

arXiv:1310.8214 Submitted to PRL October 30, 2013

First Dark Matter Search Results from the LUX Detector

Karen Gibson Case Western Reserve University High Energy Seminar University of Virginia November 13, 2013

What do we know about dark matter?

It's mysterious

We have a lot of indirect evidence...

In rotation curves of elliptical galaxies...

In collisions of galaxies..

Use gravitational lensing to determine mass of clusters, while x-rays show hot gas and optical images show stars

1E 0657-56, Bullet cluster

CMB moments

We believe it makes up ~25% of our universe

quantum diaries.org

What **don't** we know about dark matter?

A lot!

Basic idea of WIMP direct detection experiments

- Look for WIMPs
 elastically recoiling off a heavy nucleus
 - Reduce all non-DM backgrounds to ~ 0
 - Remaining events
 ⇒ DM signal

WIMP direct detection in noble liquids

All recoils produce light and charge

Use light vs charge to discriminate nuclear and electronic recoils

E. Aprile et al., Phys. Rev. Lett. 97, 081302 (2006)

Noble Element Scintillation Technique (NEST)

P. Sorensen and C.E. Dahl, Phys. Rev. D 83, 063501 (2011)

Liquid xenon self-shielding

Make use of selfshielding to reduce external and internal backgrounds

The LUX Experiment

LUX collaboration

PI, Professor Research Associate

Graduate Student Graduate Student Graduate Student

Graduate Student

Graduate Student

Postdoc

DIOWII
Richard Gaitskell
Simon Fiorucci
Monica Pangilinan
Jeremy Chapman
David Malling
James Verbus
Samuel Chung Chan
Dongging Huang

Drown

Case Western

Thomas Shutt	PI, Professor
Dan Akerib	PI, Professor
Karen Gibson	Postdoc
Tomasz Biesiadzinski	Postdoc
Wing H To	Postdoc
Adam Bradley	Graduate Student
Patrick Phelps	Graduate Student
Chang Lee	Graduate Student
Kati Pech	Graduate Student

Imperial College London

Imperial College London Henrique Araujo PI, Reader Tim Sumner Professor Alastair Currie Postdoc Adam Bailey Graduate Student

Lawrence Berkeley + UC Berkeley

Weine Course Loss		
Bob Jacobsen	PI, Professor	
Murdock Gilchriese	Senior Scientist	
Kevin Lesko	Senior Scientist	
Carlos Hernandez Faham	Postdoc	
Victor Gehman	Scientist	
Mia Ihm	Graduate Student	

Staff Physicist

PI, Professor

Postdoc

Postdoc

Postdoc

Postdoc

Assistant Professor

Senior Researcher

Engineer

Adam Bernstein	PI, Leader of Adv. Detectors Group
Dennis Carr	Mechanical Technician
Kareem Kazkaz	Staff Physicist

LIP Coimbra

Isabel Lopes Jose Pinto da Cunha Vladimir Solovov Luiz de Viveiros Alexander Lindote Francisco Neves Claudio Silva

Peter Sorensen

John Bower

SD School of Mines

Xinhua Bai	PI, Professor
Tyler Liebsch	Graduate Student
Doug Tiedt	Graduate Student
-	

David Taylor

Project Engineer Mark Hanhardt Support Scientist

ĀМ Texas A&M

PI, Professor James White † Robert Webb PI. Professor Rachel Mannino Graduate Student Clement Sofka Graduate Student

UC Davis

LOHOL .	
Mani Tripathi	PI, Professor
Bob Svoboda	Professor
Richard Lander	Professor
Britt Holbrook	Senior Engineer
John Thomson	Senior Machinist
Ray Gerhard	Electronics Engineer
Aaron Manalaysay	Postdoc
Matthew Szydagis	Postdoc
Richard Ott	Postdoc
Jeremy Mock	Graduate Student
James Morad	Graduate Student
Nick Walsh	Graduate Student
Michael Woods	Graduate Student
Sergey Uvarov	Graduate Student
Brian Lenardo	Graduate Student

UC Santa Barbara

Chamkaur Ghag

Lea Reichhart

- CONTROL	
Harry Nelson	PI, Professor
Mike Witherell	Professor
Dean White	Engineer
Susanne Kyre	Engineer
Carmen Carmona	Postdoc
Curt Nehrkorn	Graduate Student
Scott Haselschwardt	Graduate Student

PI, Lecturer
Postdoc

University of Edinburgh

Alex Murphy PI, Reader Paolo Beltrame Research Fellow James Dobson Postdoc

University of Maryland

Carter Hall

Attila Dobi

Jon Balaithy

PI, Professor Graduate Student **Richard Knoche** Graduate Student Graduate Student

Frank Wolfs PI, Professor Wojtek Skutski Senior Scientist Eryk Druszkiewicz Graduate Student Mongkol Moongweluwan Graduate Student

U. University of South Dakota

Dongming Mei PI, Professor Chao Zhang Postdoc Angela Chiller Graduate Student Chris Chiller Graduate Student Dana Byram *Now at SDSTA

Daniel McKinsey PI, Professor Peter Parker Professor Sidney Cahn Lecturer/Research Scientist Ethan Bernard Postdoc Markus Horn Postdoc Blair Edwards Postdoc Scott Hertel Postdoc Kevin O'Sullivan Postdoc Nicole Larsen Graduate Student Graduate Student Evan Pease Brian Tennyson Graduate Student Ariana Hackenburg Graduate Student Elizabeth Boulton Graduate Student

Sanford Underground Research Facility (SURF)

Former Homestake gold mine - repurposed as a "science mine"

LUX at SURF

 $55.2 \text{ m}^{-2}\text{s}^{-1} \rightarrow 1 \times 10^{-5} \text{ m}^{-2}\text{s}^{-1}$

LUX in the Davis Campus

LUX Detector

D. S. Akerib et al, Nucl. Instrum. Meth. A 704, 111-126 (2013)

Cryostat

Water Shield

300 T de-ionized water shield, 20' high, 25' diameter SS tank to reduce cavern & cosmogenic backgrounds

Instrumented with 20 Hamamatsu R7081 10" diameter PMTs for veto of coincident NR candidates

Detector calibration

²⁴¹AmBe, ²⁵²Cf Internal sources: ^{83m}Kr, ³H

Due to self-shielding of LXe, internal sources preferable! ²³

LUX - A TPC at heart

Read out light signals, corresponding to both initial scintillation (S1) and electroluminescence (S2)

WIMP search data

Underground operation since January, 2013

^{83m}Kr gas events injected into gas circulation line, 1.8 hr half life

Data collection

Data-taking April 21 - August 8, 2013, 85 live days Non-blind analysis!

Event selection

Requirements for WIMP search candidate eventsS2 trigger (at least 2 trigger ch. ≥ 8 phe within 2 μ s)2 phe (2-fold coincidence) ≤ S1 ≤ 30 phe200 phe (8 e-) ≤ S2 ≤ 3300 phetotal area of other pulses in the event < 100 phe</td>

Position reconstruction

Fiducial volume

Define fiducial volume r < 18 cm, 7 < z < 47 cm, corresponding to 118 kg fiducial mass

Use S1 signal as energy scale

Parameterize ER and NR energies as a function of S1 size using NEST

²⁴¹AmBe & ²⁵²Cf calibration

WIMP search data

Efficiency of pulse finding and selection

Several independent estimates of total efficiency

We find good agreement between the data and simulation-estimated efficiencies.

D.S. Akerib et al., Nucl. Instr. Meth. A 675, 63 (2012)

The Likelihood

Use an extended likelihood

$$\mathcal{L}_{WS} = \frac{e^{-N_s - N_{Compt} - N_{Xe-127} - N_{Rn222}}}{\mathcal{N}!} \prod_{i=1}^{\mathcal{N}} N_s P_s(\boldsymbol{x}; \boldsymbol{\sigma}, \boldsymbol{\theta_s}) + N_{Compt} P_{ER}(\boldsymbol{x}; \boldsymbol{\theta_{Compt}}) + N_{Xe-127} P_{ER}(\boldsymbol{x}; \boldsymbol{\theta_{Xe-127}}) + N_{Rn} P_{ER}(\boldsymbol{x}; \boldsymbol{\theta_{Rn}})$$

Parameter of interest: Ns

Nuisance parameters: N_{Compt}, N_{Xe-127}, N_{Rn/Kr-85}

Gaussian constrain to within 30% of the predicted rates

Predicted WIMP scattering

Velocity of solar system in the galaxy: $v_0 = 220$ km/s Velocity of earth around the sun: $v_E = 245$ km/s Galactic escape velocity: $v_{esc} = 544$ km/s Local dark matter density: $\rho = 0.3$ GeV/c²/cm³

WIMP signal model

Use simulation in final model of WIMP signal

Radioactive materials background

Tune simulation to match observed high-energy backgrounds

44

Radioactive materials model

Predict 129 events in WIMP search data

¹²⁷Xe Background

Electron capture from S-wave orbital, $p+e^- \rightarrow n+v_e$

¹²⁷Xe model

²¹⁴Pb/⁸⁵Kr background

Predict 10 events in WIMP search region

Estimated background rates

Background Component	Source	10 ⁻³ [evts/keVee/kg/day]
Gamma-rays	Internal Components including PMTS (80%), Cryostat, Teflon	1.8±0.2 _{stat} ±0.3 _{sys}
¹²⁷ Xe (36.4 day half-life)	Cosmogenic 0.87 -> 0.28 during run	$0.5 \pm 0.02_{stat} \pm 0.1_{sys}$
²¹⁴ Pb	222Rn	0.11-0.22 _(90% CL)
⁸⁵ Kr	Reduced from 130 ppb to 3.5±1 ppt	0.13±0.07 _{sys}
Predicted	Total	$2.6\pm0.2_{stat}\pm0.4_{sys}$
Observed	Total	3.1±0.2 _{stat}

Comparison of low energy data with predictions

Calculation of the upper limit

Set frequentist one-sided upper limit

Use profile likelihood ratio as test statistic

Generate pseudo-experiments for σ_{test} , compare the value of test statistic in data with the value of $q_{\sigma,i}$ from each pseudo-experiment

Set one-sided limit, so if $(\sigma-hat)_i > \sigma_{test}$, $q_{\sigma,i} = 0$

Hypothesis tests

First WIMP search results!

Null hypothesis test

Observe null p-value of 34% at 33 GeV/c², corresponding to 0.4σ significance

Discussion

"Sub-threshold" fluctuations

Systematic uncertainty on NR discrimination

We adjust the mean and width of the data (red) to match simulation (blue) and adjust NEST predictions by the same amount, treat shift in UL as a systematic uncertainty

Find systematic shift of ~25% higher in the UL

to Xenon100

Improved light collection with respect to Xenon100

Race to the bottom...

Back-up

Table of events after selection requirements

Cut	Events Remaining
all triggers	83,673,413
detector stability	82,918,902
single scatter	6,585,686
S1 energy $(2 - 30 \text{ phe})$	26,824
S2 energy (200 - 3300 phe)	20,989
single electron background	19,796
fiducial volume	160

Validation of charge yield in simulation

⁸³Kr source data

NEST - NR recoils

NEST - ER recoils

Surface commissioning - light collection

Obtain 8 phe/keV from a 662 keV γ (¹³⁷Cs source) at zero field \Rightarrow more than 2.5 times the value reported by Xenon100!

Surface commissioning - simulation tuned to data

Simulation reproduces the resolution of the S1 energy distribution!

By tuning simulation to multiple sources, we extract: PTFE reflectivity = $100^{+0}-2\%$ photoabsorption length = $11^{+2}-1$ m

⁸⁵Kr removal

Use gas chromatography to remove Kr charcoal He Xe Kr

⁸⁵Kr is a "naked" beta emitter with half-life of 10.7 yrs

Use He as a carrier gas to pass the "dirty" xenon (100 ppb Kr contamination) through charcoal column - Xe 20 times "stickier" than Kr in charcoal

Goal: < 5 ppt Kr

Improvements in S2 threshold

50% AmBe source NR discrimination

Mean "discrimination" at 50% NR acceptance (AmBe) of 99.6% between [2,30] phe

LZ detector

LZ projections

Mean free path length in LXe

PMT light response functions

Radial LRF