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Outline
● Parity Violating Electron Scattering (PVES) 

overview
● Testing the Standard Model (SM) with PVES

– Qweak, SoLID-PVDIS and MOLLER

● Nuclear structure physics with PVES
– PREX/CREX

● PVES as a probe of nucleon structure
– SoLID-PVDIS EMC proposal
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Parity Violating Electron Scattering

Due to PV nature of the neutral 
current, the differential cross 
section is dependent on the 
helicity of the electron

The difference in helicity 
correlated scattering cross 
section is known as the PV 
asymmetry,



11/10/15 UVA Physics Seminar 4

PVES Applications

● Testing the Standard  Model  (SM)
– Qweak (e-p), MOLLER (e-e), SoLID-PVDIS (e-q) 

experiments

● Nuclear  Structure
– Neutron density measurements with PREX/CREX 

experiments (e-208Pb  and e-48Ca)

● Nucleon  Structure  
– EMC with SoLID-PVDIS experiment using e-48Ca

– Strangeness in  proton   (HAPPEX,   G0  experiments) and 
etc.
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PVES Historical Significance
● Confirmation of the EW SM from the first PVES 

experiment at SLAC by Prescott et. al.

● First measurement of parity-violation in the neutral 
weak current!

– Which they found the weak mixing angle to be around 1/4 that 
amount to a small axial vector(e) X vector(f) weak neutral 
interaction! 

1st PVDIS at SLAC!
first result in 1978:
Prescott et al., PLB 77, 347 (1978)
Prescott et al., PLB 84, 524 (1978)
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Unique Nature of a PVES Experiment

● The Injector + Accelerator + Apparatus or “The 
Whole Machine” becomes parts of the 
experiment

● Complete understanding of all the backgrounds 
is the key to successful PVES

● Monitor PVES asymmetries real-time to find 
issues and fix them 
– No second chance at offline after the experiment 
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How to Do A PVES Experiment

Helicity of electron beam flipped periodically, 
delayed helicity reporting to prevent direct 
electrical pick up of reversal signal by detectors Detector signal integrated for each 

helicity window and asymmetry formed 
by quartet

Contribution Expected width 
(ppm)

Pure statistics 201

Detector resolution 92

Current monitor 
resolution

50

Target boiling 57

Total 233.7

σA = 230-260 ppm
APhys   = -0.200 ppm
δAPhys =  0.006 ppm
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PVES Progress

Looking to Future : Technical 
challenges :

● Statistics
– High rate, beam polarization,

beam current, high-power target, large 
acceptance detectors

● Noise
– Electronics, target density 

fluctuations, detector resolution

● Systematics
– Helicity-correlated beam asymmetry 

(false asym.), backgrounds, precision 
beam polarimetry, precise Q2 
determination Precision vs smaller asymmetry
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PVES Progress

Looking to Future : 
Technical challenges :

● Random beam fluctuations 
limits : present (Qweak) vs. 
Future (MOLLER)

● Beamline monitor precision : 
present (Qweak) vs. Future 
(MOLLER) 

Beam  property MOLLER spec. Qweak observed

Intensity < 1000 ppm 500 ppm

Energy < 108 ppm 6.5 ppm

Position < 47 m 48 m
Angle < 4.7 rad 1.4 rad

Monitor type MOLLER spec. Qweak observed

Beam charge 10 ppm 65 ppm

Beam position 3 m 6 m

Courtesy of Mark Pitt

Courtesy of Mark Pitt
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Outline
● Parity Violating Electron Scattering (PVES) 

overview
● Testing the Standard Model (SM) with PVES

– Qweak, SoLID-PVDIS and MOLLER

● Nuclear structure physics with PVES
– PREX/CREX

● PVES as a probe of nucleon structure
– SoLID-PVDIS EMC proposal
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Electron-Quark Couplings

A

V

V

A
+

EW neutral current interaction          +          New Physics

Involve vector hadronic 
currents:PV elastic e-p 
scattering, Atomic parity 
violation

Involve axial hadronic 
currents: PV deep inelastic 
scattering

+



11/10/15 UVA Physics Seminar 12

PVES in Search for New Physics

● New physics at high energies can be detected 
through precision PVES at low energies
– At low energies new physics appear as a new 

contact interaction

For Λ ~ TeV scale

These could be
Heavy Z's or neutrinos, 
Technicolor, SUSY, etc
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PVES vs Colliders: Neutral Currents 
● Both colliders and PVES can access Λ > 10 TeV 

but... 
● In PVES : both New physics and EW physics 

amplitudes interference with electromagnetic 
amplitude

● In colliders :  No interference 

At Z resonance A
Z
 is imaginary and no interference observed! 

Can observe PV new physics interactions!
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Electron-Quark Couplings

A

V
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+

EW neutral current interaction          +          New Physics

Involve vector hadronic 
currents:PV elastic e-p 
scattering, Atomic parity 
violation

Involve axial hadronic 
currents: PV deep inelastic 
scattering

+
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Parity Violating Asymmetry for the Qweak 
Experiment

The Qweak experiment determines the proton's weak charge by 
measuring the PV asymmetry in elastic scattering of longitudinally 
polarized electrons on unpolarized protons

At forward angles and very small Q2,

Proton's weak charge, 

Form factor term due to finite proton size → Hadron structure (~ 
30% of the asymmetry) By running the experiment at very small 
Q2, sensitivity to the effects of the “Hadron structure” is minimized
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Qweak Experimental Apparatus

Parameters
● Ebeam = 1.165 GeV

● <Q2> = 0.025 GeV2

● <θ> = 7.9 ± 3
● φ coverage = 50% of 2π
● Ibeam = 180 μA

● Integrated rate = 6.4 GHz
● Beam polarization = 88%
● Target  = 35 cm
● Cryo-power = 3 kW
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Qweak Commissioning Run

More production data is still being analyzed : expect final results in 2016!

Publication : PRL 111, 141803 (2013)
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Electron-Quark Couplings
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EW neutral current interaction          +          New Physics

Involve vector hadronic 
currents:PV elastic e-p 
scattering, Atomic parity 
violation

Involve axial hadronic 
currents: PV deep inelastic 
scattering

+
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PV Deep Inelastic Scattering

At high x, deuterium PV asymmetry becomes independent of PDFs, x and W, with well defined 
SM predictions for given Q2 and y = 1 – E'/E

Off the simplest isoscalar nucleus (deuterium) at high Bjorken x 

Interplay with QCD,

● Flavor dependent quark distributions 
(u,d, and s)

● Charge symmetry violations (CSV)

● Higher twist effects (HT)

● Nuclear medium effects (EMC)
Where
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SoLID-PVDIS Physics Motivation

● A precision test of the Standard Model

● Search for Charge Symmetry Violation (CSV) 

● Test of QCD higher twist corrections (quark quark 
correlations)

● Measurement of d/u quark ratio for proton

Attractive PVDIS feature

● Large PV asymmetries with manageable backgrounds

● Ability to reach higher precision beam polarimetry with 
11 GeV electron beam energies
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Projected Coupling Constraints from PVDIS 

Constraint on quark coupling constants and updated limits 
on new physics beyond SM using SoLID-PVDIS projections
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Charge Symmetry Violations

Direct observation of parton level CSV

– Charge symmetry → up = dn; dp = un

– Fractional change in APV due to CSV from different models shown

– The uncertainty band using PVDIS figure-of-merit is  plotted

Sensitivity to CSV

Where 
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Higher Twists effects in PVDIS
● In QCD, additional Q2 dependence  

gives information on quark-quark 
and quark-gluon correlations
– Higher Twist (HT) terms

● With PVDIS asymmetry 
measurements, only Q2 
dependence of q-q HT can show up

● Large kinematic reach in SoLID 
allows for evaluation of higher twists

● PVDIS signature is the variation of 
Y1a1 term (of the APV) with x and Q2
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Quark Flavor Dependent Effects on Proton
● Measurement of d(x)/u(x) ratio for the proton at high x
● A clean measurement free from any nuclear corrections
● Uncertainties of set of PVDIS measurements are shown 

in the plot (red points)
● Provides a high precision measurements in range of x

a1(x) term of the PVDIS asymmetry
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Solenoidal Large Intensity Device (SoLID)
Apparatus
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Solenoidal Large Intensity Device (SoLID)
Acceptance

SoLID Specs. and  Figure-Of-Merit
– High Luminosity (1039 cm2/s)

– Beam current 50 uA and polarization 85%

– Large scattering angles for high x and y access

– With moderate running times,
● X-range of 0.25 to 0.75
● W2 > 4 GeV2

● Q2 range a factor of 2 for each x
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SOLID-PVDIS Figure-Of-Merit
Sub. 1% precision over broad range of kinematic 
range: A Standard Model test and a detailed study 
of hadronic structure contributions
If no CSV, HT, quark sea, or nuclear effects, All (Q2, x) bins should give the 
asymmetry within statistics and kinematic factors

Fit to data :

Kinematics dependence of Physics
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PV in MØller Scattering

● Proposed MOLLER experiment will be the best contact 
interaction search for leptons at low OR high energy 
– Best current limit on contact interaction scales available from 

LEP2
● LEP2 only sensitive to parity conserving quantities (g2

RL and g2
RR+g2

LL)

Where gij=g*
ij are contact interaction coupling constants for chirality projections of the electron spinor

– Model independent mass scale for parity violating interactions : 

The MOLLER measurement will extend the current sensitivity of 4-
electron contact interactions,both qualitatively and quantitatively

A Search for New Physics at the TeV Scale
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PV in MØller Scattering

● Measure weak charge of electron precisely 

– Unprecedented sensitivity 

● Provide best projected uncertainty weak mixing angle at 
any energy scale

 

A Search for New Physics at the TeV Scale

use standard model 
electroweak
radiative corrections 
to evolve
best measurements 
to Q ~ MZ
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MOLLER Apparatus

30

Ebeam = 11 GeV

APV = 35.6 ppb

δ(APV) = 0.73 parts per billion

Intensity 85 μA 80% polarized
Luminosity: 3x1039 cm2/s!

δ(Qe
W) = ± 2.1 % (stat.) ± 1.0 % (syst.) 

Scattering angles 10 – 20 mrad!
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MOLLER Context Summary

● Best contact interaction reach for leptons at any energy
– Similar to LHC reach with semi-leptonic amplitudes

– To do better for a 4-lepton contact interaction would require: 
● Giga-Z factory, linear collider, neutrino factory or muon collider

● If LHC sees any anomaly in runs 2 and 3 (~ 2022) 
– The unique discovery capability in MOLLER will be very important

● MOLLER also provides discovery scenarios beyond LHC 
signatures
– Hidden weak scales

– Lepton number violating interactions

– Light dark matter mediators
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PREX/CREX : Neutral Current as a Probe of the 
Neutron

● Weak neutral current : A clean probe 
couples mainly to neutrons

● It provides theoretically clean method to 
measure neutron radius and skin thickness
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Experimental Setup
● Two High Momentum Spectrometers (HRS) to run simultaneously

● Will require a Septum magnet to reach our acceptance 

● PREX acceptance at about 5o Using E = 1.1 GeV beam

● CREX acceptance at about 4o Using E = 2.2 GeV beam

● Both 208Pb and 48Ca provide large inelastic separation with HRS and 
have very long life time for a neutron excess nuclei 
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Why Two different Nuclei? 
● Ab initio calculations only reach as far as medium 

nuclei such as 48Ca
– Experimental data from 208Pb and 48Ca will provide a bridge 

between medium nuclei ab initio calculations and heavy 
nuclei Density Functional Theory (DFT) calculations.

● Correlations predicted between neutron skin of  208Pb 
and 48Ca need experimental validations
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PREX Implications : Neutron Stars

● RN calibrates  equation of state  (pressure 
 vs  density) of Neutron rich matter

● Combine PREX RN with   observed 
neutron star radii
– Phase transition to “Exotic” Core?

● Strange star?   Quark star?

● Some neutron stars seem too cold
– Explained by cooling by neutrino emission 

(URCA  process)?

– Only if (RN - Rp) → 0.2 fm : URCA is probable

   Courtesy of C.J. Horowitz and   J. Piekarewicz  

Crab  Pulsar
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PREX : Earlier Results
Neutron  Skin  =  RN  -  RP = 0.33  + 0.16  - 0.18 fm

Spokespersons
  
K. Kumar 
R. Michaels 
K. Paschke 
P. A. Souder  
G. Urciuoli
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PREX/CREX : Next Run

● PREX-II is on its way to make many improvements over 
several PREX-I radiation damage issues
– Damaging neutron (0.1 < E < 10 MeV) dose is reduced by 78% 

compared to PREX-I 

– High energy (E>10 MeV) photon dose is reduced by 80%

– Collimator design is almost ready

– Neutron radiation shielding optimization is underway

– Final design will further improve dose reduction

● Neutron density measurements for 208Pb and 48Ca will provide 
necessary support for better nuclear structure theory models
– For nuclei to neutron stars with implications on nuclear structure 

studies to astrophysics 
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PVES as a Probe of EMC effect
● PVDIS offers a picture into partonic distributions 

by probing new flavor combinations 

● Expanding the a1 term about the isoscalar limit 

●

● PVDIS asymmetry is sensitive to differences in 
the quark flavors
– For isoscalar targets the asymmetry becomes a test 

for charge symmetry violation

Where u
A
 = u in p and d in n
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Isovector dependence of EMC effect

NuTeV results from Fermilab
● Neutrino scattering is 

sensitive to different flavor 
combinations

● Asymmetry nuclei (iron 
target used in NuTeV) 
need corrections

● CSV or isovector EMC 
effects could play 
significant role and not 
well constrained by data
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Isovector dependence of EMC effect
Short range correlations and EMC effect

– SRC show strong preference  to n-p pairs over p-p/n-n
● SRCs generated by interactions in short-distance (high density)

– EMC effect correlates with SRC
● EMC effect driven by high-density nucleon configurations (pairs, clusters) 

– Preliminary models make predictions for asymmetry nuclei
● (Z – N) boost by isovector enhancement?

Analysis by M. Sargsian
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PVDIS Constraints on EMC Effect
● PVDIS on asymmetric target (48Ca or 9Be) will test 

isovector dependence,
– Larger A → larger EMC and larger (Z – N) gives an boost to 

isovector enhancement 

– PV asymmetry is independent of overall size of EMC effect; 
only sensitive to difference in EMC effect for u and d quarks

● 48Ca DIS Rates and backgrounds are comparable for  
deuterium DIS

● Therefore isovector observables on an asymmetric 
target is doable with SoLID-PVDIS

● 60 days production will offer powerful constraints, help 
resolve the NuTeV anomaly, and test leading models to 
several sigma
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Flavor Dependent Model EMC Predictions

PVDIS with neutron rich nuclei 48Ca can constrain possible 
flavor-dependent nuclear medium modification effects on 
quarks

– PVDIS asymmetry is a direct measurement of differences in 
the quark flavors

Cloet et al. PRL102 252301 (2009), Cloet et al. PRL109 182301 (2012)

Our proposal
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Conclusions

● Jlab is a great facility to do PVES
– Polarized Continuous electron beam

● PVES provides unique information for nuclear physics
– Nucleons : EMC effect, strangeness, weak form factors

– Nuclei : PREX/CREX

● PVES is a precision frontier of testing the SM and 
physics beyond SM
– Qweak, SoLID-PVDIS and MOLLER

– Complementary to LHC
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Random Beam Fluctuations and Beamline Instrumentation
Use Qweak experience (@ 1 kHz data rate) 
Assess MOLLER specifications (@ 2 kHz data rate) for beam fluctuations/monitoring

Monitor type MOLLER spec. Qweak observed

Beam charge 10 ppm 65 ppm

Beam position 3 m 6 m

Beam  property MOLLER spec. Qweak observed

Intensity < 1000 ppm 500 ppm

Energy < 108 ppm 6.5 ppm

Position < 47 m 48 m
Angle < 4.7 rad 1.4 rad

Random beam fluctuations 
(“jitter”) @2 kHz:
 
If 12 GeV machine is as “quiet” 
as 6 GeV machine, these will 
be easily satisfied!

Beamline monitor precision
@2 kHz:
 
• Position nearly satisfied
• Charge monitoring will require 

further developments
 Start with BCM digital receiver 

studies

NEW: actually BPM spec is 
probably already achieved
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PV Deep Inelastic Scattering

At high x, deuterium PV asymmetry becomes independent of PDFs, x and W, with well defined 
SM predictions for given Q2 and y = 1 – E'/E

Off the simplest isoscalar nucleus (deuterium) at high Bjorken x 

Interplay with QCD,

● Flavor dependent quark distributions 
(u,d, and s)

● Charge symmetry violations (CSV)

● Higher twist effects (HT)

● Nuclear medium effects (EMC)
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Measured  Asymmetry

Weak  Density  at  one  Q 2

Neutron  Density at one Q
2

Correct  for  Coulomb
Distortions

Small  Corrections for

G
n
E G

s

E MEC

Assume  Surface  Thickness 
Good  to  25%    (MFT)

Atomic  
Parity        
Violation

Mean Field   

 &  Other   

 Models   

 Neutron   

    Stars  

 R 
 n 

PREX  

Physics  
Output 

Slide  adapted  from  
C. Horowitz
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Anticipated Errors

Systematic Error Contribution

Charge normalization     0.1%

Beam asymmetries     1.1%

Detector non-linearity     1.0%

Transverse     0.2%

Polarization     1.1%

Inelastic contribution  < 0.1%

Effective Q2     0.4%

Total     2%

Systematic Error Contribution

Charge normalization     0.1%

Beam asymmetries     0.3%

Detector non-linearity     0.3%

Transverse     0.1%

Polarization     0.8%

Inelastic contribution     0.2%

Effective Q2     0.8%

Total     1.2%

PREX-II at E = 1.1 GeV ; A
PV

 = 0.6 ppm CREX at E = 2.2 GeV; A
PV

 = 2 ppm



SoLID-PVDIS Error Budget

Error budget for PVDIS asymmetry at x=0.4
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