Theory of Resonant X-Ray Scattering with Applications to high-Tc Cuprates

David Benjamin (Harvard), Eugene Demler (Harvard), Peter Abbamonte (Illinois), Israel Klich (UVA), Dmitry Abanin (Perimeter)

November 7, 2013

- Introduction
- REXS data
- Model
- Results
- Formalism
- RIXS results and data

- Photon knocks core electron to valence band at \mathbf{R}_{m}.

- Photon knocks core electron to valence band at \mathbf{R}_{m}.
- Things happen (optional)

Resonant x-ray scattering

- Photon knocks core electron to valence band at \mathbf{R}_{m}.
- Things happen (optional)
- Electron fills core hole at \mathbf{R}_{m}.

Resonant x-ray scattering

where incident photon is $\mathbf{k}_{i}, \omega, 1 / \Gamma$ is core hole lifetime and $H_{m}=H_{0}+$ core hole potential at \mathbf{R}_{m}, and outgoing photon is $\mathbf{k}_{f}, \omega-\Delta \omega$.

where incident photon is $\mathbf{k}_{i}, \omega, 1 / \Gamma$ is core hole lifetime and $H_{m}=H_{0}+$ core hole potential at \mathbf{R}_{m}, and outgoing photon is $\mathbf{k}_{f}, \omega-\Delta \omega$.

where incident photon is $\mathbf{k}_{i}, \omega, 1 / \Gamma$ is core hole lifetime and $H_{m}=H_{0}+$ core hole potential at \mathbf{R}_{m}, and outgoing photon is $\mathbf{k}_{f}, \omega-\Delta \omega$.

- Photon knocks core electron to valence band.
- CDW elastically scatters electron, imparts momentum $\mathrm{Q}_{\mathrm{CDW}}$.
- Electron re-fills core hole, emitting photon.
- Enormously sensitive to valence electrons only.

- Photon knocks core electron to valence band.
- CDW elastically scatters electron, imparts momentum $\mathbf{Q}_{\mathrm{CDW}}$.
- Electron re-fills core hole, emitting photon.
- Enormously sensitive to valence electrons only.

REXS: "valence-selective diffraction"

$$
A_{i \rightarrow i}=\sum_{m} e^{i\left(\mathbf{k}_{f}-\mathbf{k}_{i}\right) \cdot \mathbf{R}_{m}}\langle i| d_{m} \underbrace{\left(\omega+H_{m}-E_{i}+i \Gamma\right)^{-1}}_{\text {resonance }} d_{m}^{\dagger}|i\rangle
$$

Questions

- What does ω-dependence mean?
- What microscopic model describes cuprate REXS?

REXS: "valence-selective diffraction"

$$
A_{i \rightarrow i}=\sum_{m} e^{i\left(\mathbf{k}_{f}-\mathbf{k}_{i}\right) \cdot \mathbf{R}_{m}}\langle i| d_{m} \underbrace{\left(\omega+H_{m}-E_{i}+i \Gamma\right)^{-1}}_{\text {resonance }} d_{m}^{\dagger}|i\rangle
$$

Questions

- What does ω-dependence mean?
- What microscopic model describes cuprate REXS?

Two-peak spectrum in cuprate REXS

Figure: REXS of LBCO $(\mathbf{x}=1 / 8)$ at $\Delta \mathbf{q}=\mathbf{Q}_{\mathrm{CDW}}=(2 \pi / 4,0,0)$.

Two-peak spectrum in cuprate REXS

Figure: REXS of LBCO $(\mathrm{x}=1 / 8)$ at $\Delta \mathbf{q}=\mathbf{Q}_{\mathrm{CDW}}=(2 \pi / 4,0,0)$.

Questions

- What does ω-dependence mean? Why two peaks?
- What microscopic model describes cuprate REXS? Are quasiparticles enough?

Mott interpretation of two peaks in cuprate REXS

Mott interpretation of two peaks in cuprate REXS

Problems with Mott interpretation

- Peak separation of 1.5 eV is too small for Hubbard gap.
- If second peak is Mott, it should be strong at Cu edge and weak at O edge.

A simple model agrees with experimental data

Results of a simple quasiparticle model:

$$
H_{m}=\underbrace{\sum_{\mathbf{k}} \xi_{\mathbf{k}} d_{\mathbf{k}}^{\dagger} d_{\mathbf{k}}}_{\text {band structure }}+\underbrace{V \sum_{\mathbf{k}}\left(d_{\mathbf{k}+\mathbf{Q}}^{\dagger} d_{\mathbf{k}}+d_{\mathbf{k}}^{\dagger} d_{\mathbf{k}+\mathbf{Q}}\right)}_{\text {mean-field CDW }}+\underbrace{V_{c} d_{m}^{\dagger} d_{m}}_{\text {core hole potential }}
$$

Band structure explains the two peaks

- Elastic scattering $|\mathbf{k}\rangle \rightarrow\left|\mathbf{k}+\mathbf{Q}_{C D W}\right\rangle$ needs $\xi_{\mathbf{k}} \approx \xi_{\mathbf{k}+\mathbf{Q}}$.
- Nesting of surface $\xi_{\mathbf{k}}=E$ yields peak at $\omega=E$.
- Contours tangent to degenerate lines $k_{x}= \pm(\pi-Q / 2)$, $k_{x}= \pm Q / 2$ are nested.

Long-lived quasiparticles

- Peaks are broadened by core hole and quasiparticle decay.
- 1 /width gives lower bound for quasiparticle lifetime.
- Narrow high-energy peak implies long-lived quasiparticles!
- Complements magnetic oscillations and DMFT (PRL 110, 086401)

REXS Formalism

$$
\begin{aligned}
A_{i \rightarrow i} & =\sum_{m} e^{i\left(\mathbf{k}_{f}-\mathbf{k}_{i}\right) \cdot \mathbf{R}_{m}}\langle i| d_{m}\left(\omega+H_{m}-E_{i}+i \Gamma\right)^{-1} d_{m}^{\dagger}|i\rangle \\
& =\int_{0}^{\infty} d t e^{(i \omega-\Gamma) t} \sum_{m} e^{i \mathbf{Q}_{C D W} \cdot \mathbf{R}_{m}} \underbrace{\langle i| d_{m} e^{-i H_{m} t} d_{m}^{\dagger} e^{-i H_{0} t}|i\rangle}_{S_{m}(t)}
\end{aligned}
$$

$=$ Fourier transform of a history: excite, propagate, de-excite

$$
\begin{aligned}
S_{m}(t)= & \langle i| d_{m} e^{-i H_{m} t} d_{m}^{\dagger} e^{-i H_{0} t}|i\rangle \\
= & \underbrace{\operatorname{det}\left((1-N)+U_{m}(t) N\right)^{2}}_{\text {Fermi sea }} \underbrace{\langle m|\left(\frac{N}{1-N}+U_{m}^{-1}(t)\right)^{-1}|m\rangle}_{\text {photoexcited electron }}, \\
& N \equiv\left(1+\exp \left(\beta h_{0}\right)\right)^{-1}, \quad U_{m}(t) \equiv e^{-i h_{m} t} e^{i h_{0} t}
\end{aligned}
$$

- Typo? No, $H_{m, 0}=d_{i}^{\dagger}\left(h_{m, 0}\right)_{i j} d_{j}$!
- N : single-particle Fermi sea occupation
- U_{m} single-particle time-evolution with core hole at \mathbf{R}_{m}
- det: device for matrix elements of Slater determinant state
- $\operatorname{det}()^{2}$: one Fermi sea for each spin
- $(1-N)+U_{m}(t) N$: time-evolve only occupied states.
- $|m\rangle$ Wannier orbital at \mathbf{R}_{m}.
- $\langle m||m\rangle$: Propagator $\langle m| U_{m}(t)|m\rangle$ for $N=0$, Pauli-blocking 0 for $N=1$.

$$
\begin{aligned}
S_{m}(t)= & \langle i| d_{m} e^{-i H_{m} t} d_{m}^{\dagger} e^{-i H_{0} t}|i\rangle \\
= & \underbrace{\operatorname{det}\left((1-N)+U_{m}(t) N\right)^{2}}_{\text {Fermi sea }} \underbrace{\langle m|\left(\frac{N}{1-N}+U_{m}^{-1}(t)\right)^{-1}|m\rangle}_{\text {photoexcited electron }}, \\
& N \equiv\left(1+\exp \left(\beta h_{0}\right)\right)^{-1}, \quad U_{m}(t) \equiv e^{-i h_{m} t} e^{i h_{0} t}
\end{aligned}
$$

- Typo? No, $H_{m, 0}=d_{i}^{\dagger}\left(h_{m, 0}\right)_{i j} d_{j}$!
- N : single-particle Fermi sea occupation
- U_{m} single-particle time-evolution with core hole at \mathbf{R}_{m}
- det: device for matrix elements of Slater determinant state
- $\operatorname{det}()^{2}$: one Fermi sea for each spin
- $(1-N)+U_{m}(t) N$: time-evolve only occupied states.
- $|m\rangle$ Wannier orbital at \mathbf{R}_{m}.
- $\langle m||m\rangle$: Propagator $\langle m| U_{m}(t)|m\rangle$ for $N=0$, Pauli-blocking 0 for $N=1$.

$$
\begin{aligned}
S_{m}(t)= & \langle i| d_{m} e^{-i H_{m} t} d_{m}^{\dagger} e^{-i H_{0} t}|i\rangle \\
= & \underbrace{\operatorname{det}\left((1-N)+U_{m}(t) N\right)^{2}}_{\text {Fermi sea }} \underbrace{\langle m|\left(\frac{N}{1-N}+U_{m}^{-1}(t)\right)^{-1}|m\rangle}_{\text {photoexcited electron }}, \\
& N \equiv\left(1+\exp \left(\beta h_{0}\right)\right)^{-1}, \quad U_{m}(t) \equiv e^{-i h_{m} t} e^{i h_{0} t}
\end{aligned}
$$

- Typo? No, $H_{m, 0}=d_{i}^{\dagger}\left(h_{m, 0}\right)_{i j} d_{j}$!
- N : single-particle Fermi sea occupation
- U_{m} single-particle time-evolution with core hole at \mathbf{R}_{m}
- det: device for matrix elements of Slater determinant state
- $\operatorname{det}()^{2}$: one Fermi sea for each spin
- $(1-N)+U_{m}(t) N$: time-evolve only occupied states.
- $|m\rangle$ Wannier orbital at \mathbf{R}_{m}.
- $\langle m||m\rangle$: Propagator $\langle m| U_{m}(t)|m\rangle$ for $N=0$, Pauli-blocking 0 for $N=1$.

$$
\begin{aligned}
S_{m}(t)= & \langle i| d_{m} e^{-i H_{m} t} d_{m}^{\dagger} e^{-i H_{0} t}|i\rangle \\
= & \underbrace{\operatorname{det}\left((1-N)+U_{m}(t) N\right)^{2}}_{\text {Fermi sea }} \underbrace{\langle m|\left(\frac{N}{1-N}+U_{m}^{-1}(t)\right)^{-1}|m\rangle}_{\text {photoexcited electron }}, \\
& N \equiv\left(1+\exp \left(\beta h_{0}\right)\right)^{-1}, \quad U_{m}(t) \equiv e^{-i h_{m} t} e^{i h_{0} t}
\end{aligned}
$$

- Typo? No, $H_{m, 0}=d_{i}^{\dagger}\left(h_{m, 0}\right)_{i j} d_{j}$!
- N : single-particle Fermi sea occupation
- U_{m} single-particle time-evolution with core hole at \mathbf{R}_{m}
- det: device for matrix elements of Slater determinant state
- $\operatorname{det}()^{2}$: one Fermi sea for each spin
- $(1-N)+U_{m}(t) N$: time-evolve only occupied states.
- $|m\rangle$ Wannier orbital at \mathbf{R}_{m}.
- $\langle m||m\rangle$: Propagator $\langle m| U_{m}(t)|m\rangle$ for $N=0$, Pauli-blocking 0 for $N=1$.

$$
\begin{aligned}
S_{m}(t)= & \langle i| d_{m} e^{-i H_{m} t} d_{m}^{\dagger} e^{-i H_{0} t}|i\rangle \\
= & \underbrace{\operatorname{det}\left((1-N)+U_{m}(t) N\right)^{2}}_{\text {Fermi sea }} \underbrace{\langle m|\left(\frac{N}{1-N}+U_{m}^{-1}(t)\right)^{-1}|m\rangle}_{\text {photoexcited electron }}, \\
& N \equiv\left(1+\exp \left(\beta h_{0}\right)\right)^{-1}, \quad U_{m}(t) \equiv e^{-i h_{m} t} e^{i h_{0} t}
\end{aligned}
$$

- Typo? No, $H_{m, 0}=d_{i}^{\dagger}\left(h_{m, 0}\right)_{i j} d_{j}$!
- N : single-particle Fermi sea occupation
- U_{m} single-particle time-evolution with core hole at \mathbf{R}_{m}
- det: device for matrix elements of Slater determinant state
- $\operatorname{det}()^{2}$: one Fermi sea for each spin
- $(1-N)+U_{m}(t) N$: time-evolve only occupied states.
- $|m\rangle$ Wannier orbital at \mathbf{R}_{m}.
- $\langle m||m\rangle$: Propagator $\langle m| U_{m}(t)|m\rangle$ for $N=0$, Pauli-blocking 0 for $N=1$.

Motivating the determinant formula

Consider $\left\langle e^{X}\right\rangle=\operatorname{tr}\left[e^{X} e^{-\beta H}\right] / \operatorname{tr}\left[e^{-\beta H}\right]$ for quadratic X, H.

- In basis where $X=\sum_{\alpha} \omega_{\alpha} \hat{n}_{\alpha}$

$$
\operatorname{tr}\left[e^{X}\right]=\prod_{\alpha} \sum_{n_{\alpha}=0,1} e^{n_{\alpha} \omega_{\alpha}}=\prod_{\alpha}\left(1+e^{\omega_{\alpha}}\right)=\operatorname{det}\left(1+e^{X}\right)
$$

Motivating the determinant formula

Consider $\left\langle e^{X}\right\rangle=\operatorname{tr}\left[e^{X} e^{-\beta H}\right] / \operatorname{tr}\left[e^{-\beta H}\right]$ for quadratic X, H.

- In basis where $X=\sum_{\alpha} \omega_{\alpha} \hat{n}_{\alpha}$

$$
\operatorname{tr}\left[e^{X}\right]=\prod_{\alpha} \sum_{n_{\alpha}=0,1} e^{n_{\alpha} \omega_{\alpha}}=\prod_{\alpha}\left(1+e^{\omega_{\alpha}}\right)=\operatorname{det}\left(1+e^{X}\right)
$$

- $\mathrm{BCH}: e^{X} e^{Y}=e^{Z}, Z$ quadratic, $\operatorname{tr}\left[e^{X} e^{Y}\right]=\operatorname{det}\left(1+e^{X} e^{Y}\right)$.

Motivating the determinant formula

Consider $\left\langle e^{X}\right\rangle=\operatorname{tr}\left[e^{X} e^{-\beta H}\right] / \operatorname{tr}\left[e^{-\beta H}\right]$ for quadratic X, H.

- In basis where $X=\sum_{\alpha} \omega_{\alpha} \hat{n}_{\alpha}$

$$
\operatorname{tr}\left[e^{X}\right]=\prod_{\alpha} \sum_{n_{\alpha}=0,1} e^{n_{\alpha} \omega_{\alpha}}=\prod_{\alpha}\left(1+e^{\omega_{\alpha}}\right)=\operatorname{det}\left(1+e^{X}\right)
$$

- BCH: $e^{X} e^{Y}=e^{Z}, Z$ quadratic, $\operatorname{tr}\left[e^{X} e^{Y}\right]=\operatorname{det}\left(1+e^{X} e^{Y}\right)$.
- Insertions: $\operatorname{tr}\left[d_{m}^{\dagger} d_{n} e^{Z}\right]=\sum_{\alpha, \beta}\langle\alpha \mid n\rangle\langle m \mid \beta\rangle \operatorname{tr}\left[d_{\alpha}^{\dagger} d_{\beta} e^{Z}\right]=$

$$
\sum_{\alpha}\langle m \mid \alpha\rangle\langle\alpha \mid n\rangle \operatorname{tr}\left[\hat{n}_{\alpha} e^{Z}\right]=\sum_{\alpha}\langle m \mid \alpha\rangle\langle\alpha \mid n\rangle \prod_{\gamma \neq \alpha}(1+
$$

$$
\left.e^{\omega_{\gamma}}\right) \sum_{n_{\alpha}=0,1} n_{\alpha} e^{n_{\alpha} \omega_{\alpha}}=\sum_{\alpha}\langle m \mid \alpha\rangle\langle\alpha \mid n\rangle \frac{\operatorname{det}\left(1+e^{Z}\right)}{1+e^{\omega_{\alpha}}} e^{\omega_{\alpha}}=
$$

$$
\sum_{\alpha}\langle m| \frac{e^{Z}}{1+e^{Z}}|\alpha\rangle\langle\alpha \mid n\rangle \operatorname{det}\left(1+e^{Z}\right)=
$$

$$
\langle m| \frac{e^{Z}}{1+e^{Z}}|n\rangle \operatorname{det}\left(1+e^{Z}\right)
$$

Summary of REXS

Questions

- What does ω-dependence mean? Why two peaks?
- What microscopic model describes cuprate REXS? Are quasiparticles enough?

Answers

- Band structure explains everything, core hole improve quantitative agreement, and high-energy quasiparticles are surprisingly well-defined!
- DMFT long-lived quasiparticles: PRL 110, 086401

RIXS Formalism

$$
A_{i \rightarrow f}=\sum_{m, \sigma} e^{i\left(\mathbf{k}_{f}-\mathbf{k}_{i}\right) \cdot \mathbf{R}_{m}}\langle f| d_{m, \sigma \text { OR } \bar{\sigma}}\left(\omega+H_{m}-E_{i}+i \Gamma\right)^{-1} d_{m, \sigma}^{\dagger}|i\rangle
$$

- Due to spin-orbit of core level, spin-flip is possible
- Polarized incoming beam can select either spin-flip or non-spin-flip.

As in REXS we have the Fourier transform of a history:
$I \propto \int_{-\infty}^{\infty} d s \int_{0}^{\infty} d t \int_{0}^{\infty} d \tau e^{i \omega(t-\tau)-i s \Delta \omega-\Gamma(t+\tau)} \sum_{m n} e^{i \mathbf{Q} \cdot\left(\mathbf{R}_{m}-\mathbf{R}_{n}\right)} \chi_{\rho \sigma} \chi_{\mu \nu} S_{\rho \sigma \mu \nu}^{m n}$,

RIXS Formalism

As in REXS we have the Fourier transform of a history:

$$
\begin{gathered}
I \propto \int_{-\infty}^{\infty} d s \int_{0}^{\infty} d t \int_{0}^{\infty} d \tau e^{i \omega(t-\tau)-i s \Delta \omega-\Gamma(t+\tau)} \sum_{m n} e^{i \mathbf{Q} \cdot\left(\mathbf{R}_{m}-\mathbf{R}_{n}\right)} \chi_{\rho \sigma} \chi_{\mu \nu} S_{\rho \sigma \mu \nu}^{m n}, \\
S_{\rho \sigma \mu \nu}^{m n}=\left\langle e^{i H \tau} d_{n \rho} e^{-i H_{n} \tau} d_{n \sigma}^{\dagger} e^{i H s} d_{m \mu} e^{i H_{m} t} d_{m \nu}^{\dagger} e^{-i H(t+s)}\right\rangle .
\end{gathered}
$$

- $\chi_{\alpha \beta}$: polarization-dependent balance between spin-flip and non-flip
- Forward and backward time "Keldysh" histories

RIXS Formalism

As in REXS we have the Fourier transform of a history:

$$
\begin{gathered}
I \propto \int_{-\infty}^{\infty} d s \int_{0}^{\infty} d t \int_{0}^{\infty} d \tau e^{i \omega(t-\tau)-i s \Delta \omega-\Gamma(t+\tau)} \sum_{m n} e^{i \mathbf{Q} \cdot\left(\mathbf{R}_{m}-\mathbf{R}_{n}\right)} \chi_{\rho \sigma} \chi_{\mu \nu} S_{\rho \sigma \mu \nu}^{m n}, \\
S_{\rho \sigma \mu \nu}^{m n}=\left\langle e^{i H \tau} d_{n \rho} e^{-i H_{n} \tau} d_{n \sigma}^{\dagger} e^{i H s} d_{m \mu} e^{i H_{m} t} d_{m \nu}^{\dagger} e^{-i H(t+s)}\right\rangle
\end{gathered}
$$

- $\chi_{\alpha \beta}$: polarization-dependent balance between spin-flip and non-flip
- Forward and backward time "Keldysh" histories

RIXS Formalism

As in REXS we have the Fourier transform of a history:

$$
\begin{gathered}
I \propto \int_{-\infty}^{\infty} d s \int_{0}^{\infty} d t \int_{0}^{\infty} d \tau e^{i \omega(t-\tau)-i s \Delta \omega-\Gamma(t+\tau)} \sum_{m n} e^{i \mathbf{Q} \cdot\left(\mathbf{R}_{m}-\mathbf{R}_{n}\right)} \chi_{\rho \sigma} \chi_{\mu \nu} S_{\rho \sigma \mu \nu}^{m n}, \\
S_{\rho \sigma \mu \nu}^{m n}=\left\langle e^{i H \tau} d_{n \rho} e^{-i H_{n} \tau} d_{n \sigma}^{\dagger} e^{i H s} d_{m \mu} e^{i H_{m} t} d_{m \nu}^{\dagger} e^{-i H(t+s)}\right\rangle
\end{gathered}
$$

- $\chi_{\alpha \beta}$: polarization-dependent balance between spin-flip and non-flip
- Forward and backward time "Keldysh" histories

As in REXS we have the Fourier transform of a history:

$$
\begin{aligned}
I & \propto \int_{-\infty}^{\infty} d s \int_{0}^{\infty} d t \int_{0}^{\infty} d \tau e^{i \omega(t-\tau)-i s \Delta \omega-\Gamma(t+\tau)} \sum_{m n} e^{i \mathbf{Q} \cdot\left(\mathbf{R}_{m}-\mathbf{R}_{n}\right)} \chi_{\rho \sigma} \chi_{\mu \nu} S_{\rho \sigma \mu \nu}^{m n} \\
& S_{\rho \sigma \mu \nu}^{m n}=\operatorname{det}(F)\left[\langle n \rho|(1-N) F^{-1} e^{-i h_{n} \tau}|n \sigma\rangle\right. \\
& \times\langle m \mu| e^{-i h_{0} s} e^{i h_{n} \tau}(1-N) F^{-1} U_{m n}|m \nu\rangle \\
& \left.+\langle n \rho|(1-N) F^{-1} U_{m n}|m \nu\rangle\langle m \mu| e^{i h_{m} t} U_{0} N F^{-1} e^{-i h_{n} \tau}|n \sigma\rangle\right]
\end{aligned}
$$

where $U_{m n}=e^{-i h_{n} \tau} e^{i h_{0} s} e^{i h_{m} t}$, and $U_{0}=e^{i(\tau-t-s) h_{0}}$, and $F=1-N+U_{m n} U_{0} N$.

Surprise: band structure yields dispersing peaks!

- left to right: doping

$$
x=0.15,0.25,0.40
$$

- bottom to top: momentum transfer

$$
\mathbf{Q}=0.17(\pi, 0) \ldots(\pi, 0)
$$

- each plot: intensity vs. energy transfer $0 \leq \Delta \omega \leq 1 \mathrm{eV}$ in spin-flip channel.
- blue and purple: core hole potential $U_{c}=0.0,-0.5 \mathrm{eV}$.

Surprise: band structure yields dispersing peaks!

Same energy, widths, long high-energy tail, and doping-insensitivty.

Figure: Bi-2212 data from Mark Dean et al, PRL 110,147001 (2013)

Surprise: core hole separates spin-flip from non-flip!

Can quasiparticles do this?

Figure: Bi-2212 spin-flip and non-flip channels from Mark Dean et al, PRL 110,147001 (2013)

Surprise: core hole separates spin-flip from non-flip!

Can quasiparticles do this?

Figure: Bi-2212 spin-flip and non-flip channels from Mark Dean et al, PRL 110,147001 (2013)

Yes.

Figure: Left: spin-flip lineshapes, right: non-flip lineshapes for core hole strengths $U_{c}=0.0,-0.25,-0.5$ eV .

Summary

RIXS

- Quasiparticles, core hole mimic magnon's lineshape!
- Relevant to "pairing glue."
- Spin flip insensitive to core hole. . . diagrammatics?

REXS

- Band structure
- Long-lived quasiparticles

Model

$$
\begin{equation*}
H=\sum_{\mathbf{k}} \xi_{\mathbf{k}} d_{\mathbf{k}}^{\dagger} d_{\mathbf{k}}+V \sum_{\mathbf{k}}\left(d_{\mathbf{k}+\mathbf{Q}}^{\dagger} d_{\mathbf{k}}+d_{\mathbf{k}}^{\dagger} d_{\mathbf{k}+\mathbf{Q}}\right)+V_{c} d_{j}^{\dagger} d_{j} \tag{1}
\end{equation*}
$$

$\xi_{\mathbf{k}}=-t\left(\cos k_{x}+\cos k_{y}\right)+4 t_{1} \cos k_{x} \cos k_{y}-2 t_{2}\left(\cos 2 k_{x}+\cos 2 k_{y}\right)$,

$$
\begin{equation*}
\langle g| \sum_{j} p_{j}^{\dagger} d_{j} e^{-i(\mathbf{k}+\mathbf{Q}) \cdot \mathbf{R}_{j}}|n\rangle \quad d_{\mathbf{k}+\mathbf{Q}}^{\dagger} d_{\mathbf{k}} \quad\langle n| \sum_{j} d_{j}^{\dagger} e^{i \mathbf{k} \cdot \mathbf{R}_{j}}|g\rangle \tag{2}
\end{equation*}
$$

Energy Domain to Time Domain

$$
\begin{align*}
& I(\omega, \mathbf{Q}) \propto\left|\sum_{j, n, \sigma} e^{-i \mathbf{Q} \cdot \mathbf{r}_{j}} \frac{\langle i| d_{j \sigma}|n\rangle\langle n| d_{j \sigma}^{\dagger}|i\rangle}{E_{i}-\tilde{E}_{n}^{N+1}+\omega+i \Gamma}\right|^{2} \\
& \left.=\left|\sum_{j \sigma} e^{-i \mathbf{Q} \cdot \mathbf{r}_{j}} \int_{0}^{\infty} e^{-(i \omega+\Gamma) t}\langle i| d_{j} e^{-i \mathcal{H}_{1}(j) t} d d_{j}^{\dagger} e^{-i \mathcal{H} \mathcal{H}_{0} t}\right| i\right\rangle\left. d t\right|^{2}, \tag{4}\\
& \sum_{n} \frac{|n\rangle\langle n| \ldots|i\rangle}{E_{i}-\tilde{E}_{n}^{N+1}+\omega+i \Gamma}=\sum_{n} \int_{0}^{\infty} e^{\left(E_{i}-\tilde{E}_{n}^{N+1}+\omega+i \Gamma\right) i t}|n\rangle\langle n| \ldots|i\rangle d t \tag{5}\\
& =\left.\int_{0}^{\infty} e^{i \omega-\Gamma t} e^{-i H_{j} t} \sum_{\pi}|n\rangle\langle |\right|^{1} \ldots e^{i H_{0} t}|i\rangle d t \tag{6}
\end{align*}
$$

Summary of REXS Experiments

- Abbamonte, Science (2002). REXS at O K resonance. Observed thin-film interference.
- Wilkins, PRL (2003). Magnetic REXS in manganites.
- Wilkins, PRL (2003) and Dhesi, PRL (2004). Orbital order in manganites.
- Abbamonte, Nature (2004). Hole crystal in $\mathrm{Sr}_{14} \mathrm{Cu}_{24} \mathrm{O}_{41}$.
- Abbamonte, Nature Physics (2005). First direct evidence of cuprate CDW. Proposed spatially-modulated Mottness to explain second peak. Related: Fink, PRB (2009) with LESCO.
- Schussler-Langeheine, PRL (2005); Nazarenko, PRL (2006); Herrero-Martin, PRB (2006); CDW in other correlated systems.
- Ghiringhelli, Science (2012). Incommensurate CDW in YBCO.

Why one can ignore interactions

Diagram

Contribution to REXS
does not contribute
contributes
elastic scattering
inelastic scattering
self-energy
in Words nestic scattring

Relation to Green's function

$$
\begin{equation*}
I_{\operatorname{REXS}}(\omega, \mathbf{Q}) \propto\left|\sum_{j, n} e^{-i \mathbf{Q} \cdot \mathbf{r}_{j}} \frac{\langle i| d_{j}|n\rangle\langle n| d_{j}^{\dagger}|i\rangle}{E_{i}-\tilde{E}_{n}^{N+1}+\omega+i \Gamma}\right|^{2} \tag{7}
\end{equation*}
$$

while STM measures local density of states $\operatorname{Im} G\left(\omega, \mathbf{r}_{j}\right)$,

$$
\begin{equation*}
\operatorname{Im} \sum_{n}\left[\frac{\langle i| d_{j}|n\rangle\langle n| d_{j}^{\dagger}|i\rangle}{E_{i}-E_{n}^{N+1}+\omega+0^{+} i}+\frac{\langle i| d_{j}^{\dagger}|n\rangle\langle n| d_{j}|i\rangle}{-E_{i}+E_{n}^{N-1}+\omega+0^{+} i}\right] \tag{8}
\end{equation*}
$$

Differences: decay of intermediate state in REXS, intermediate state energy depends on core hole interaction, REXS does not have electron-removal term.

