Microwave Transitions Between Pair States Composed of Two Rb Rydberg Atoms

> Jeonghun Lee Advisor: Tom F. Gallagher

Overview

• Investigating a microwave transition $nd_{5/2}nd_{5/2} \rightarrow (n+1)d_i(n-2)f$

Outline

- Rydberg Atoms
- Experiment (Theory)
- Experimental Setup
- Experiment
- Results

Rydberg Atoms

Rydberg Atoms

• A Rydberg atom is a highly excited atom

- They have exaggerated characteristics such as:
 - large size
 - low binding energy
 - large dipole moment
 - and so on

which make them an interesting object to study

Properties of Rydberg Atoms

Bohr model of H atom

Binding Energy $\propto n^{-2}$ Radius $\propto n^2$ Dipole Moment $\propto n^2$ The experiment (Theory)

Background

• $nd_{5/2}nd_{5/2} \rightarrow (n+1)d_j(n-2)f$ was recently observed

The transition is allowed because dipole-dipole induced configuration interaction between nd_{5/2}nd_{5/2} and (n+2)p_{3/2}(n-2)f states admixes some of the latter state into the former

With configuration interaction, nd_{5/2}nd_{5/2}
state for R<∞ can be written as

$$|nd_{5/2}nd_{5/2R}\rangle = |nd_{5/2}nd_{5/2}\rangle + \varepsilon |(n+2)p_{3/2}(n-2)f\rangle$$

where
$$\varepsilon = \frac{\langle nd_{5/2}nd_{5/2} | \frac{\mu_{1}\mu_{2}}{R^{3}} | (n+2)p_{3/2}(n-2)f \rangle}{\Delta}$$

$$\Delta = W_{nd_{5/2}nd_{5/2}} - W_{(n+2)p_{3/2}(n-2)f}$$

• The coupling between $nd_{5/2}nd_{5/2}$ and $(n+1)d_j(n-2)f$ states in lowest order is:

$$V = \varepsilon \langle (n+2) p_{3/2}(n-2) f | \mu_1 E | (n+1) d_j(n-2) f \rangle$$

• Since $\frac{1}{R^3} \propto \rho_{Ryd}$ and the dipole matrix elements are proportional to n^2 ,

$$V \approx \frac{\rho E n^6}{\Delta}$$

- Our primary experimental interest is to verify the expression: $V \approx \frac{\rho En^6}{\Lambda}$
- As n is changed from 42 to 35

$$\left(\frac{n^6}{\Delta}\right)_{n=42} / \left(\frac{n^6}{\Delta}\right)_{n=35} \approx 47$$

 Is it possible to compensate this by adjusting the microwave field strength?

Previous Result

 $42d_{5/2}42d_{5/2} \rightarrow 43d_{i}40f_{7/2}$

Yinan Yu, Hyunwook Park, and T. F. Gallagher Phys. Rev. Lett. **111**, 173001 (2013)

Previous Result

 $42d_{5/2}42d_{5/2} \rightarrow 43d_{i}40f_{7/2}$

Yinan Yu, Hyunwook Park, and T. F. Gallagher Phys. Rev. Lett. **111**, 173001 (2013)

Experimental Setup

Experiment Overview

Energy level diagram

- We use magneto-optical trap and optical excitation to make a cold sample of Rb Rydberg atoms
- We use microwave to excite Rydberg atoms to different states
- We use Field ionization ionize the Rydberg atoms and MCP detector collect data

Experimental Setup

- Magneto-Optical Trap (MOT)
- Optical Excitation Laser
- Microwave Setup & Field Ionization
- Data Acquisition

MOT Basics

Lauren Levac, Observation of the Dipole-Dipole Interaction in Dressed State Rydberg Atoms by Microwave Spectroscopy, MS thesis, Univesity of Virginia, 2013

Magneto Optical Trapping

Wenhui Li. Probing Dipole-Dipole Interactions in a Frozen Rydberg Gas with Millimeter Waves. PhD thesis, University of Virginia, 2005.

Typical Parameters for Our MOT

- # of trapped atoms: 10^5 ~ 10^6
- Diameter: ~1mm
- Density: 10^9/cm^3

- # of Rydberg atoms: 10^4
- Density of Rydberg atoms (max): 10^8/cm^3

Optical Excitation Laser

Excites Rb atoms to Rydberg state

Lauren Levac, Observation of the Dipole-Dipole Interaction in Dressed State Rydberg Atoms by Microwave Spectroscopy, MS thesis, Univesity of Virginia, 2013

Field Ionization

Timing diagram

The Experiment (experimental technique)

Data Acquisition

Measuring resonance frequency & Measuring power shift

Measuring Fractional Population Transfer (FPT)

³⁷d, 6dB, 9/25/14

Results

Resonance frequency & Power shift of the resonance frequency

 $42d_{5/2}42d_{5/2} \rightarrow 43d_{5/2}40f_{7/2}$

Extrapolating the points back to zero microwave power allows us to determine resonance frequency of the transition

Transition frequency for $nd_{5/2}nd_{5/2} \rightarrow (n+1)d_{5/2}(n-2)f$

n	Calculated (GHz)	Meausred (GHz)	Percent Error (%)
34	49.898	49.898	<0.01
35	45.916	45.915	<0.01
36	42.344	42.341	<0.01
37	39.131	39.129	<0.01
38	36.233	36.231	<0.01
39	33.613	33.612	<0.01
40	31.239	31.236	<0.01
41	29.082	29.079	<0.01
42	27.118	27.113	0.017

Transition frequency for $nd_{5/2}nd_{5/2} \rightarrow (n+1)d_{3/2}(n-2)f$

n	Calculated (GHz)	Meausred (GHz)	Percent Error (%)
34	49.618	49.617	<0.01
35	45.660	45.660	<0.01
36	42.109	42.106	<0.01
37	38.914	38.912	<0.01
38	36.033	36.031	<0.01
39	33.429	33.428	<0.01
40	31.068	31.066	<0.01
41	28.923	28.921	<0.01
42	26.970	26.968	<0.01

FPT data

42d data from 1/13/15

Normalizing MW power using Stark Shift

- MW power output changes
- \rightarrow Need to normalize MW power

• Use the fact that the Stark shift

$$\Delta \omega \propto \frac{\left| \left\langle \varphi \left| \mu \right| \psi \right\rangle E \right|^2}{\Delta} \approx \frac{n^4 E^2}{\Delta}$$

Conclusion

- The resonance frequencies of the ndnd-(n+1)d(n-2)f transitions for n=35 to 42 have been measured
- power shifts of the resonance frequencies have been measured for n=35 to 42.
- The dependence of the fractional population transfer from the ndnd to (n+1)d(n-2)f states on the microwave field strength and atomic density has been measured and can be compared to a simple theoretical model.

Acknowledgement

- My lab mates: Vincent, Alexandr, Eric, Safra, Kapila, Jirakan
- Dr. Gallagher

 This research is supported by Air Force Office of Scientific Research