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In the recent past, there have been many computa-
tional advances in gauge and gravitaional scatter-
ing amplitudes. Furthermore, hidden symmetries
are found, which connect color and kinematical la-
belling in gauge amplitudes. Gravitaional and gauge
amplitudes are found to be related.

Symmetries are not just there to organize bookkeep-
ing. In many cases, they are the dynamics.
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Our work (so far) has been to set up a natural frame-
work to accomodate these new developments and to
enforce these new symmetries. The mystery and the
implications of the correspondence and the interplay
between dynamics in momentum space and exter-
nal color symmetries, between gravity and gauge,
demand much more explorations.

Much of these advances either originated from or
were inspired by string considerations, which are
adept at describing amplitudes. However, the dy-
namical aspects and the gauge degrees of freedoms
are succintly summarized in Lagrangians. More im-
portantly, off-shell continuations of amplitudes are
well prescribed, once a set of Feynman rules are de-
rived. These will be used.
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(1) (long) Introduction

(2) Space-cone Gauge and Analytic Continuation

(3) Color-Kinematic Duality and its Enforcement

(4) Double Copy Connection

Our discussion is mostly for tree amplitudes
only.
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1. Introduction:

(a) New Techniques in Computation:
The old way (Feynman diagrams + Lorentz co-

variant rules) is tedious and wasteful. Each diagram
yields many terms and then there are tremendous
amounts of cancellation among diagrams. Instead,
helicity formalism uses the massless spinor solutions
for each massless particle pi

σ · piu±(pi) = 0,

< i| = ū−(pi), [i| = ū+(pi),

|i >= u+(pi), |i] = u−(pi),

ε(pi, qi)
µ
+ =

< qi|σµ|pi ]√
2 < qi pi >

,

ε(pi, qi)
µ
− =

[ qi|σ̃µ|pi >
−
√

2[qi pi]
,
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where qi is a reference null vector. Changing qi cor-
responds to a change of gauge εµ → εµ + pµλ and
therefore different qi can be chosen for different par-
ticle i.

The amplitudes should be independent of qi.
By judicious choice of these reference vec-
tors and some spinor tricks (Chinese tricks), one
can simplify the calculation for amplitudes drasti-
cally. Some of the results look very simple and ele-
gant, when written in spinors (twistors).
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The next major advance is to compute gluon
amplitudes recursively. This is due to Witten and
his then students (BCFW). They introduced a com-
plex number z into certain momenta and then con-
tinued the n particle amplitude

An → An(z), An = An(z = 0).

If An(z→∞) = 0, we have∮
dz

z
An(z) = 0.
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For tree amplitudes, An(z) is a rational func-
tion of z. The poles (zm) in z, if coming only from in-
ternal propagators, correspond to cutting diagrams
into two halves, then a n particle amplitude is
split into a sum of products of two amplitudes
with smaller numbers of external particles

An = −
∑
zm 6=0

AmAn+2−m (BCFW recursion).

z is introduced by shifting the momenta of some
external particles Besides having to respect momen-
tum conservation, one must preserve the massless-
ness of these particles.
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The easiest way to satisfy the last requirement
is to make the shifts on the spinors,

|i >→ |i > +z|... >, [j| → [j|+ z[∗ ∗ ∗|

because if we write pi in the form of an outer prod-
uct

σ · pi = |i > [i| → det|σ · pi| = 0 = p2i .

In light-like gauges there are paths in momen-
tum space in which the interaction vertices have no
z dependence and therefore the asymptotic condi-
tion is trivially satisfied. However, to make shifts
in spinors, one should use a subclass space-cone
gauges, in which the shifts are z multiplied by the
gauge fixing spinors.
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(b) Hidden Symmetries in Gauge Amplitudes:
If we follow from left to right, in clockwise or

counterclock-wise sense, each Feynman diagram is
endowed with a sequence of color indices. For exam-
ple, for a four gluon process, taking 1 as the start-
ing point, we have (1234), (1243), (1324), (1342),
(1423), (1432). However, the gluon couplings are

ci =
∑
b

fa1a2bfa3a4b,

which means (i) the four indices split into two pairs
with the two indices in each pair being antisym-
metric. This reduces the count to (12;34), (13;24),
(14;23). When we add all diagrams with the same
color coupling together, we get a color-ordered am-
plitude A4

i .
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The complete amplitude is

A4 =
∑
i

ciA
4
i

=
c(12;34)n(12; 34)

s12
+
c(13;24)n(13; 24)

s13

+
c(14;23)n(14; 23)

s14
.

The totally antisymmetric fabc satify an iden-
tity

∑
b(fa1a2bfa3a4b + fa2a3bfa1a4b + fa3a1bfa2a4b )

= 0, or
c(14;23) = c(13;24) − c(12;34),

and surprisingly calculating in any gauge one gets

n(14; 23) = n(13; 24)− n(12; 34),
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This means a color-kinematic matching of in-
dices and that there are at most two independent
color ordered amplitudes, given by

|A >= M (4)|N >,

|A >=

(
A(1234)
A(1324)

)
, |N >=

(
n(12; 34)
n(13; 24)

)
,

and M (4) is a real symmetric generalized propagator
matrix

M (4) =

( 1
s12

+ 1
s14

− 1
s14

− 1
s14

1
s13

+ 1
s14

)
.
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There is a further surprise, in that M (4) has an
eigenvector with zero eigenvalue

M (4)|λ0 >= 0, |λ0 >=

(
−s12
s13

)
,

which means we can shift the numerators |N >→
|N > +f |λ0 > without changing |A >. This is
called a generalized gauge transformation. If we take
f = −n(13; 24)/s13, we have

|N > +f |λ0 >=

(
n(12; 34) + s12

s13
n(13; 24)

0

)
,

which gives A(1234) = s13
s12
A(1324), or there is only

one independent color ordered amplitude for n=4.
Null eigenvector(s) of M reduce the number of

independent color-ordered amplitudes. The ampli-
tudes are not changed under any shift of the form∑
fiλi.
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For gauge amplitudes with more than four par-
ticles, direct perturbation calculations do not yield
numerators ni which satisfy Jacobi identities. We
shall see that nevertheless:

(i) The deviations can be absorbed by a shift
in the numerators, such that the new set of numera-
tors n̄i respect the Jacobi identities without chang-
ing the values of the amplitudes Ai. For n particles,
Jacobi identities give a set of color coefficients rela-
tions

ci + cj + ck = 0

i, j, k are color ordered labels. The shifted numera-
tors for the same color labels satisfy

n̄i + n̄j + n̄k = 0,

which is called color-kinematic duality.
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(ii). If a pair i and j among n external particles
share the same vertex, their color factor faiajb =
−fajaib. We find n(. . . ; ij; . . .) = −n(. . . ; ji; . . .).
With the Jacobi identities, there are (n − 2)! inde-
pendent ci, ni. Thus, there can be at most (n− 2)!
color-ordered amplitudes given by

|A >= M (n)|N̄ > .

M (n) is a real symmetric matrix, which has (n −
3)(n − 3)! eigenvectors with zero eigenvalue. Cor-
responding, there are the same number of arbitrary
functions which we can attach to

|N̄ >→ |N̄ > +
∑

fi|λ0i >

without changing |A > . The number of indepen-
dent Ai is (n− 3)!.
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A straightfoward calculation of ni in general
does not respect color- kinematic duality. The de-
viations from Jacobi identities

ni + nj + nk = ∆ijk,

can be calculated recursively, by making some p2i 6=
0. They are used to determine the individual δni in
n̄i = ni + δni, such that n̄i + n̄j + n̄k = 0, through
an equation

|D[∆] >= Mn|δN > .

Clearly, these δni cannot be reached by gener-
alized gauge transformations. If we summarize their
effects on amplitudes in coordinate space in the form
of effective vertices, we find that the sum of all these
effective vertices vanishes (Leff (x) = 0) in view of
color Jacobi identities ci + cj + ck = 0! We have a
connection between color space ci and momentum
space δni, via coordinate space Leff .
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(c) Connection between gauge theories and gravity:

One exciting motivation to study (BCJ) color-
kinematic duality is the observation by the same
set of authors that once such a set of dual symmet-
ric numerators is found, then up to a ratio of cou-
pling constants, the n graviton scattering amplitude
is given by (Double Copy)

Angr =< N̄T |M (n)|N̄ >,

where gluons and gravitons have the same helicity
assignments. This is a remarkable result, which does
not just make graviton calculations much easier. It
allows us to tackle the renormalizability of gravity
(and its extensions) in a new way.

Renormalizability has to do with high energy
behavior. We know that of |N̄ > . What about the
combinations in the double copy formula

Angr =
∑

< λα|N̄ >2 (
1

λ
)α,

Pure gravity is finite at one loop, which implies
much better behavior from the combinations.

17



2. Space-cone gauge and BCFW:

Both gluons and gravitons have only two helicity
states. One reason that earlier calculations were te-
dious is because to maintain covariance, we worked
with many more components. However, these phys-
ical systems, because of unitarity, know that the
unphysical degrees of freedom are superfluous and
must cancel, which happen at an alarming rate. The
BCFW method is a clear indication that all that
matters are the physical states. Therefore, at least
for tree level consideration, we are better off using
physical gauges to amplify the real issues..

A set of guages with this demand is the light-
like gauges. It is characterize by a light-like vector
N, such that for gauge theories NµA

µ
a = 0, N2 = 0.
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Take two light-like vectors

σ ·N− = |− > [−|, σ ·N+ = |+ > [+|,

< +− >= [−+] = 1, we form two more

σ · N̄ = −|+ > [−|, σ ·N = −|− > [+|,

For a light-like vector P, we write

σ · P = p+N+ + p−N− − pN − p̄N̄ = |p > [p|

p = −2P · N̄ =< p+ > [p−],

p̄ = −2P ·N =< p− > [p+],

p± = −2P ·N∓ =< p∓ > [∓p|.
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The scalar product of two light like vectors P,
Q (= − 1

2 < pq > [qp],) is given as

P ·Q =
1

2
(pq̄ + p̄q − p+q− − p−q+).

For general four vectors, we symbolicall decom-
pose into these components and use the same met-
ric for scalar products. The space cone gauge for a
gauge field is defined by imposing

ab = 0.

āb is then a dependent component. We can express
the Lagrangian in terms of a±b , which will be iden-
tified as ± helicity fields. After a rescaling of fields
by a factor

√
2 so that the free Lagrangian gives the

usual 1
p2 propagator and g → g√

2
= 1 so that Fµν

as a whole gains
√

2, we have
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L =− a−a ∂µ∂µa+a + fbac(
∂+

∂
a−b )a−a ∂a

+
c

+ fbac(
∂−

∂
a+b )a+a ∂a

−
c

− (fbaca
−
c ∂a

+
a )

1

∂2
(fbefa

+
f ∂a

−
e ).

We note that there is no ∂̄ in the interaction
part of this Lagrangian. Therefore, if we make a
momentum shift in the |+ > [−| direction ( multi-
plied by z), then we would not induce z-dependent
terms in the numerators for the amplitude. z ap-
pears only in the propagators, except for diagrams
with the four particle vertex, which does not always
come with propagators. We can choose N± such
that the four vertex gives no contribution. Then
A(z →∞) = 0 and we can perform BCFW contin-
uation for recursion.
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(3) Color-Kinematic Duality:

The claim (BCJ) is that if the color coefiicients
satisfy ci + cj + ck = 0, then one can find a set of
numerators which also satisfy ni + nj + nk = 0, for
which the amplitude is

A =
∑
i

cini
Πjsj

.

Note that ci and ni here are the complete set of
color coefficients and numerators. The immediate
questions are: (a) Is the claim true? and/or (b)
How do we make that set? If you apply Feynman
rules in the space-cone gauge and calculate the five
point amplitudes, you will find that without some
massaging,

ni + nj + nk = ∆ijk 6= 0.
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Let us take a five particle amplitude. By dis-
tributing the four point vertices appropriately to ni
(multiplying by 1 = sj/sj ), we find that we have
a set of 15 numerators. We can write them in the
form of

n(ij; k; lm) = −n(ji; k; lm) = −n(ij; k;ml)

= −n(ml; k; ji),

The color coefficients satisfy the Jacobi identities

c(ij; k; lm) + c(ki; j; lm) + c(jk; i; lm) = 0,

but not the n’s. By applying Feynman rule calcula-
tion, we obtan

n(ij; k; lm)+n(ki; j; lm) + n(jk; i; lm)

= ∆(ijk/lm),
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We make a shift in ni, i. e.

ni → n̄i + δni,

demanding

n̄(ij; k; lm) + n̄(ki; j; lm) + n̄(jk; i; lm) = 0,

and

A =
∑
i

cin̄i
Πjsj

→
∑
i

ciδni
Πjsj

= 0.

δn(ij; k; lm)+δn(ki; j; lm) + δn(jk; i; lm)

= −∆(ijk/lm),

These conditions show that there are only 6 inde-
pendent n̄i, δni and result in two sets of equations
for the independent color amplitudes and δni.
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
A(12345)
A(14325)
A(13425)
A(12435)
A(14235)
A(13245)

 = M (5)


n̄(12345)
n̄(14325)
n̄(13425)
n̄(12435)
n̄(14235)
n̄(13245)

 ,

and
D(12345)
D(14325)
D(13425)
D(12435)
D(14235)
D(13245)

 = M (5)


δn(12345)
δn(14325)
δn(13425)
δn(12435)
δn(14235)
δn(13245)

 ,

D′is are linear in ∆(ijk/lm). The easiest way to ob-
tain ∆(ijk/lm) is first to obtain off-shell ∆(ijk/l).
This recursive construction works for any number
of particles.
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M (5) is a generalized propagator matrix, It is
symmetric and has four null eigenvectors. We use
them to perform a

∑
gi|λ0i > shift and reduce |δN >

to having only two non-zero elements. For the he-
licity 1+2−3+4−5+ they are given, due to the left
hand side (D’s), as

δn′ = s12
s45
s24

X, δn′′ = −s25
s14
s24

X,

where

X =
p−1
p1

(p52 − p54) +
p−5
p5

(p12 − p14)

− p−3
p3

(p12 − p14 + p52 − p54),

pi2 =
pip2
pi + p4

, pi4 =
pip4
pi + p2

.
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While δn′ and δn′′ are linear combinations of
the six independent δni, these two equations still
allow us to solve for all the δni, if we insist that
δni should satisfy the natural symmetry under the
interchange of the indices 1↔ 5 and/or 2↔ 4

2↔ 4 δn(12; 3; 45)↔ −δn(14; 3; 52), etc.

We assume that all the δni have the structure

p−1
p1

(
x32p32 + x34p34 + x52p52 + x54p54

)
+
p−3
p3

(
y12p12 + y14p14 + y52p52 + y54p54

)
+
p−5
p5

(
z12p12 + z14p14 + z32p32 + z34p34

)
,

and generate a set of linear imhomogeneous equa-
tions for x, y, z.
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We solve these equations and obtain the inde-
pendent δni and then use the ∆ijk for the depen-
dents ones also. The total effect on the scattering
amplitude can be summarized by an effective La-
grangian:

[
(fdec3fc4c5e + fdec4fc5c3e + fdec5fc3c4e)

fc2c1d
sc1c2

+ (fdec2fc3c4e + fdec3fc4c2e + fdec4fc2c3e)
fc5c1d
sc1c5

+ (fdec1fc3c5e + fdec3fc5c1e + fdec5fc1c3e)
fc4c2d
sc2c4

]
× (

∂−

∂
a+c1)(∂a−c2)a+c3

1

∂
(a−c4∂a

+
c5) = 0.

We anticipate that it should vansish, because we
demand the color ordered amplitudes not to change
by the shifts, and we worked hard to obtain these
shifts in momentum space. However, the above La-
grangian trivially vanishes because of the Jacobi
identity within each pair of round parenthesis! Col-
ors and kinematics and are again intertwined!
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(4) Double Copy Connection:

The gravitational Lagrangian is

L = −
√
−ggµνRµν , g = det(gµν)

Because the theory is invariant under variations of
four infinitesimal parameters δξµ in

δgµν = −δξγ∂γgµν − gµγ∂νδξγ − gγν∂µδξγ

we can impose four conditions, which in the light-
cone gauge are

g++ = g+i = 0,

and
−g+− = kl, k ≡ det(gij)

where l is a real number.

29



The ’phase’ components of gij are the dynam-
ical degrees of freedom

gij = k1/2eij , det(eij) = det(eij) = 1.

(This reminds one of a non-linear sigma model.)
There are various ways of parameterizing eij , such
as

eij =
√

1− det(h)δij + hij ,

eij =
√

1− det(h)δij − hij ,

with

hij =

(
α β
β − α

)
.

α, β are the Hermitian fields associated with helicity
+,−. These various parametrization will give rise
to different contact terms in the Lagrangian, when
we expand out the square root and the determinant.
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For the three point vertices, we find that

(1+2+3−)gr ∼ ((
p1

p−1
− p2

p−2
)p̄3)2 ∼ (1+2+3−)2gauge.

For the four particle amplitude, we find that there
are more than ten four point vertices in α and β.
We can find a choice of reference vectors q such
that they don’t contribute to the amplitudes and
the double copy formula follows. It seems, how-
ever, that there must be some representation(s) of
eij such that we shall obtain the double copy re-
sult independent of choice of reference vectors. The
challenge is what is the underlying principle for one
to accomplish that. Preferably, it is due to some
symmetry consideration.
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