The Higgs Boson in the Golden Channel

James S. "Jamie" Gainer University of Florida University of Virginia Particle Physics Seminar October 23, 2013

Based on

1108.2274/JHEP 1111 (2011) 027 JSG, Kumar, Low, Vega-Morales **1210.0896**/ PRD 87 (2013) 055006 Avery, Bourilkov, Chen, Cheng, Drozdetskiy, JSG, Korytov, Matchev, Milenovic, Mitselmakher, Park, Rinkevicius, and Snowball 1304.4936 / PRL 111 (2013) 041801 JSG, Lykken, Matchev, Mrenna, Park X 1310.1397 Chen, Cheng, JSG, Korytov, Matchev, Milenovic, Mitselmakher,

Park, Rinkevicius, Snowball

Outline

- * Discovering the Higgs in $H \rightarrow ZZ^* \rightarrow 4\ell$
- * General information
 * The Matrix Element Method
 * Measuring Higgs Properties
 * Geolocation
 * Interference

Why look at $H \rightarrow ZZ^* \rightarrow 4\ell$?

The Standard Model Higgs

A major motivation for the Higgs is to give mass to the W and Z bosons.

$$\Phi(x) = \begin{pmatrix} \theta_2 + i\theta_1 \\ \frac{1}{\sqrt{2}}(v+H) - i\theta_3 \end{pmatrix} = e^{i\theta_a(x)\tau^a(x)/v} \begin{pmatrix} 0 \\ \frac{1}{\sqrt{2}}(v+H(x)) \end{pmatrix}$$

The $|D_{\mu}\Phi|^2$ term in the Lagrangian gives both

similar

story

for

W/W

cf. Djouadi, (2005); Dawson, Gunion, Haber, Kane (1989)

$$\frac{\sqrt{g_1^2 + g_2^2}}{8} v^2 g_{\mu\nu} Z^{\mu} Z^{\nu} = -\frac{1}{2} M_Z^2 g_{\mu\nu} Z^{\mu} Z^{\nu}$$

and

$$-\frac{\sqrt{g_1^2+g_2^2}}{8}(2vH)g_{\mu\nu}Z^{\mu}Z^{\nu} = -\frac{M_Z^2}{v}g_{\mu\nu}HZ^{\mu}Z^{\nu}$$

unsuppressed tree level HZZ coupling-- strength determined by MZ

The Standard Model Higgs

K In the Standard Model, the Higgs is also the source of fermion

masses

$$\mathcal{L}_{F} = -\frac{1}{\sqrt{2}}\lambda_{e}\left(\bar{\nu}_{e}, \bar{e}_{L}\right) \begin{pmatrix} 0\\v+H \end{pmatrix} e_{R} + \cdots$$

$$= -\frac{1}{\sqrt{2}}\lambda_{e}\left(v+H\right)\bar{e}_{L}e_{R} + \cdots$$

- * Since the fermion mass comes from v, the coupling of a massive fermion to the Higgs is given by $\lambda_f = y_f = \frac{\sqrt{2}m_f}{r}$
- * v = 246 GeV, so other than the top quark, all SM fermions couple relatively weakly to the Higgs

* So "if" $2 M_Z < M_H < 2 m_t$, (i.e. the Higgs has an on-shell two body decays into Zs but not tops) $H \rightarrow ZZ$ sizable (actually even if $M_H > 2 m_t$).

Time Machine to 2011

★ We're going to pretend that we haven't discovered the Higgs
★ Don't worry, we'll re-discover it in about 15 minutes.
★ Really I want to introduce the study of the Higgs with the 4 l final state without assuming m_H ≈ 125 GeV 7

SM Higgs Branchings

 $★ If M_{H} \ge 200 \text{ GeV}, \text{ decays to} \\ WW \text{ and } ZZ \text{ dominate}, \\ \text{even above } 2 \text{ m}_{t}$

★ For M_H ≤ 2 M_W, decays to
WW* and ZZ* still important
because with H → b b one has
to contend with huge QCD
backgrounds

Time Machine to 2011

★ Clearly, if M_H ≥ 200 GeV,
 we should focus on ZZ, WW
 final states

Of these, $H \rightarrow ZZ \rightarrow 4 \ell$ is the unique fully leptonic, fully reconstructable final state

The Golden Channel

 Leptons are comparatively easy to reconstruct and measure in detectors (QCD makes life hard)

1/16, so leptonic branching fractions cost us a factor of ≈ 260

* Downside is $Z \rightarrow \ell^+ \ell^-$ ($\ell = e, \mu$) is only \approx

★ So what do S and S/B look like, taking into account the irreducible (LO) $q\bar{q} \rightarrow Z(Z/Z^*/g^*) \rightarrow 4\ell$ background?

	$m_h({ m GeV})$	$\sigma({\rm fb})$	ε	$\langle N \rangle$
	175	0.218	0.512	0.279
	200	1.26	0.594	1.87
Signal	220	1.16	0.625	1.81
	250	0.958	0.654	1.57
	300	0.714	0.701	1.25
	350	0.600	0.708	1.06
Background	-	8.78	0.519	11.4

<N> for 2.5 fb⁻¹ at 7 TeV 1108.2274

Background is relatively small, but remember Higgs is wide when $M_H > 2 M_Z$

	$m_h({ m GeV})$	$\sigma({\rm fb})$	ε	$\langle N \rangle$
	175	0.218	0.512	0.279
	200	1.26	0.594	1.87
Signal	220	1.16	0. <mark>62</mark> 5	1.81
	250	0.958	0.654	1.57
	300	0.714	0.701	1.25
	350	0.600	0.708	1.06
Background	-	8.78	0.5 <mark>1</mark> 9	11.4

<N> for 2.5 fb⁻¹ at 7 TeV 1108.2274

Taking background with m_{4l} within $2\Gamma_{H}$ of M_{H}

	$m_h({ m GeV})$	$\sigma({\rm fb})$	E	$\langle N \rangle$
	175	0.218	0.512	0.279
	200	1.26	0.594	1.87
Signal	220	1.16	0.625	1.81
	250	0.958	0.654	1.57
	300	0.714	0.701	1.25
	350	0.600	0.708	1.06
Background	12	8.78	0.519	11.4

	$m_h({ m GeV})$	В	S/B	$S/B^{1/2}$
Background	220	0.94	1.9	1.9
	250	1.1	1.4	1.5
	300	1.1	1.1	1.2
	350	1.1	0.98	1.0
	350	1.1	0.98	1.0

<N> for 2.5 fb⁻¹ at 7 TeV

<N> for 2.5 fb⁻¹ at 7 TeV 1108.2274

High Higgs Masses

\times For a heavy SM Higgs S/B is fine (~1)

H But S is small

* How can we get the most significance from a small number of events, if M_H is large?

*** Use the "Matrix Element Method"**

* Multivariate Analysis (MVA) which uses the likelihood for all kinematic variables calculated from theory

***** Uses all available information in an optimal way

Likelihood Methods

- * In general, assume we have N events $\{x_1, x_2, ..., x_N\}$
- * and we have a model for the process that generates the events $P(\alpha, x)$, where α are parameters of the model
- * Then we can find best fit values for the parameters by maximizing the likelihood function (also P) with respect to the parameters, α
- \star i.e. we maximize

 $P(\alpha, x_1) \times P(\alpha, x_2) \times P(\alpha, x_3) \dots \times P(\alpha, x_N)$ with respect to the parameters α

Matrix Element Method

* In particle physics, the likelihood/ probability function $P(\alpha, x)$ is the differential cross section

$$\begin{aligned} \mathcal{P}(\mathbf{p}_i^{\mathsf{vis}}|\alpha) &= \frac{1}{\sigma_\alpha} \int dx_1 dx_2 \frac{f_1(x_1) f_2(x_2)}{2s x_1 x_2} \\ &\times \left[\prod_{i \in \mathsf{final}} \int \frac{d^3 p_i}{(2\pi)^3 2E_i} \right] |M_\alpha(p_i)|^2 \prod_{i \in \mathsf{vis}} \delta(\mathbf{p}_i - \mathbf{p}_i^{\mathsf{vis}}) \end{aligned}$$

Matrix Element Method

* In particle physics, the likelihood/ probability function $P(\alpha, x)$ is the differential cross section

$$\mathcal{P}(\mathbf{p}_{i}^{\mathsf{vis}}|\alpha) = \frac{1}{\sigma_{\alpha}} \int dx_{1} dx_{2} \frac{f_{1}(x_{1})f_{2}(x_{2})}{2sx_{1}x_{2}} \times \left[\prod_{i \in \mathsf{final}} \int \frac{d^{3}p_{i}}{(2\pi)^{3}2E_{i}}\right] |M_{\alpha}(p_{i})|^{2} \prod_{i \in \mathsf{vis}} \delta(\mathbf{p}_{i} - \mathbf{p}_{i}^{\mathsf{vis}})$$

- * Normalized by the total cross section after acceptances and efficiencies
- * So that the integral over kinematic variables gives 1.

Matrix Element Method

- In general need to integrate over momentum of invisible particles (neutrinos, neutralinos)
- * and take into account finite detector resolution by integrating over "transfer functions" that describe how likely the observed momenta is given the true momenta

★ For H → ZZ → 4 ℓ , we can ignore these complications (except possibly for m_{4l})

Improving the Sensitivity of Higgs Boson Searches in the Golden Channel

Quantified the extent to which sensitivity in Golden Channel could be increased using the Matrix Element Method

$$\begin{split} \Delta \lambda &= \pm 2 : \ \mathcal{A}_{\pm \mp}^{\Delta \sigma} = -\sqrt{2} (1 + \beta_1 \beta_2) , \\ \Delta \lambda &= \pm 1 : \ \mathcal{A}_{\pm 0}^{\Delta \sigma} = \frac{1}{\gamma_2 (1 + x)} \bigg[(\Delta \sigma \Delta \lambda) \bigg(1 + \frac{\beta_1^2 + \beta_2^2}{2} \bigg) - 2 \cos \Theta \\ &- (\Delta \sigma \Delta \lambda) (\beta_2^2 - \beta_1^2) x - 2x \cos \Theta - (\Delta \sigma \Delta \lambda) \bigg(1 - \frac{\beta_1^2 + \beta_2^2}{2} \bigg) x^2 \bigg] \\ &: \ \mathcal{A}_{0\pm}^{\Delta \sigma} = \frac{1}{\gamma_1 (1 - x)} \bigg[(\Delta \sigma \Delta \lambda) \bigg(1 + \frac{\beta_1^2 + \beta_2^2}{2} \bigg) - 2 \cos \Theta \\ &- (\Delta \sigma \Delta \lambda) (\beta_2^2 - \beta_1^2) x + 2x \cos \Theta - (\Delta \sigma \Delta \lambda) \bigg(1 - \frac{\beta_1^2 + \beta_2^2}{2} \bigg) x^2 \bigg] \\ \Delta \lambda &= 0 : \ \mathcal{A}_{\pm \pm}^{\Delta \sigma} = -(1 - \beta_1 \beta_2) \cos \Theta - \lambda_1 \Delta \sigma (1 + \beta_1 \beta_2) x , \\ \Delta \lambda &= 0 : \ \mathcal{A}_{00}^{\Delta \sigma} = 2\gamma_1 \gamma_2 \cos \Theta \bigg[((1 - x)\beta_1 + (1 + x)\beta_2) \sqrt{\frac{\beta_1 \beta_2}{1 - x^2}} - (1 + \beta_1^2 \beta_2^2) \bigg] \end{split}$$

 To calculate differential cross section in a way that also gives a qualitative understanding, we used helicity amplitudes

$$\begin{split} \Delta \lambda &= \pm 2 : \ \mathcal{A}_{\pm \mp}^{\Delta \sigma} = -\sqrt{2} (1 + \beta_1 \beta_2) , \\ \Delta \lambda &= \pm 1 : \ \mathcal{A}_{\pm 0}^{\Delta \sigma} = \frac{1}{\gamma_2 (1 + x)} \bigg[(\Delta \sigma \Delta \lambda) \bigg(1 + \frac{\beta_1^2 + \beta_2^2}{2} \bigg) - 2 \cos \Theta \\ &- (\Delta \sigma \Delta \lambda) (\beta_2^2 - \beta_1^2) x - 2x \cos \Theta - (\Delta \sigma \Delta \lambda) \bigg(1 - \frac{\beta_1^2 + \beta_2^2}{2} \bigg) x^2 \bigg] \\ &: \ \mathcal{A}_{0\pm}^{\Delta \sigma} = \frac{1}{\gamma_1 (1 - x)} \bigg[(\Delta \sigma \Delta \lambda) \bigg(1 + \frac{\beta_1^2 + \beta_2^2}{2} \bigg) - 2 \cos \Theta \\ &- (\Delta \sigma \Delta \lambda) (\beta_2^2 - \beta_1^2) x + 2x \cos \Theta - (\Delta \sigma \Delta \lambda) \bigg(1 - \frac{\beta_1^2 + \beta_2^2}{2} \bigg) x^2 \bigg] \\ \Delta \lambda &= 0 : \ \mathcal{A}_{\pm \pm}^{\Delta \sigma} = -(1 - \beta_1 \beta_2) \cos \Theta - \lambda_1 \Delta \sigma (1 + \beta_1 \beta_2) x , \\ \Delta \lambda &= 0 : \ \mathcal{A}_{00}^{\Delta \sigma} = 2\gamma_1 \gamma_2 \cos \Theta \bigg[((1 - x)\beta_1 + (1 + x)\beta_2) \sqrt{\frac{\beta_1 \beta_2}{1 - x^2}} - (1 + \beta_1^2 \beta_2^2) \bigg] \end{split}$$

- * i.e. we broke the calculation up into the amplitude for qq(or gg -> H) -> ZZ for each choice of Z helicity
- * and the amplitude for Zs of a given helicity to decay to a fermion of specified helicity and angles in the Z rest frame
 1108.2274

$$\begin{split} \Delta \lambda &= \pm 2 : \ \mathcal{A}_{\pm \mp}^{\Delta \sigma} = -\sqrt{2} (1 + \beta_1 \beta_2) , \\ \Delta \lambda &= \pm 1 : \ \mathcal{A}_{\pm 0}^{\Delta \sigma} = \frac{1}{\gamma_2 (1 + x)} \bigg[(\Delta \sigma \Delta \lambda) \bigg(1 + \frac{\beta_1^2 + \beta_2^2}{2} \bigg) - 2 \cos \Theta \\ &- (\Delta \sigma \Delta \lambda) (\beta_2^2 - \beta_1^2) x - 2x \cos \Theta - (\Delta \sigma \Delta \lambda) \bigg(1 - \frac{\beta_1^2 + \beta_2^2}{2} \bigg) x^2 \bigg] \\ &: \ \mathcal{A}_{0\pm}^{\Delta \sigma} = \frac{1}{\gamma_1 (1 - x)} \bigg[(\Delta \sigma \Delta \lambda) \bigg(1 + \frac{\beta_1^2 + \beta_2^2}{2} \bigg) - 2 \cos \Theta \\ &- (\Delta \sigma \Delta \lambda) (\beta_2^2 - \beta_1^2) x + 2x \cos \Theta - (\Delta \sigma \Delta \lambda) \bigg(1 - \frac{\beta_1^2 + \beta_2^2}{2} \bigg) x^2 \bigg] \\ \Delta \lambda &= 0 : \ \mathcal{A}_{\pm \pm}^{\Delta \sigma} = -(1 - \beta_1 \beta_2) \cos \Theta - \lambda_1 \Delta \sigma (1 + \beta_1 \beta_2) x , \\ \Delta \lambda &= 0 : \ \mathcal{A}_{00}^{\Delta \sigma} = 2\gamma_1 \gamma_2 \cos \Theta \bigg[((1 - x)\beta_1 + (1 + x)\beta_2) \sqrt{\frac{\beta_1 \beta_2}{1 - x^2}} - (1 + \beta_1^2 \beta_2^2) \bigg] \end{split}$$

* Values shown are for general M₁, M₂
 (Zs not necessarily on-shell)

(Hagiwara, Hikasa, Peccei, Zeppenfeld, 1986)

TABLE 8

Coefficients for the helicity amplitudes for the processes

 $e^+e^- \rightarrow ZZ$ and $e^+e^- \rightarrow Z\gamma$

Δλ	$(\lambda_1\lambda_2)$	$\mathscr{A}_{\lambda_1\lambda_2}$	$\mathscr{B}_{\lambda_1\lambda_2}$
± 2	(±Ŧ)	$-\sqrt{2}(1+\beta^2)$	$\sqrt{2}$
±1	(± 0)	$\gamma^{-1}[\Delta\sigma\cdot\Delta\lambda(1+\beta^2)-2\cos\Theta]$	
±1	$(0 \pm)$	$\gamma^{-1}[\Delta\sigma\cdot\Delta\lambda(1+\beta^2)-2\cos\Theta]$	$2r(\cos\Theta + \Delta\sigma \cdot \lambda_2)$
0	$(\pm \pm)$	$-\gamma^{2}\cos\Theta$	$r^2(\cos\Theta + \Delta\sigma\cdot\lambda_2)$
0	(00)	$-2\gamma^2\cos\Theta$	

K The on-shell limit of our expressions reproduces the above results

* In high energy limit +- and -+ dominate

* All amplitudes are, in general, non-vanishing

(Hagiwara, Hikasa, Peccei, Zeppenfeld, 1986)

TABLE 8

Coefficients for the helicity amplitudes for the processes

 $e^+e^- \rightarrow ZZ$ and $e^+e^- \rightarrow Z\gamma$

Δλ	$(\lambda_1 \lambda_2)$	$\mathcal{A}_{\lambda_1\lambda_2}$	$\mathscr{B}_{\lambda_1\lambda_2}$
± 2	(±Ŧ)	$-\sqrt{2}(1+\beta^2)$	$\sqrt{2}$
±1	(± 0)	$\gamma^{-1}[\Delta\sigma\cdot\Delta\lambda(1+\beta^2)-2\cos\Theta]$	
<u>+1</u>	$(0 \pm)$	$\gamma^{-1}[\Delta\sigma\cdot\Delta\lambda(1+\beta^2)-2\cos\Theta]$	$2r(\cos\Theta + \Delta\sigma \cdot \lambda_2)$
0	$(\pm \pm)$	$-\gamma^{2}\cos\Theta$	$r^2(\cos\Theta + \Delta\sigma\cdot\lambda_2)$
0	(00)	$-2\gamma^2\cos\Theta$	100 1000000000 000000 1000000

For signal, only ++, --, and 00 are non-zero
(due to spin-zero nature of Higgs)

* 00 dominates in high energy limit

(Hagiwara, Hikasa, Peccei, Zeppenfeld, 1986)

TABLE 8

Coefficients for the helicity amplitudes for the processes

 $e^+e^- \rightarrow ZZ$ and $e^+e^- \rightarrow Z\gamma$

Δλ	$(\lambda_1 \lambda_2)$	$\mathscr{A}_{\lambda_1\lambda_2}$	$\mathscr{B}_{\lambda_1\lambda_2}$
± 2	(±Ŧ)	$-\sqrt{2}(1+\beta^2)$	$\sqrt{2}$
± 1	(± 0)	$\gamma^{-1}[\Delta\sigma\cdot\Delta\lambda(1+\beta^2)-2\cos\Theta]$	
<u>+1</u>	$(0 \pm)$	$\gamma^{-1}[\Delta\sigma\cdot\Delta\lambda(1+\beta^2)-2\cos\Theta]$	$2r(\cos\Theta + \Delta\sigma \cdot \lambda_2)$
0	$(\pm \pm)$	$-\gamma^{2}\cos\Theta$	$r^2(\cos\Theta + \Delta\sigma\cdot\lambda_2)$
0	(00)	$-2\gamma^2\cos\Theta$	100 - 10 2000/2002 (FUSION 506000)

 So additional ability to distinguish signal from background (beyond m₄₁) comes from differences in helicity amplitudes

Moving forward to July 2012...

Discovery Plots in 4 l

CMS-PAS-HIG-12-016

ATLAS-CONF-2012-092

*** Discovery!!!**

K S/B is in the 1-2 range.

Matrix Element Method/ MELA

CMS used MELA KD MELA = Matrix Element Likelihood Analysis KD = Kinematic Discriminant: ratio involving signal and background likelihoods Quantifies how "signal-like"

 Contours give expected distribution for background events

events are.

 $KD = P_s / (P_s + P_b)$

CMS-PAS-HIG-12-016

30

MELA

* Used analytic expressions for signal

 * POWHEG templates for background < 2 M_Z
 (at discovery time-- now use analytic expressions from Chen, Tran, and Vega-Morales (2012))

* Our analytic expressions (from 1108.2274) for background > 2 M_Z! * Success of MELA motivates the use of the MEM in experimental analyses

* Not always best to use totally analytic expressions for likelihoods

* Is there a safe (from bugs!), efficient way to develop codes for performing the Matrix Element Method in any given channel?

Progress in MC Simulation Tools

From Lagrangian to Events

- * There has been a major effort in the theory community toward the automatization and generalization of the MC tools
- Increasingly one can go automatically from Lagrangian to events
 (calculating matrix elements along the way) for an arbitrary model

From events to ... matrix elements

* The same chain of tools can be run in a different direction:

We can use standard tools to automatically generate code which finds the signal and background squared matrix elements.

Can be done for an arbitrary signal hypothesis and virtually any background
 34

From events to ... matrix elements

* MadWeight is an existing tool along these lines Wednesday, March 21, 2012

* Artoisenet, Mattelaer (2008)

Artoisenet, Lemaitre, Maltoni, Mattelaer (2010)

* Good for many processes, but currently cannot do H -> ZZ -> 4 ℓ

MEKD

- With members of the UF CMS group and Myeonghun Park, created a **publicly available** tool (MEKD) to calculate differential cross sections, etc. for performing the Matrix Element Method in the Golden Channel
- Using well-verified, publicly available packages to automatically generate the matrix-element calculating code
- With as many options/ features relevant to analyses involving the golden channel as possible.

M₂ is a very good variable, though the Matrix Element Method outperforms all single variable analyses

1210.0896

Why M₂ is a Good Variable

f₁₁ is SM Higgs 1310.1397 M₂ > 12 GeV from cuts, without cuts, would be singular in limit of massless leptons

Same Method: Different Physics

- * MEM increased sensitivity for high mass Higgs because of different ZZ helicity amplitudes
- * MEM increased sensitivity for lower (actual) Higgs mass because signal is ZZ* while background is $Z\gamma^*$
- In both cases, the driver of MVA sensitivity can be clearly related to physics
- * Interestingly, in each case different physics drives the sensitivity

Back to the Future...

Moving Forward: Motivation

- * Having discovered "a Higgs", we want to measure its properties, in particular its couplings to Z bosons
- **K Goal 1**: Be as general as possible (reduce model dependence)
- * **Goal 2**: Use as few parameters as possible (keep things manageable)
- * To provide a useful framework for presenting experimental results, projections, etc.
 1304.4936

Preliminaries

 \star We consider a scalar, X, which is a linear combination of CP eigenstates H (0^+) and A (0^-) $X \equiv H\cos\alpha + A\sin\alpha$ ***** In general, X is not a CP eigenstate $\times \alpha = 0$ corresponds to pure 0+ $\star \alpha = \pi/2$ corresponds to pure 0- \star We assume that the other mass eigenstate is heavy and can be ignored 1304.4936

Effective Theory

 We write down general CP-conserving couplings of the H and the A to two Z's (CP violation will come from mixing)

$$\mathcal{L} \ni -\frac{M_Z^2}{v} H Z^{\mu} \hat{f}^{(H)}_{\mu\nu} Z^{\nu} - \frac{1}{2} H F^{\mu\nu} \hat{f}^{(H)}_{\mu\nu\rho\sigma} F^{\rho\sigma}$$
$$-\frac{1}{2} A F^{\mu\nu} \hat{f}^{(A)}_{\mu\nu\rho\sigma} F^{\rho\sigma}$$

The *f* are form factors which generate operators with different symmetry properties.

1304.4936

Form Factors

 \star CP even couplings which must violate gauge

$$\hat{f}_{\mu\nu}^{(H)} \equiv g_1 g_{\mu\nu} + \frac{g_5}{\Lambda^2} \left(\vec{\partial}_{\mu} \vec{\partial}_{\nu} + g_{\mu\nu} \vec{\partial}^{\rho} \vec{\partial}_{\rho} \right) + \frac{g_6}{\Lambda^2} g_{\mu\nu} \left(\vec{\Box} + \vec{\Box} \right) + \mathcal{O} \left(\frac{1}{\Lambda^4} \right)$$

* CP even couplings which may preserve gauge invariance (1)

$$\hat{f}^{(H)}_{\mu\nu\rho\sigma} \equiv \frac{g_2}{\Lambda} g_{\mu\rho} g_{\nu\sigma} + \frac{g_3}{\Lambda^3} g_{\mu\rho} \partial_{\nu} \partial_{\sigma} + \mathcal{O}\left(\frac{1}{\Lambda^5}\right)$$

* CP Odd Couplings (which preserve gauge invariance)

$$\hat{f}_{\mu\nu\rho\sigma}^{(A)} = \frac{g_4}{\Lambda} \varepsilon_{\mu\nu\rho\sigma} + \mathcal{O}\left(\frac{1}{\Lambda^5}\right)_{44}$$

1304.4936

Couplings

Keeping only the lowest dimensional terms from each of the three form factors we obtain the following Lagrangian for the coupling of the mass eigenstate X to two Z bosons.

$$\mathcal{L} = X \left[\kappa_1 \frac{m_Z^2}{v} Z_\mu Z^\mu + \frac{\kappa_2}{2v} F_{\mu\nu} F^{\mu\nu} + \frac{\kappa_3}{2v} F_{\mu\nu} \tilde{F}^{\mu\nu} \right]$$

Content of the amplitude of the ampli

$$A(X \to V_1 V_2) = v^{-1} \epsilon_1^{*\mu} \epsilon_2^{*\nu} \left(a_1 g_{\mu\nu} m_X^2 + a_2 q_\mu q_\nu + a_3 \epsilon_{\mu\nu\alpha\beta} q_1^{\alpha} q_2^{\beta} \right)$$

Gao, Gritsan, Guo, Melnikov, Schulze, Tran (2010) De Rújula, Lykken, Pierini, Rogan, Spiropulu (2010) Bolognesi, Gao, Gritsan, Melnikov, Schulze, Tran, Whitbeck (2012) **1304.4936** 45

Keeping it Real

- Lagrangians must be real, so the κ's must be real
- The amplitude receives corrections from loops
 - ★ Contributions from heavy particle loops are real
 - ★ Contributions from light particle loops are complex
 - These complex contributions can be mimicked with complex \varkappa 's

1304.4936

Real or Complex? That is the Question

 χ_3

22

- * Lagrangians must be real, so the \varkappa 's must be real
- The amplitude receives corrections from loops
 - ★ Contributions from heavy particle loops are real
 - ★ Contributions from light particle loops are complex
 - These complex contributions can be mimicked with complex \varkappa 's

Generally these contributions are subdominant! (see 1310.1397) 1304.4936 47

 $0^+_{\rm m}$

XI

Rate Constraint

- $\times \text{ Consider } \varkappa_1, \varkappa_2, \varkappa_3 \text{ real}$
- Measured rate implies
 correlations among couplings
- * Defines an ellipsoidal"pancake" in z space
- Larger (smaller) total rate:
 pancake inflated (deflated),
 but shape stays the same
- Removes one degree of freedom
 1304.4936

$$\Gamma(X \to ZZ) = \Gamma_{SM} \sum_{i,j} \gamma_{ij} \kappa_i \kappa_j$$

Rate Constraint

- $\times \text{ Consider } \varkappa_1, \varkappa_2, \varkappa_3 \text{ real}$
- Measured rate implies
 correlations among couplings
- * Defines an ellipsoidal"pancake" in z space
- Larger (smaller) total rate:
 pancake inflated (deflated),
 but shape stays the same
- Helpful when maximizing likelihoods
 1304.4936

$$\Gamma(X \to ZZ) = \Gamma_{SM} \sum_{i,j} \gamma_{ij} \kappa_i \kappa_j$$

Parametrizing the Pancake 1

- * Different points on the pancake correspond to different admixtures of Higgs couplings, but constant rate
- * How should we parametrize the surface of the pancake?
- * One choice: spherical coordinates in \varkappa space

κ_1	=	$\kappa\sin\theta\cos\phi$
κ_2	=	$\kappa\sin\theta\sin\phi$
κ_3	=	$\kappa\cos heta$

Map of κ as function of θ and φ 1304.4936

Parametrizing the Pancake 2

- * Alternatively one can change variables to deform the pancake into an "equal rate sphere"
- ***** This involves a linear transformation:

Geolocating the Higgs

* Any given value of $(\varkappa_1, \varkappa_2, \varkappa_3)$, corresponding to a given rate, maps to a point on the sphere

Cuts and Efficiencies

- * If we use the values of γ_{ij} before cuts to construct our sphere, then we find significant variation in the acceptance x efficiency at different points on the sphere.
- Efficiency varies from $\sim 35\%$ to $\sim 55\%$
- $\begin{array}{l} \not \in \quad pT > 7 \ GeV \\ |\eta| < 2.5 \ for \ electrons \end{array}$
- * pT > 5 GeV $|\eta| < 2.4 \text{ for muons}$
- $\star \quad M_1 > 40 \text{ GeV}$
- $\# M_2 > 12 \text{ GeV}$

Cuts and Efficiencies

Example Analysis

- We illustrate the use of the sphere for displaying results with a toy analysis
- ***** We generate 1000 pseudoexperiments
 - 300 DF signal events for each of 4 benchmark points (~300 fb⁻¹ at 14 TeV): three pure states and one completely mixed state
 - * Impose cuts (p_T, $|\eta|$, M_{Z1}, M_{Z2})
 - Find the point on the sphere that maximizes the likelihood for each pseudoexperiment and plot
- 1304.4936

Example Analysis

Note: a point and its antipode are effectively equivalent 1304.4936
56

Other Spheres

$$\mathcal{L} = X \left[\kappa_1 \frac{m_Z^2}{v} Z_\mu Z^\mu + \frac{\kappa_2}{2v} F_{\mu\nu} F^{\mu\nu} + \frac{\kappa_3}{2v} F_{\mu\nu} \tilde{F}^{\mu\nu} \right]$$

* Scenario 1: $\varkappa_1 = 0$. \varkappa_2 and \varkappa_3 arbitrary and complex. Coupling can be gauge invariant. Example: X is SM singlet.

Scenario 2: $\varkappa_2 = 0$. Mixing of SM scalar and pseudoscalar.

Scenario 3: $\varkappa_3 = 0$. Arbitrary CP-even scalar. **1304.4936** 57

Example: Scenario 2

Now we allow $\varkappa 1$, $\varkappa 3$ to be complex X

$$\mathcal{L} = X \left[\kappa_1 \frac{m_Z^2}{v} Z_\mu Z^\mu + \frac{\kappa_2}{2v} F_{\mu\nu} F^{\mu\nu} + \frac{\kappa_3}{2v} F_{\mu\nu} \tilde{F}^{\mu\nu} \right]$$

- Degrees of freedom: 2 magnitudes and 2 phases
- One overall phase is irrelevant
- We can call relative phase ϕ_{13}
- Rate restricts overall magnitude of couplings
- Remaining degree of freedom is ratio of couplings 1304.4936 58

$$x_{13} = \frac{|\kappa_3|^2}{|\kappa_1|^2 + |\kappa_3|^2} = \sin^2 \theta_{13}$$

Geolocating Conclusions

- While many operators may affect the coupling of a scalar to bosons, it is reasonable to focus on three lowest dimensional operators from each class of couplings
- * Overall rate eliminates one degree of freedom
- * We propose the following scenarios all of which involve two degrees of freedom:
 - * Three real couplings (general mixture of $0^+_m, 0^+_h, 0^-$)

$$\star$$
 $\varkappa_1 = 0, \varkappa_2, \varkappa_3$ complex: θ_{23}, ϕ_{23}

* $\varkappa_2 = 0, \varkappa_1, \varkappa_3$ complex: θ_{13}, ϕ_{13}

Importance of Interference

- We saw from the above that it is important to
 look for the Higgs on the entire Earth, not just
 along the Prime Meridian or the Equator
- Interference effects between operators can
 increase sensitivity to non-SM couplings, give
 sensitivity to sign of couplings (relative to SM)
- If non-SM coupling are discovered, can study if there is one particle with e.g. scalar and pseudoscalar couplings, or two not-quite-degenerate CP-eigenstates.
 1310.1397

Greenwich, UK

Importance of Interference

* One thing we've found is that the M₂ distribution changes dramatically as we vary \varkappa_1 and \varkappa_2 due to the effect of interference:

Peak of M₂ distribution displays "first order phase transition" from μ₁-μ₂ interference, no such feature when considering μ₁ and μ₃ **1310.1397**

* Distribution (unit normalized on left) of M_2 due to pure \varkappa_i (f_{ii}) and from \varkappa_1 - \varkappa_2 interference (f₁₂)

* Note: f12 relatively large, negative.

$$\frac{d^2 \Gamma}{dM_{Z_1} dM_{Z_2}} = \frac{1}{v} \sum_{i,j} \kappa_i \kappa_j F_{ij}(M_{Z_1}, M_{Z_2}; M_X)$$

62

$\theta = \arctan(\varkappa_2/\varkappa_1)$

Projections

Projections

Brief Conclusions

- ★ "Golden" H → ZZ* → 4 ℓ useful channel both in Higgs discovery and in the measurement of Higgs properties
- * The Matrix Element Method has been useful for optimizing sensitivity in this channel. Physically transparent (for an MVA).
- ¥ I've described a public tool for golden channel analyses and presented a useful framework for the interpretation of results
- * Exciting times are also ahead as we measure the couplings of the Higgs!

Thanks!!!

backup slides

Expressions for change of variables

$$x_i = \sum_j O_{ij} \kappa_j$$

where $O_{21} = O_{31} = O_{32} = 0$ and

$$O_{1i} = \gamma_{1i} / \sqrt{\gamma_{11}}, \quad (i = 1, 2, 3)$$

$$O_{2i} = \frac{\gamma_{11} \gamma_{2i} - \gamma_{12} \gamma_{1i}}{\sqrt{(\gamma_{11} \gamma_{22} - \gamma_{12}^2) \gamma_{11}}}, \quad (i = 2, 3)$$

$$O_{33} = \sqrt{\det ||\gamma_{ij}|| / (\gamma_{11} \gamma_{22} - \gamma_{12}^2)}$$

More Mollweide

Top two and bottom left plots show \varkappa values on the sphere.

Rates for various processes

Process	γ_{11}	γ_{22}	γ_{33}	γ_{12}			
$X \to ZZ \ (DF)$	1	0.090	0.038	-0.250			
$X \to ZZ \ (SF)$	1	0.081	0.032	-0.243			
$X o \gamma \gamma$	0	1	1	0			
$X \to WW$	1	0.202	0.084	-0.379			
after cuts							
$X \to ZZ \ (DF)$	1	0.101	0.037	-0.277			

* Avoid variable efficiencies: use γ_{ij} after cuts

 $\label{eq:static_stat$

Matrix Element Method

* In particle physics, the likelihood/ probability function $P(\alpha, x)$ is the differential cross section

$$\begin{aligned} \mathcal{P}(\mathbf{p}_i^{\mathsf{vis}}|\alpha) &= \frac{1}{\sigma_\alpha} \int dx_1 dx_2 \, \frac{f_1(x_1) f_2(x_2)}{2s x_1 x_2} \\ &\times \left[\prod_{i \in \mathsf{final}} \int \frac{d^3 p_i}{(2\pi)^3 2E_i} \right] |M_\alpha(p_i)|^2 \prod_{i \in \mathsf{vis}} \delta(\mathbf{p}_i - \mathbf{p}_i^{\mathsf{vis}}) \end{aligned}$$

Only LO here: for extension to extra radiation/ NLO/ parton showers see Alwall, Freitas, Mattelaer (2010) Soper, Spannowsky (2011) (2012) Campbell, Giele, Williams (2012)² Campbell, Ellis, Giele, Williams (2013)