium phases:

u>>J _ Mott insulator

A

Quench: Decaying oscillations of
phase coherence

- What determines decay time?
- Nature of steady state seen in exp.?

Non-thermal! (Kollath, Lauchli & EA PRL 07)

Greiner et. al. Nature 415, 2002;
ibid 419, 2002
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Lessons from the classical world

1. Things tend to thermalize
(Approach maximal entropy)

Simple — messy —»Thermal

2. The “mess” can have interesting structure Mixing turbulence

amenable to theory

Non thermal
fixed point

Initial state

Thermal

The experiments in the previous slides probably represent a similar
trajectory interrupted before the advent of true equilibration.



Can thermalization be avoided altogether?

At least it can be avoided in somewhat pathologic systems:

Integrable system = Infinite number of “local” conserved quantities

|:H. [ﬂ_:| — 0
Example: free fermions H = Z €LTLL
k

Conjectured Equilibration to Generalized Gibbs ensemble:

Jaynes, Phys. Rev. (57), Rigol et. al. PRL (07)
Maximum entropy subject to infinite set of constraints:

. —F 5[ 1l l — Brnln
plf] = e - pl{}] = e T

Lagrange multipliers £, fixed by initial values (I,(t =0))



Can thermalization be avoided more generically?

Situation where weak breaking of integrability is irrelevant for the long
time evolution

—<&—C———> 0

Thermal
Integrable Critical point of

dynamics

Remainder of this talk: a concrete example



From Anderson localization to
many-body localization
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Absence of Diffusion in Certain Random Lattices
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Single particle localization



L REVIEW VOLUME 109, NUMBER 5 MARCH

Absence of Diffusion in Certain Random Lattices

P. W. ANDERSON
Bell Telephone Laboratories, Murray Hill, New Jersey

(Received October 10, 1957)

Such a theorem is of interest for a number of reasons:
first, because it may apply directly to spin diffusion
among donor electrons in Si, a situation in which Feher®
has shown experimentally that spin diffusion is neg-
ligible; second, and probably more important, as an
example of a real physical system with an infinite
number of degrees of ireedom, haviig 1o 0DVIOUS
oversimplification, in which the approach to equilibrium
is simply impossible; and third, as the irreducible
minimum from which a theory of this kind of transport,
if it exists, must start. In particular, it re-emphasizes
the caution with which we must treat ideas such as
“the thermodynamic system of spin interactions’ when
there 1s no obvious contact with a real external heat
bath.

Anderson was actually interested in many-body localization (problem of quantum
spin diffusion).
Used a single particle model as a (over) simplification.



Conductivity in Anderson “insulators” (T>0)

Phonon assisted hopping (Mott): - 1/(d+1)
pping ( ) o = ope (To/T)

———’ S~

Closed system with interactions (ho phonon bath) :

Q: Can intrinsic collective modes (plasmons) replace phonons as the bath?

A: These modes can be localized, have a discrete local spectrum,
and thus fail to serve as a bath




Many-Body Localization transition

Basko, Aleiner, Altshuler (2005):
Insulating phase stable below a critical temperature, metal above it.

Disorder tuned transition at T = oo in a system with bounded spectrum
Oganesyan and Huse (2007), Pal and Huse (2010)

delocalized
T thermalizing

e Arguments not fully
_ controlled
Localized (kK =0, 0 =0)

..  Nature of transition?
non thermalizing

e Oflocalized phase?

Disorder strength



Experiments with ultra-cold atoms

Anderson localization: Ready...Set...Go!

J. Billy et. al. Nature 2008 (Inst. Opt.)
G. Roati et. al. Nature 2008 (LENS)

Many-body localization?

Ready...Set...Go!
@ @ ()




Setup of a model calculation

Disordered fermion chain:  [J — J Z ((_“If'i+l e+ &;13-;11-_'_1) il Z hin;

= random spin chain: — IZ (S;Sq+ 85187 + ASESE ) + Z hyS;

N “T

h; € [_ha h] hopping Interaction  On site
disorder

Initial state: particles in well defined positions

Pl e to Ittt it el it

Ready...Set...Go!
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Entropy growth following the quench

B
p(0) = pa ® pp —HHTHTHHT

®— —O
p(t1) ALttt
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Growing entanglement between the two halves is
measured by the Von-Neuman entropy: SA(t) =—1Ir [PA(t)lﬂﬂA(t)]

clean system localized system (?)

/ Ssaturation Elocalization

SA SA /

Bounded entanglement
allows efficient numerics

(using DMRG).




Numerical simulation — Entropy growth

Bardarson, Pollmann & Moore. PRL (2012)

: N L e — N
Surprise! a0 I it . —
[ e—e ()] &—a ()2 ﬂ“_‘al"*l

0.3 0.01 = 0.1,L=2

Unbounded log growth
(saturation only for finite L
or without interaction)

With interaction: 01
e Log(t) increase.
e Delay time ~ 1/AI~1/],

(1] l () 100 1000
J1

Earlier numerical studies: De Chiara et. al. (2006); Znidaric et. al. (2008)



Numerical simulation — Check thermalization

Bardarson, Pollmann & Moore. PRL (2012)

Computed the saturation value of the entropy in a finite system (L).

(.5

Saturation entropy is extensive, but 0.6
much smaller than thermal entropy

0.4

S.=const

B o ——i |
noninteractin

i i
1 6 s 10} 12

[ Even the interacting system does not thermalize! J




Goals for theory
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e Explain the universal evolution of the entanglement entropy
in this “localized” state as seen in numerics.

e Description of the non thermal state at long times



Renormalization group perspective

Ronen Vosk and EA, arXiv:1205.0026

Model: L ]- + o— — o+ > vz
Random exchange Anisotropy (=interaction)
Ji € [, Q] A < 1

nitial state: Ptitititititititititititig

We want to compute: ,O(t) _ eiHﬁp(U)e—’th — 7



Renormalization group perspective

Ronen Vosk and EA, arXiv:1205.0026

1 _ _ zQz
H = 3 Z J; (S;VS?;H + 5, S;:.l + 2A,5; sz;+1)

HEO) PHItEtbtiti it ittt it

Short times (t = 1/0):
Pairs on strong bonds J=Q perform rapid oscillations
Other spins essentially frozen on this timescale.

Longer times (t > 1/0):
Eliminate rapid oscillations perturbatively.
Obtain effective evolution for longer timescales
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Similar idea for ground states: Dasgupta & Ma 1980, D. Fisher 1994



Renormalized chain
at time t (scale Q=1/1): Vi t' = 2 S j SR

l L(t)~[ log(t) 12

Very slow growth of decimated (dynamic) clusters

S(t)"' [log(t)]2/¢®(t - tdelay) + log(log t)

= (1+/5)/2 e

—e (J[)] &—a (12

03k ®= 0.01 = 0.1,L=20

—t 1.]

tdela}r — QQ[]/(J{%&U) ~1/]Z

0.1

Explains universal features in numerical result
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Renormalized chain * * Ll 4
at time t (scale Q=1/1): — — ==V N
- A
[N
c
Q
2
Flows to infinite-randomness -
fixed point. RG is asymptotically exact 2
O
at long times. ©
Q
= >

1/(disorder strength)
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In every decimated pair of spins the states H H
are never populated therefore S(L)<(L/2)In2

Approximate integrals of motion: I, = [5155]

pair

Approach exact conservation rules at long times

Non-thermalization - asymptotic generalized Gibbs ensemble




Su Mima ry Greiner et. al. Nature 419, 2002

e Ultracold gases: novel laboratory
for quantum dynamics.
Closed systems.

* Prospects for universal behavior

® Non thermal FP

— Prethermalization:

Initial state Thermal

— Non-thermalization in many body localization:

Integrable  @—<—~%&——> >—® Thermal

Q: nature of the Critical point ?



k endi
PRL 98, 180601 (2007) PHYSICAL REVIEW LETTERS 4 MAY 2007

Quench Dynamics and Nonequilibrium Phase Diagram of the Bose-Hubbard Model

Corinna Kollath,' Andreas M. Liuchli,” and Ehud Altman>
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Thermalization is an “emergent scale in this regime



