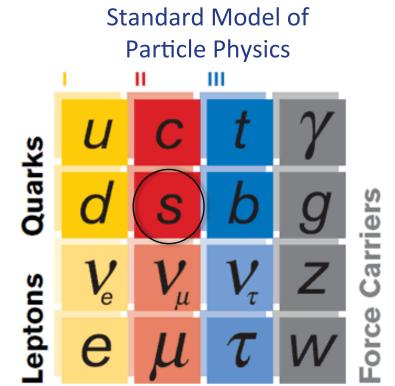
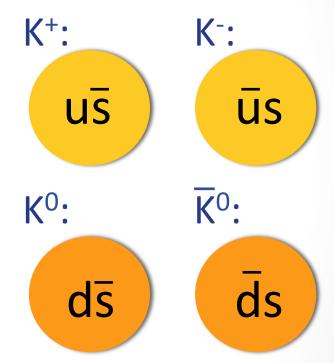


Overview

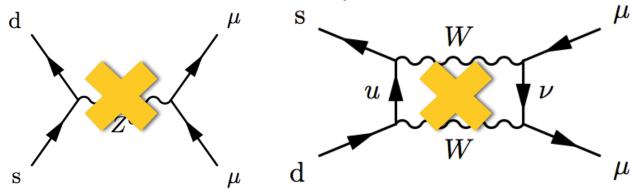
ORKA


- Some Kaon History
- K $\rightarrow \pi \nu \bar{\nu}$ Sensitivity to New Physics
- Experimental Status of $K \rightarrow \pi \nu \bar{\nu}$
- ORKA Detector & $K^+ \rightarrow \pi^+ \nu \bar{\nu}$ Analysis
- Other Physics with ORKA
- ORKA Status
- Kaon Physics at Project X



Kaons in the Standard Model

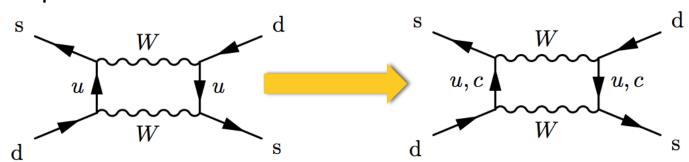
Quark u,c,t = 2/3Charge: d,s,b = -1/3


Three Generations of Matter

Flavor Changing Neutral Currents

FCNC highly suppressed in the Standard Model:

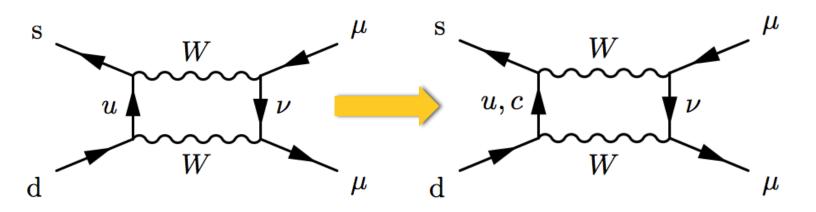
$$\frac{\Gamma(K_L \to \mu^+ \mu^-)}{\Gamma(K_L \to \mu^+ \overline{\nu}_{\mu})} = 2.60 \times 10^{-9} \quad \text{(Current measurement)}$$


In 1960s, it was not obvious why FCNCs are so small:

These diagrams each predict a BR already excluded by experimental limits in the 60s!

GIM Mechanism

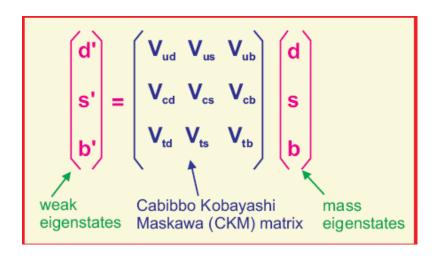
- In 1960s, only up, down, and strange quarks were known
- With only 3 quarks, neutral-kaon mixing has divergent amplitude


- Glashow, Iliopoulos, Maiani (1970): coupling to a 4th quark (charm) enters with opposite sign as coupling to up quark
- If $m_c = m_u$, cancellation is perfect. Actual rate is proportional to $m_c^2 m_u^2$.

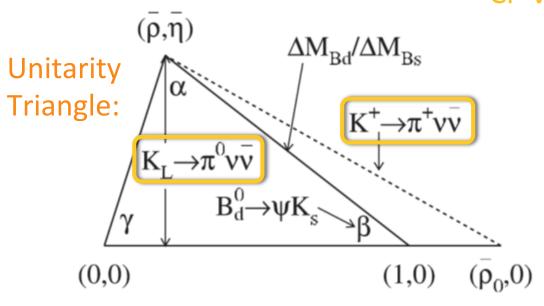
 Predicted existence

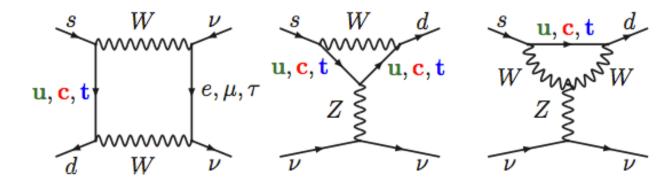
and mass of charm quark!

Back to $K_L \rightarrow \mu^+ \mu^-$


- With addition of charm quark, Yang-Mills theory based on SU(2)⊗U(1) is possible
- Tree-level flavor-changing neutral currents forbidden by weak isospin
- Suppression of higher-order FCNC processes explained by GIM mechanism

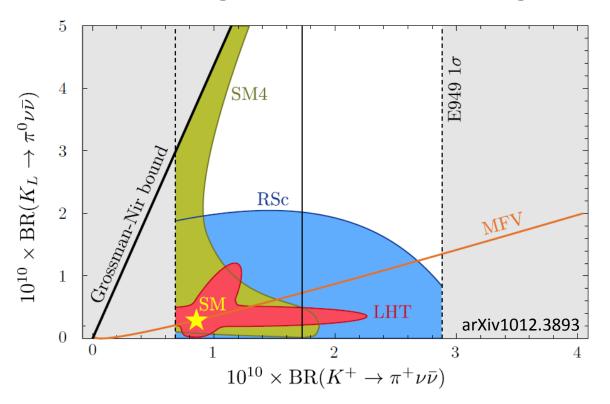
Discussion of GIM mechanism and FCNC follows: L. Maiani, *The GIM Mechanism: origin, predictions and recent uses*, arXiv:1303.6154 (2013).


CP Violation & CKM Matrix


Wolfenstein Parameterization:

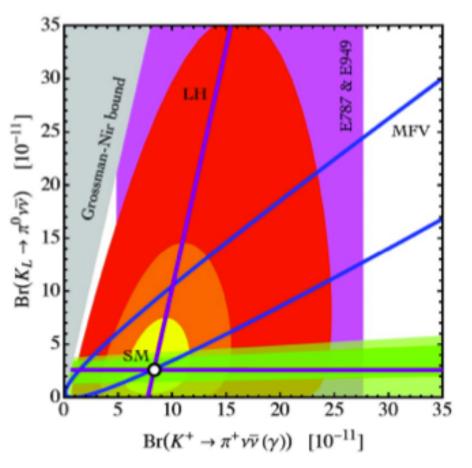
$$\begin{pmatrix} 1 - \lambda^{2}/2 & \lambda & A\lambda^{3}(\rho - i\eta) \\ -\lambda & 1 - \lambda^{2}/2 & A\lambda^{2} \\ A\lambda^{3}(1 - \rho - i\eta) & -A\lambda^{2} & 1 \end{pmatrix}$$
CP Violation

$K^+ \rightarrow \pi^+ \nu \bar{\nu}$ in the Standard Model


- "Golden decays": $K \rightarrow \pi \nu \bar{\nu}$ are the most precisely predicted FCNC decays involving quarks
- $B_{SM}(K^+ \to \pi^+ \nu \bar{\nu}) = (7.8 \pm 0.8) \times 10^{-11}$

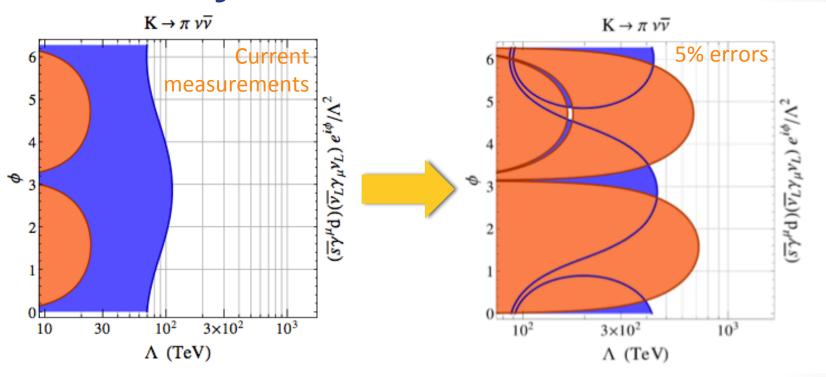
- A single effective operator: $(\bar{s}_L \gamma^\mu d_L)(\bar{v}_L \gamma_\mu v_L)$
- Dominated by top quark
- Hadronic matrix element shared with $K^+ \rightarrow \pi^0 e^+ v_e$
- Dominant uncertainty from CKM matrix elements
 - Expect prediction to improve to ~5%

Sensitivity to New Physics



- Prediction and measurement at 5% level allows 5σ detection of deviation from the Standard Model as small as 35%.
- $K^+ \rightarrow \pi^+ \nu \overline{\nu}$ BR has significant power to discriminate among new physics models.

Constraint on New Physics



- Flavor-changing Zpenguin operators are leading effect in many **BSM** models
- When Z-penguins dominate, experimental value of ε'/ε constrains possible enhancements to $K_1 \rightarrow \pi^0 \nu \overline{\nu}$ branching ratio
 - Four-fermion operators not subject to this constraint

See S. Jager's talk at NA62 book workshop: http://indico.cern.ch/getFile.py/ access?contribId=5&resId=0&materialId=slides&confId=65927

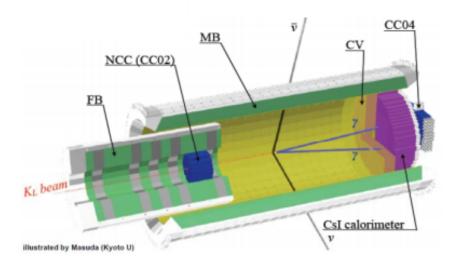
New Physics Scales

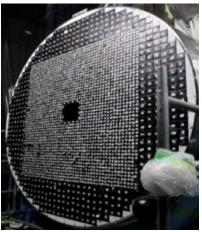
- $K^+ \rightarrow \pi^+ \nu \bar{\nu}$ already constrains scales of ~100 TeV
- $K_1 \rightarrow \pi^0 v \bar{v}$ does not yet add to constraints
- With 5% measurement of both charged and neutral modes, probes scales up to 700 TeV!

11

Flavor of New Physics

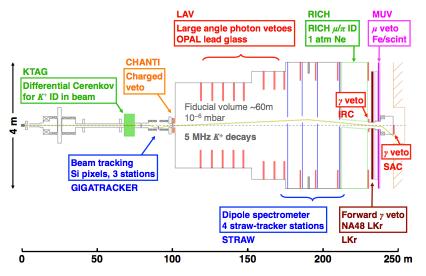
	AC	RVV2	AKM	δ LL	FBMSSM	LHT	RS
$D^0 - \bar{D}^0$	***	*	*	*	*	***	?
ϵ_K	*	***	***	*	*	**	***
$S_{m{\psi}m{\phi}}$	***	***	***	*	*	***	***
$S_{\phi K_S}$	***	**	*	***	***	*	?
$A_{\rm CP}(B \to X_{\scriptscriptstyle S} \gamma)$	*	*	*	***	***	*	?
$A_{7,8}(B \to K^* \mu^+ \mu^-)$	*	*	*	***	***	**	?
$A_9(B \to K^* \mu^+ \mu^-)$	*	*	*	*	*	*	?
$B \to K^{(*)} \nu \bar{\nu}$	*	*	*	*	*	*	*
$B_s \to \mu^+ \mu^-$	***	***	***	***	***	*	*
$K^+ \to \pi^+ \nu \bar{\nu}$	*	*	*	*	*	***	***
$K_L \to \pi^0 \nu \bar{\nu}$	*	*	*	*	*	***	***
$u \rightarrow e \gamma$	***	***	***	***	***	***	***
$\tau o \mu \gamma$	***	***	*	***	***	***	***
$u + N \rightarrow e + N$	***	***	***	***	***	***	***
d_n	***	***	***	**	***	*	***
d_e	***	***	**	*	***	*	***
$(g-2)_{\mu}$	***	***	**	***	***	*	?


Models			
AC	RH currents and U(1) flavor symmetry		
RVV2	SU(3)-flavored MSSM		
AKM	RH currents & SU(3) family symmetry		
δ LL	CKM-like currents		
FBMSSM	Flavor-blind MSSM		
LHT	Little Higgs with T Parity		
RS	Warped Extra Dimensions		


- ★★★ Large effects
- ★★ Small observable effects
- **★** Unobservable effects

W. Altmannshofer, A.J. Buras, S. Gori, P. Paradisi and D.M. Straub, Anatomy and Phenomenology of FCNC and CPV Effects in SUSY Theories. Nucl. Phys. B830,17 (2010).

Worldwide Effort: KOTO



- 2nd generation detector building on E391 at KEK
- Re-using KTeV CsI crystals to improve calorimeter
- Expect ~3 K_L $\rightarrow \pi^0 \nu \bar{\nu}$ events (SM) with S/B ~ 1
- 2013 physics run interrupted by J-PARC radiation accident

Worldwide Effort: NA-62

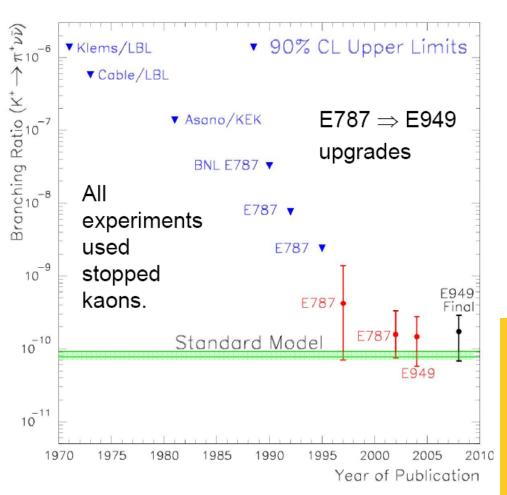
- Decay-in-flight experiment at CERN to measure $K^+ \rightarrow \pi^+ \nu \bar{\nu}$
- Building on NA-31/NA-48
- Expect ~45 K⁺ $\rightarrow \pi^+ \nu \bar{\nu}$ events per year (SM) with <10 bg events per year (~100 total events)
- Expect ~10% measurement of K+ $\rightarrow \pi^+ \nu \bar{\nu}$ BR
- Complementary technique to ORKA
- Data starting late 2014

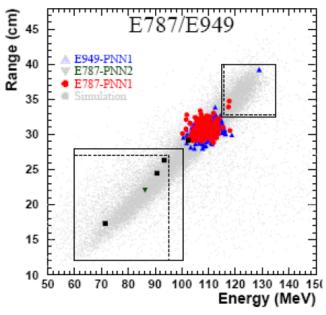
See M. Moulson's talk at DPF 2013: https://indico.bnl.gov/contributionDisplay.py?sessionId=11&contribId=103&confId=603

14

ORKA: The Golden Kaon Experiment

- Precision measurement of K⁺ $\rightarrow \pi^+ \nu \bar{\nu}$ BR with ~1000 expected events using protons from FNAL Main Injector
- **Expected BR uncertainty matches Standard Model** uncertainty
- Builds on successful previous experiments BNL E787/E949
 - 7 candidate events already observed
- Detector R&D and site preparation underway
- Collaboration:
 - 17 Institutions, 6 countries
 - 2 US National Labs, 6 US Universities
 - Leadership from successful rare kaon decay experiments

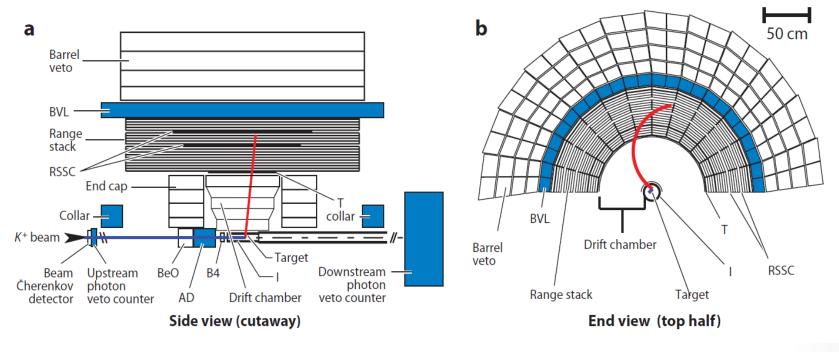




Experimental History

E787/E949 Final (7 candidate events observed):

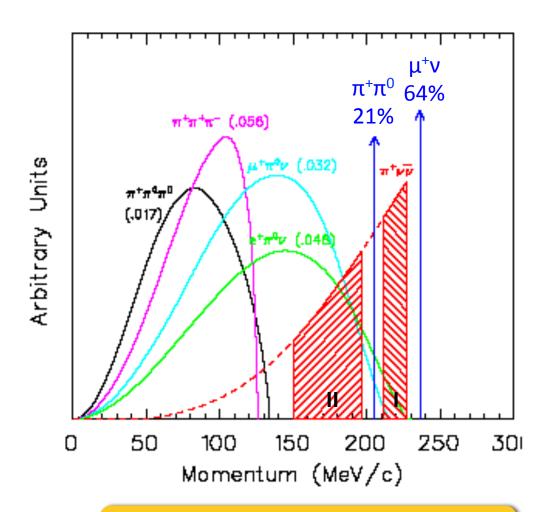
$$B(K^+ \to \pi^+ \nu \bar{\nu}) = 17.3^{+11.5}_{-10.5} \times 10^{-11}$$


Standard Model:

$$B(K^+ \to \pi^+ \nu \overline{\nu}) = (7.8 \pm 0.8) \times 10^{-11}$$

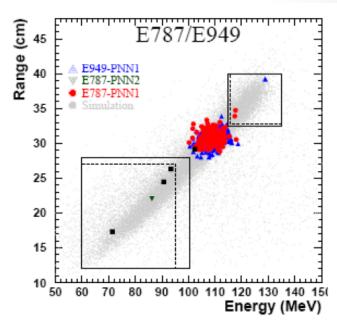
BNL E787/E949 Stopped-Kaon Technique

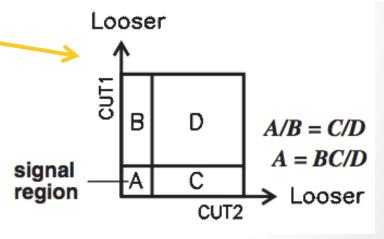
Measure everything!



- K⁺ detected and decays at rest in the stopping target
- Decay π^+ track momentum analyzed in drift chamber
- Decay π^+ stops in range stack, range and energy are measured
- Range stack straw chamber provides additional π^+ position measurement in range stack
- Barrel veto + End caps + Collar provide 4π photon veto coverage

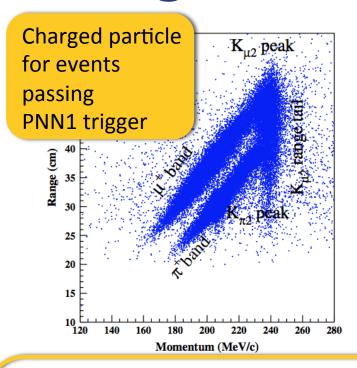
$K^+ \rightarrow \pi^+ \nu \bar{\nu}$ Measurement

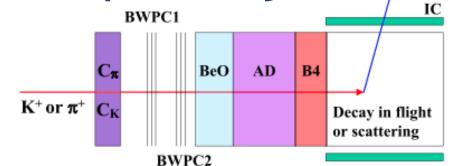

Momentum spectra of charged particles from K⁺ decays in the rest frame

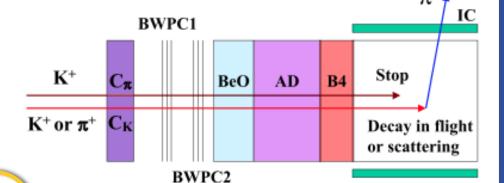

- Observed signal is $K^+ \rightarrow \pi^+ \rightarrow \mu^+ \rightarrow e^+$
- Background exceeds signal by > 10¹⁰
- Requires
 suppression of
 background well
 below expected
 signal (S/N ~10)
- Requires π/μ/e particle ID > 10⁶
- Requires π⁰
 inefficiency < 10⁻⁶

Analysis Strategy (E787/E949)

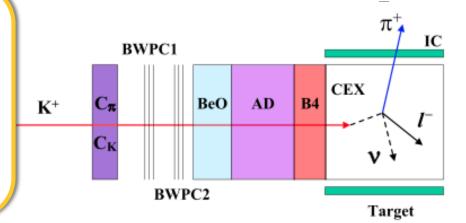
- Measure everything!
- Separate analyses for PNN1 and PNN2 regions
- Blind analysis
 - Blinded signal box
 - Final background estimates obtained from different samples than used to determine selection criteria (1/3 and 2/3 samples)
- Bifurcation method to determine background from data
 - Use data outside signal region
 - Two complementary, uncorrelated cuts
 - Expected PNN1 background << 1 event
- Measure acceptance from data where possible





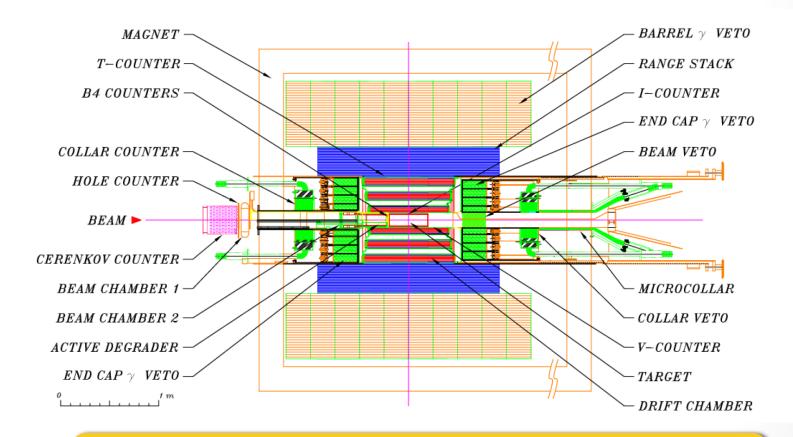


Background (E787/E949)



Stopped kaon background:

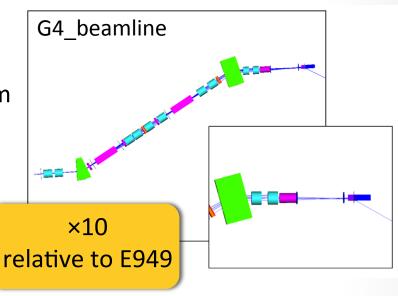
- $K^+ \rightarrow \pi^+ \pi^0$
- $K^+ \rightarrow \mu^+ \nu$
- μ+ band
 - $K^+ \rightarrow \mu^+ \nu \gamma$
 - $K^+ \rightarrow \mu^+ \pi^0 \nu$


Beam background:

- Single beam
- Double beam
- Charge exchange

ORKA:

a 4th generation detector


Expect ×100 sensitivity relative to BNL experiment: ×10 from beam and ×10 from detector

n

Sensitivity Improvements: Beam

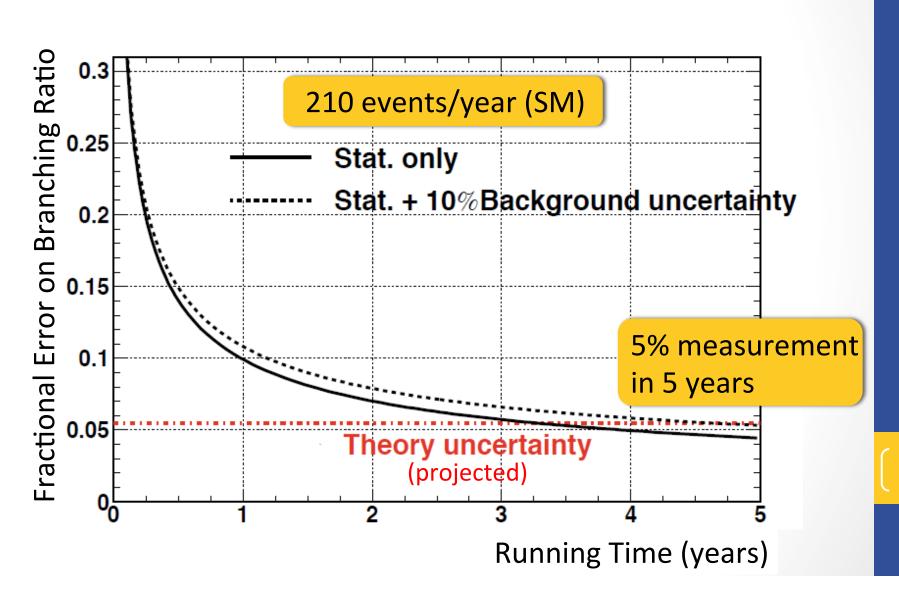
- Main Injector
 - 95 GeV/c protons
 - 50-75 kW of slow-extracted beam
 - 48 × 10¹² protons per spill
 - Duty factor of ~45%
 - # of protons/spill (×0.74)
- Secondary Beam Line
 - 600 MeV/c K⁺ particles
 - Increased number of kaons/proton from longer target, increased angular acceptance, increased momentum acceptance (**×4.3**)
 - Larger kaon survival fraction (×1.4)
 - Increased fraction of stopped kaons (x2.6)
- Increased veto losses due to higher instantaneous rate (x0.87)

Sensitivity Improvements: Acceptance

Component	Acceptance factor		
$\pi o \mu o e$	2.24 ± 0.07	\bigvee	
Deadtimeless DAQ	1.35		
Larger solid angle	1.38		
1.25-T B field	1.12 ± 0.05		
Range stack segmentation	1.12 ± 0.06		
Photon veto	$1.65^{+0.39}_{-0.18}$		
Improved target	1.06 ± 0.06		
Macro-efficiency	1.11 ± 0.07		
Delayed coincidence	1.11 ± 0.05	:	
Product (Racc)	$11.28^{+3.25}_{-2.22}$	rela	

×11 relative to E949

$\pi^+ \rightarrow \mu^+ \rightarrow e^+$ Acceptance



- E949 PNN1 $\pi^+ \rightarrow \mu^+ \rightarrow e^+$ acceptance: 35%
- Improvements to increase acceptance relative to E949:
 - Increase segmentation in range stack to reduce loss from accidental activity and improve π/μ particle ID
 - Increase scintillator light yield by using higher QE photo-detectors and/or better optical coupling to improve μ identification
 - Deadtime-less DAQ and trigger so online π/μ particle ID unnecessary

Irreducible losses:

	Range	Acceptance
Measured π ⁺ lifetime	3-105 ns	~87%
Measured μ ⁺ lifetime	0.1-10 ns	~95%
μ ⁺ escape	n/a	~98%
Undetectable e+	n/a	~97%
Total		~78%

ORKA K⁺ $\rightarrow \pi^+ \nu \bar{\nu}$ Sensitivity

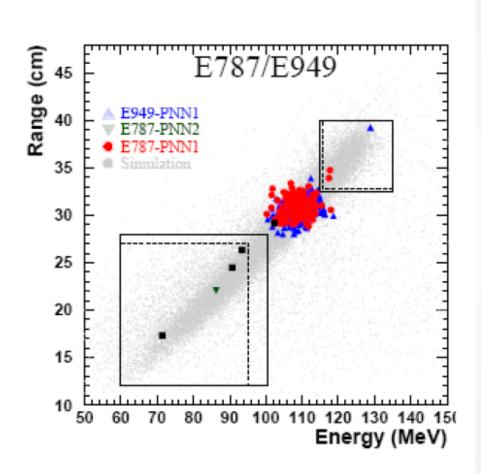
inar September 18, 2013

ORKA Physics Topics

- $K^+ \to \pi^+ + \text{missing energy}$
 - $K^+ \rightarrow \pi^+ \nu \bar{\nu}(1)^{T,P}$
 - $K^+ \to \pi^+ \nu \bar{\nu}(2)^{T,P}$
 - $K^+ \rightarrow \pi^+ \nu \bar{\nu} \gamma$
 - $K^+ \rightarrow \pi^+ X^P$
 - $K^+ \rightarrow \pi^+ \tilde{\chi}_0 \tilde{\chi}_0 (FF)^P$
- $K^+ \to \pi^+ \pi^0 + \text{missing energy}$
 - $K^+ \rightarrow \pi^+ \pi^0 \nu \bar{\nu}^{T,P}$
 - $K^+ \rightarrow \pi^+ \pi^0 X$
- $ightharpoonup K^+ o \mu^+ + \text{missing energy}$
 - $K^+ \to \mu^+ \nu_h$ (heavy neutrino) T
 - $ightharpoonup K^+ o \mu^+ \nu M \ (M = majoran)$
 - $K^+ \rightarrow \mu^+ \nu \bar{\nu} \nu$

- $ightharpoonup K^+ o \pi^+ \gamma^{TP}$
- $ightharpoonup K^+ o \pi^+ \gamma \gamma^P$
- $ightharpoonup K^+ o \pi^+ \gamma \gamma \gamma$
- $K^+ \to \pi^+ \mathrm{DP} : \mathrm{DP} \to e^+ e^-$
- ► K⁺ lifetime
- $\blacktriangleright \mathcal{B}(K^+ \to \pi^+ \pi^0)/\mathcal{B}(K^+ \to \mu^+ \nu)$
- $K^{+} \rightarrow \pi^{+}\pi^{0}e^{+}e^{-}$
- $ightharpoonup K^+ o \pi^- \mu^+ \mu^+ \text{ (LFV)}$
- $\blacktriangleright \pi^0 \to \text{nothing } T,P$
- ▶ $\pi^0 \to \gamma DP$; $DP \to e^+e^-$
- \blacktriangleright $\pi^0 \rightarrow \gamma X$

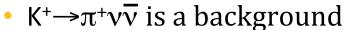
T: E787/949 thesis P: E787/949 paper

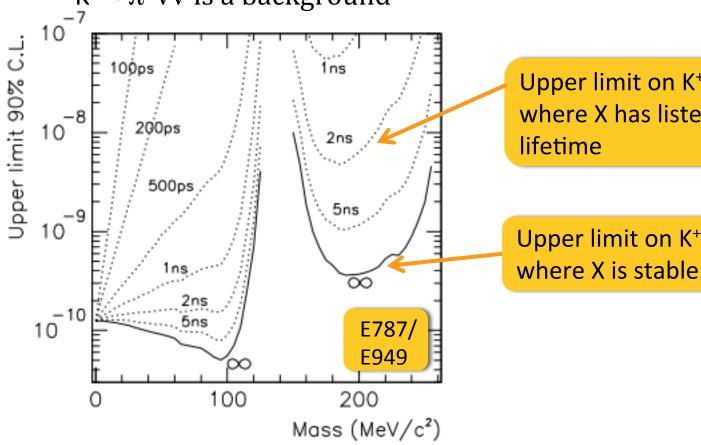

"DP" = dark photon

E787/949: 42 publications, 26 theses

KTeV: 50 publications, 32 theses

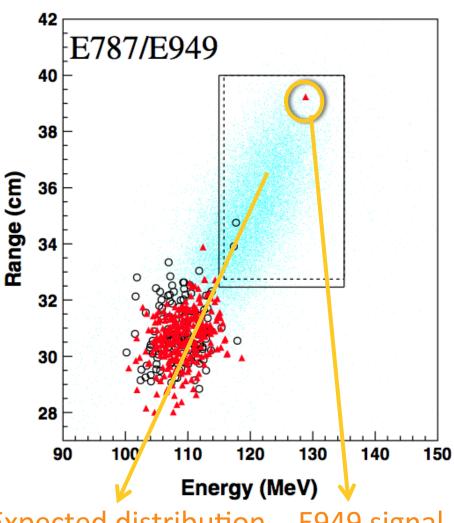
$K^+ \rightarrow \pi^+ \nu \bar{\nu} PNN1/PNN2 ratio$


- PNN1 and PNN2 kinematic regions analyzed separately
- Different background and acceptance issues
- If ratio of BRs measured in the two regions differs from SM, could indicate new physics
 - ex: unparticles



$K^+ \rightarrow \pi^+ X^0$

Many models for X⁰: familon, axion, light scalar pseudo-NG boson, sgoldstino, gauge boson corresponding to new U(1) symmetry, light dark matter ...



Upper limit on $K^+ \rightarrow \pi^+ X$ where X has listed

Upper limit on $K^+ \rightarrow \pi^+ X$

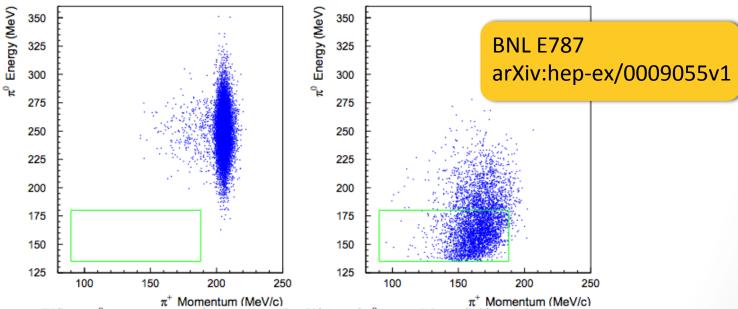
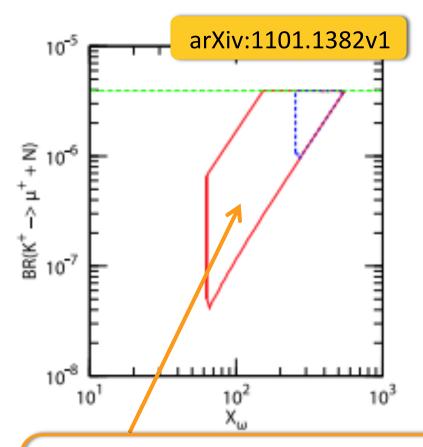
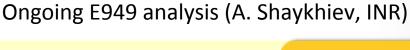
$K^+ \rightarrow \pi^+ X^0$ "event"

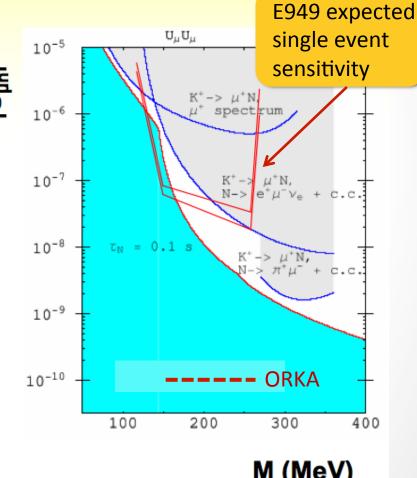
- Expected distribution E949 signal of $K^+ \rightarrow \pi^+ \nu \overline{\nu}$ (MC)
- event

- One event seen in E949 K⁺ $\rightarrow \pi^+ \nu \bar{\nu}$ PNN1 signal region is near kinematic endpoint
- Corresponds to a massless X⁰
- Central value of measured K⁺ $\rightarrow \pi^+ \nu \bar{\nu}$ BR higher than SM expectation
- Event consistent with SM K⁺ $\rightarrow \pi^+ \nu \bar{\nu}$, yet...
- Interesting mode for further study

$K^+ \rightarrow \pi^+ \pi^0 \nu \bar{\nu}$

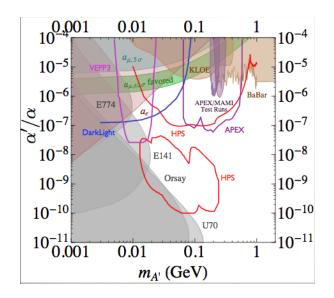
- Ke4 BR allows firm SM prediction (1-2 \times 10⁻¹⁴)
- New physics from axial-vector in addition to vector currents
- E787: B(K+ $\rightarrow \pi^{+}\pi^{0}\nu\bar{\nu}$) < 4.3 × 10⁻⁵
 - Limited by trigger bandwidth and detector resolution
- Expect × 1000 improvement at ORKA


FIG. 4. π^0 energy versus π^+ momentum for $K^+ \to \pi^+ \pi^0 \nu \bar{\nu}$ candidates (left) and for Monte Carlo signal events (right). Box indicates the signal acceptance region. $K_{\pi 2}$ events cluster at the upper right in the top plot.

Heavy Neutrinos: $K^+ \rightarrow \mu^+ X^0$

Ex: Allowed BR($K^+ \rightarrow \mu^+ N_{2,3}$) for NH in ν MSM, M_N =120 MeV: $^{\sim}4 \times 10^{-8}$ to $^{\sim}4 \times 10^{-6}$



M (MeV)

Heavy Photons

- A´: same interactions as SM photon with reduced coupling
- Dark matter candidate
- Multiple dedicated experiments
- $K^+ \rightarrow \pi^+ A' \rightarrow \pi^+ e^+ e^-$ and $\pi^0 \rightarrow \gamma A' \rightarrow \gamma e^+ e^-$
- Signal would appear as resonance above continuum in e⁺e⁻ invariant mass distribution
- Electron resolution and background from conversion could be a problem
- No ORKA sensitivity estimate yet

Precision Measurement of Ke2/Kµ2

$$R_{K} \equiv \frac{\Gamma(K^{+} \rightarrow e^{+} \nu)}{\Gamma(K^{+} \rightarrow \mu^{+} \nu)}$$

- $R_{SM} = (2.477 \pm 0.001) \times 10^{-5}$
 - Extremely precise because hadronic form factors cancel in ratio
 - Sensitive to new physics effects that do not share V-A structure of SM contribution
- R = $(2.488 \pm 0.010) \times 10^{-5} (NA62) \longrightarrow 0.4\%$ precision
- R = $(2.493 \pm 0.025 \pm 0.019) \times 10^{-5}$ (KLOE)
- Expect ORKA statistical precision of ~0.1%
 - More study required to estimate total ORKA uncertainty

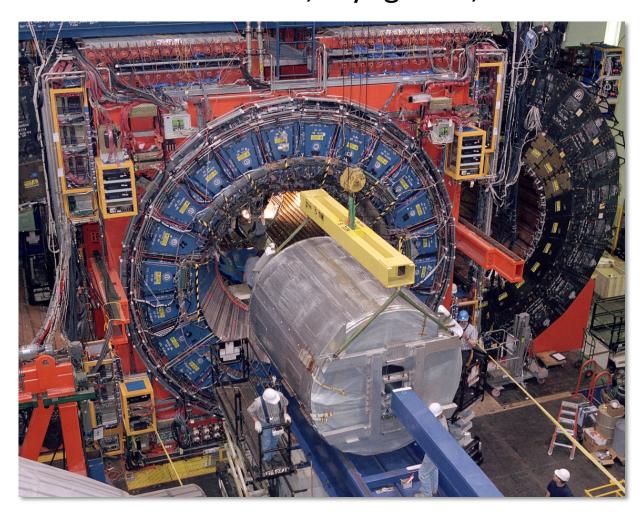
ORKA Sensitivity Summary

(preliminary estimate of sensitivity)

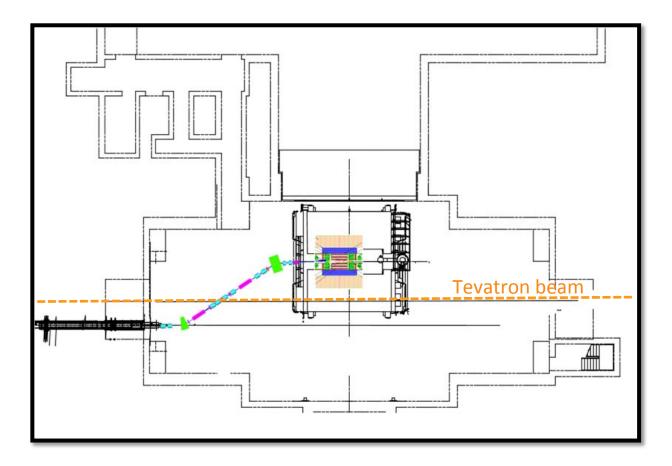
		ODKA		
Process	Current	ORKA	Comment	
$K^+ o \pi^+ \nu \bar{\nu}$	7 events	1000 events		
$K^+ \to \pi^+ X^0$	$<0.73\times 10^{-10}$ @ 90% CL	$<2\times10^{-12}$	$K^+ \to \pi^+ \nu \bar{\nu}$ is a background	
$K^+ \to \pi^+ \pi^0 \nu \bar{\nu}$	$<4.3\times10^{-5}$	$<4 imes10^{-8}$		
$K^+ \to \pi^+ \pi^0 X^0$	$<\sim4\times10^{-5}$	$< 4 \times 10^{-8}$		
$K^+ \to \pi^+ \gamma$	$< 2.3 \times 10^{-9}$	$< 6.4 \times 10^{-12}$		
$K^+ o \mu^+ \nu_{heavy}$	$<2\times 10^{-8}-1\times 10^{-7}$	$< 1 \times 10^{-10}$	$150 \ {\rm MeV} < m_{\nu} < 270 \ {\rm MeV}$	
$K^+ \to \mu^+ \nu_\mu \nu \bar{\nu}$	$<6\times10^{-6}$	$<6 imes10^{-7}$		
$K^+ \to \pi^+ \gamma \gamma$	293 events	200,000 events		
$\Gamma(Ke2)/\Gamma(K\mu2)$	$\pm 0.5\%$	$\pm 0.1\%$		
$\pi^0 \to \nu \bar{\nu}$	$<2.7\times10^{-7}$	$< 5 \times 10^{-8}$ to $< 4 \times 10^{-9}$	depending on tech nique	
$\pi^0 \to \gamma X^0$	$<5\times10^{-4}$	$<2\times10^{-5}$		

- ORKA, while highly optimized for $K^+ \rightarrow \pi^+ \nu \overline{\nu}$, is capable of making important, precise measurements of many other physics processes.
 - Real discovery potential
 - Training ground for next generation of US flavor physicists

Experiment Site: B0 (CDF)

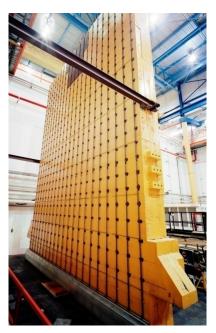


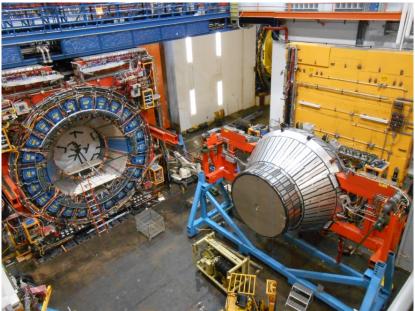
- Requires new beam line from A0-B0
- Re-use Tevatron tunnel
- No civil construction required


Experiment Site: B0 (CDF)

- ORKA detector fits inside CDF solenoid
- Re-use CDF solenoid, cryogenics, infrastructure

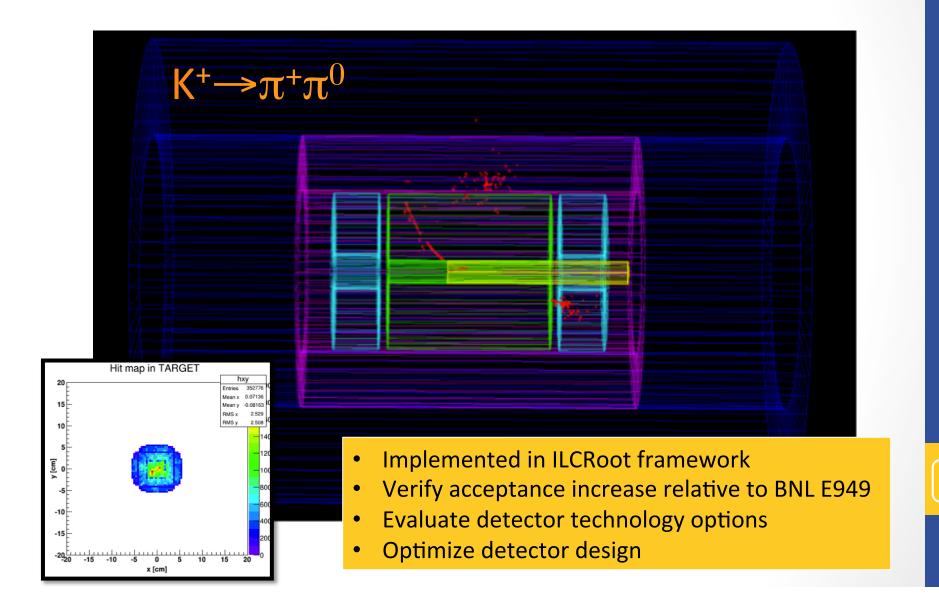
Experiment Site: B0 (CDF)


- Proton beam slightly south of Tevatron beam line
- Dog-leg kaon beam line
- Magnet shifted slightly to the north



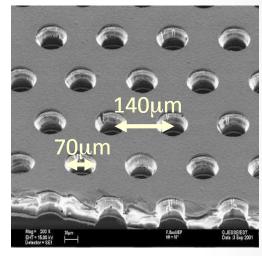

37

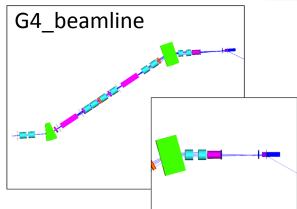
ORKA Site Preparation



- Central detector and muon walls now in assembly area
- Removal of cables, electronics, and PMTs almost complete
- Tracker removal this month
- Outer muon system demolition ongoing

ORKA Simulations

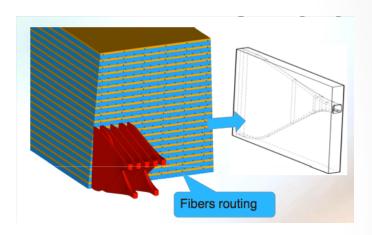


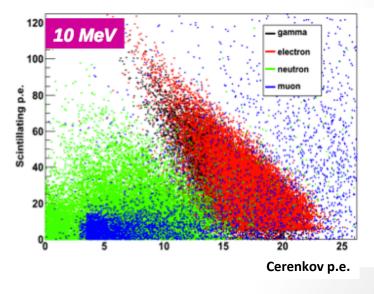

ORKA R&D

ORKA

- Improvement in sensitivity relative to BNL-E949 depends upon FNAL beam & modernization of experiment design
- Detector refinements:
 - Efficient photon detectors (ADRIANO/ Shashlik)
 - Solid state photo-sensors (SiPMs)
 - Range-stack tracking (GEM/straw)
 - Low-mass drift chamber optimization
- Common front-end electronics for SiPM readout of stopping target, range stack, photon veto, beam monitors
- Fully-streaming, deadtimeless DAQ
- K⁺ beam-line design

GEM foil:

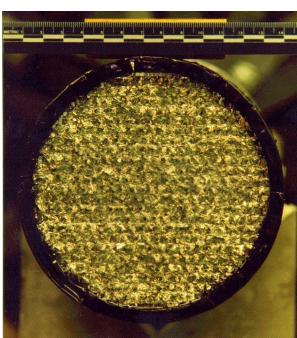




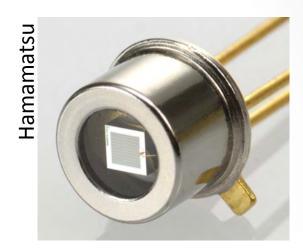
40

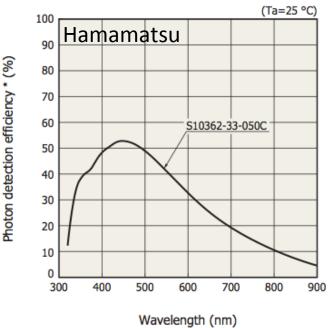
Fully-active Photon Veto

- E949 barrel-veto detector was Shashlik detector (leadscintillator sandwich)
- ADRIANO (A Dual-Readout Integrally Active Non-segmented Option) under consideration for ORKA barrel-veto detector
 - Optically-separated layers of lead glass and plastic scintillator
 - Cerenkov light from lead glass
 - Scintillation light from plastic scintillator
 - Potential to improve photonveto efficiency
 - Potential for particle identification

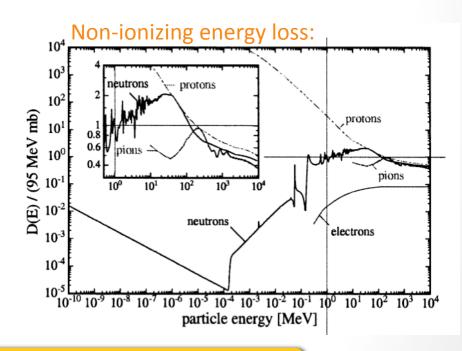


Scintillating-fiber Stopping Target

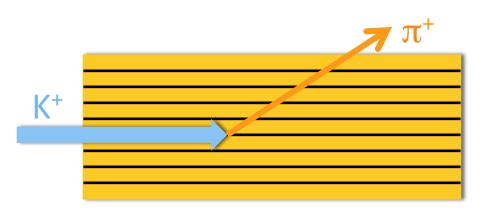

- E949 target:
 - 413 5-mm-square, 310-cm-long scintillating fibers (+"edge" fibers)
 - Read out by 1" PMTs
- ORKA target:
 - Similar design with shorter fibers (100-200 cm), finer segmentation?
 - Read out by SiPMs

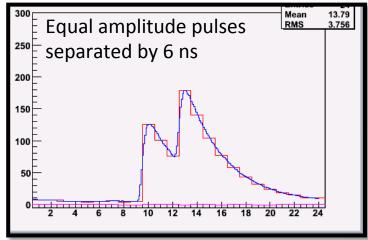


Silicon PhotoMultiplier (SiPM)


- Multi-pixel photo-detector
- Each pixel consists of an avalanche photodiode operating in Geiger mode
- Advantages
 - High gain, excellent time resolution (~500 ps)
 - Small size & insensitivity to magnetic fields allow direct coupling to detector: improved time resolution and lightcollection efficiency
 - Relatively low cost: increased segmentation possible

SiPM Radiation Damage


- Desirable to read out scintillating-fiber stopping target at both ends
 - Higher light-collection efficiency
 - Redundancy
 - More information about longitudinal position
- Convert particle fluence at upstream end of target to 1-MeV neutron equivalent: $\Phi_{\rm eq}$ ~10¹³ n/year-cm²
- Compare to other HEP environments:
 - ATLAS inner detector $\Phi_{\rm eq}$ ~10¹³ n/cm²
 - CMS Hcal $\Phi_{\rm eq}$ ~10¹² n/cm²
 - JLab test sees SiPM performance degradation at much lower levels of particle fluence.


Further investigation needed!

SiPM Double-Pulse Resolution

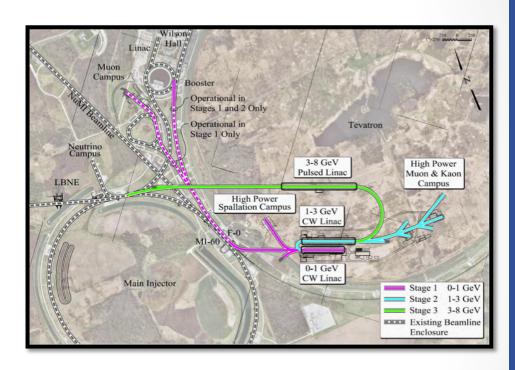
SiPM pulse simulation, B. Kiburg (g-2):

- Incoming kaon: 1-100 MeV/fiber
- Outgoing pion: ~1 MeV/fiber
- K⁺ lifetime: 12 ns
- Intrinsic SiPM pulse width: ~0.5 ns
- Goal: ~2-ns double-pulse resolution for pulses with very different amplitudes
- SiPM pulse requires amplification (can degrade time resolution)
- Study using laser-diode with filters and delay lines to simulate kaon signal followed by pion signal

ORKA Cost & Schedule

- System-by-system review of cost estimate conducted by ORKA collaboration in 2012-2013
 - Input from external experts
 - Much more detailed understanding of expected costs relative to 2011 proposal
- ORKA total project cost: ~\$50M
- Beam line costs covered by FNAL AIPs
 - AIP: Accelerator Improvement Project
 - Similar strategy to muon campus
- FNAL Stage 1 Approval: 2011
- R&D to optimize detector design underway
- Working with DOE to determine best timing for CD-0

ORKA Summary


- High precision measurement of $K^+ \rightarrow \pi^+ \nu \bar{\nu}$ at FNAL MI
- Expect ~1000 events and 5% precision on BR measurement with 5 years of data
- Significant measurements with real potential for discovery of new physics
- 4th generation detector using a combination of known techniques and modern detector technology
- Requires modest accelerator improvements and no civil construction
- ORKA proposal:
 - http://www.fnal.gov/directorate/program_planning/ Dec2011PACPublic/ORKA_Proposal.pdf

Flavor community and US funding agencies are enthusiastic about ORKA and working to find a way to make it possible.

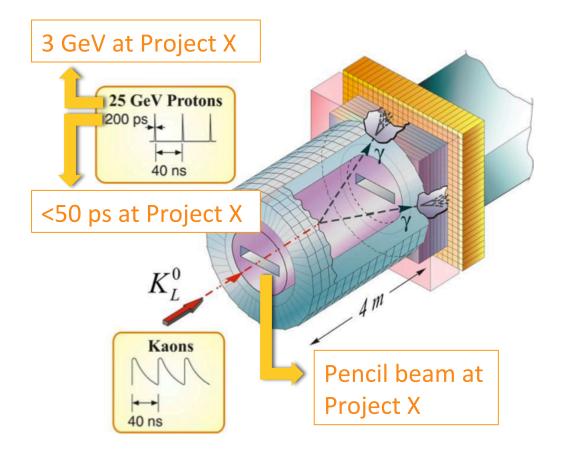
Project X at FNAL

ORKA

- Stage 1: 1-GeV CW linac providing beams to the existing 8-GeV booster, the muon campus, and a new 1-GeV experimental facility
- Stage 2: Addition of 1-3-GeV linac providing beam to a new 3-GeV experimental facility; upgrades of the 1-GeV linac and the Booster
- Stage 3: Addition of 3-8-GeV pulsed linac; upgrades to the Recycler and Main Injector

Project X Accelerator Reference Design:

arXiv:1306.5022


Project X Physics Opportunities:

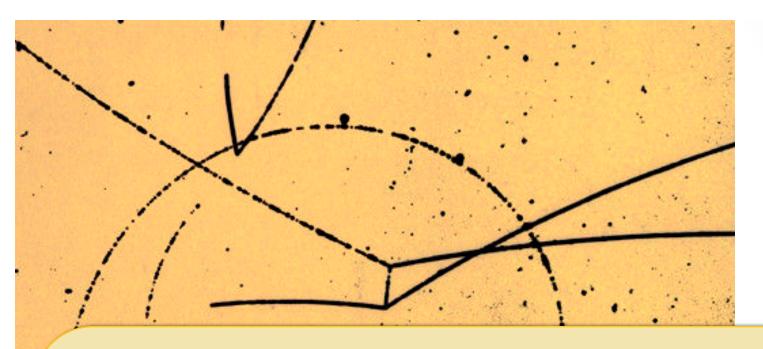
arXiv:1306.5009

Kaon Physics at Project X

KOPIO Concept for $K_L \rightarrow \pi^0 \nu \overline{\nu}$ Experiment at AGS

- Use time-of-flight to work in kaon centerof-mass system
- Requires microbunched beam
- KOPIO proposal was well-developed and thoroughly reviewed
- Higher intensity and tighter bunching at Project X allows for 1000-event K_L→π⁰νν experiment

Kaon Physics at Project X


ORKA

- 5% measurement of $K_1 \rightarrow \pi^0 \nu \bar{\nu}$
- 2% measurement of K⁺ $\rightarrow \pi^+ \nu \bar{\nu}$
- World-leading kaon-physics program!

Observable	SM Theory	Current Expt.	Future Experiments
$\mathcal{B}(K^+ o \pi^+ \nu \overline{\nu})$	$7.81(75)(29) \times 10^{-11}$	$1.73^{+1.15}_{-1.05} \times 10^{-10}$	~10% at NA62
		E787/E949	∼5% at ORKA
			∼2% at Project-X
${\cal B}(K_L^0 o\pi^0 u\overline{ u})$	$2.43(39)(6) \times 10^{-11}$	$< 2.6 \times 10^{-8}$ E391a	1 st observation at KOTO
			∼5% at Project-X
${\cal B}(K_L^0 o\pi^0 e^+e^-)$	$(3.23^{+0.91}_{-0.79}) \times 10^{-11}$	$< 2.8 \times 10^{-10} \text{ KTeV}$	~10% at Project-X
$\mathcal{B}(K_L^0 o\pi^0\mu^+\mu^-)$	$(1.29^{+0.24}_{-0.23}) \times 10^{-11}$	$< 3.8 \times 10^{-10} \text{ KTeV}$	~10% at Project-X
$ P_T $	$\sim 10^{-7}$	< 0.0050	< 0.0003 at TREK
in $K^+ o \pi^0 \mu^+ u$			< 0.0001 at Project-X
$\Gamma(K_{e2})/\Gamma(K_{\mu 2})$	$2.477(1) \times 10^{-5}$	$2.488(12) \times 10^{-5}$	$\pm 0.0054 \times 10^{-5}$ at TREK
		(NA62, KLOE)	$\pm 0.0025 \times 10^{-5}$ at Project-X
$\mathcal{B}(K_L^0 o\mu^\pm e^\mp)$	$< 10^{-25}$	$< 4.7 \times 10^{-12}$	$< 2 \times 10^{-13}$ at Project-X

See Report of Quark Flavor Physics Working Group in Snowmass CSS2013 Proceedings (coming soon).

- Things to remember:
 - Precision flavor physics has driven discovery in the past and can do so in the future.
 - The ORKA collaboration is moving forward with an experiment to detect ~1000 K⁺ $\rightarrow \pi^+ \nu \bar{\nu}$ events.
 - The ORKA experiment will make important precision measurements & has the potential to make significant discoveries of new physics.
 - ORKA is the first step towards building a world-leading kaon-physics program at Project X.