Exchange Bias and Bi-stable Magneto-Resistance States in Amorphous TbFeCo and TbSmFeCo Thin Films

Chung Ting (Marco) Ma University of Virginia

Outline

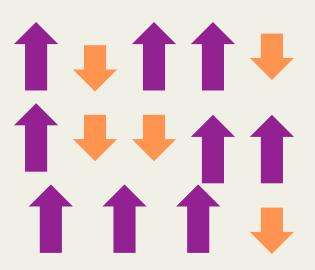
- Background
 Why are we interested in Tb(Sm)FeCo thin films and exchange bias?
- Experimental Results
 Magnetic and structural properties of exchange biased Tb(Sm)FeCo
- Micromagnetic Simulations
 Two-sublattice, two-phase model

Background

Amorphous TbFeCo films

Ferrimagnetic (FiM)

Tb and FeCo sublattices



Compensation Temperature (T_{comp})

Background

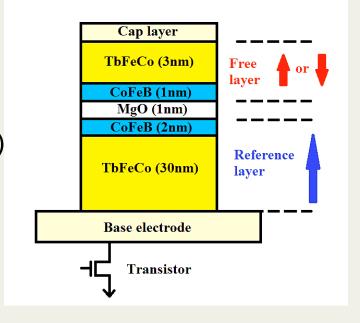
Amorphous TbFeCo films

Perpendicular magnetic anisotropy (PMA)

 Structural anisotropy gives rise to PMA in sputtered amorphous TbFe films

Harris, V. G., et al. Phys, Rev. Lett. **69**.13 (1992): 1939. Yan, X., et al, Phys. Rev. B **43**.11 (1991): 9300

- Magnetic random access memory (MRAM)
 Nakayama et al, J. Appl. Phys. 103, 07A710 (2008).
- Ultrafast switching (picoseconds)
 Hassdenteufel et al, Adv. Mater. 25, 3122 (2013)



Background

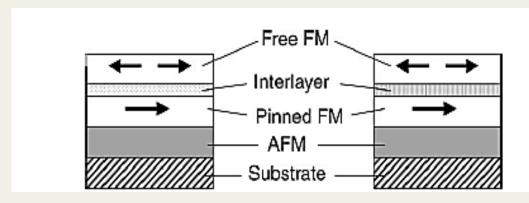
Exchange bias

 Ferromagnetic(FM)/Antiferromagnetic(AFM) bilayer act as a pinned layer in spintronics devices

Nogués et al. / Phys. Rep. 422 (2005) 65 -117

Stabilize the magnetization in FM layer

Liu et al. Appl. Phys. Lett. 81, 4434 (2002)



Outline

- Background
 Why are we interested in TbFeCo thin films and exchange bias?
- Experimental Results
 Magnetic and structural properties of exchange biased Tb(Sm)FeCo
- Micromagnetic Simulations
 Interpenetrating two-phase, two-sublattice model

Experiment Methods

Si/SiO₂ substrates

Radio frequency (RF) magnetron sputtering at room temperature

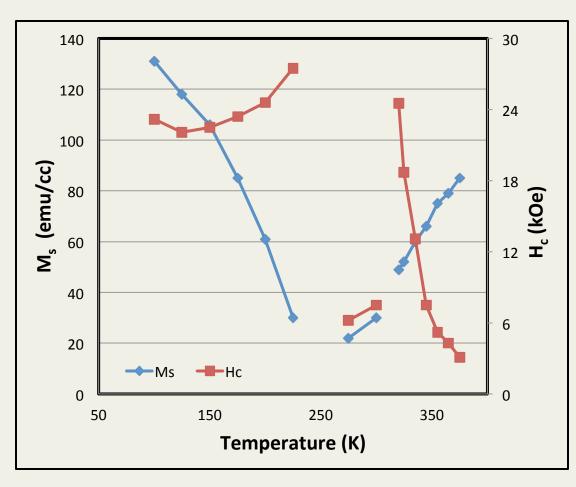
 Magnetic Properties: Quantum Design Versa Lab system

Thickness: Rigaku SmartLab system

Properties of Amorphous Tb₂₆Fe₆₄Co₁₀ Films

• 100 nm thick

- $T_{comp} \sim 250K$.
- PMA



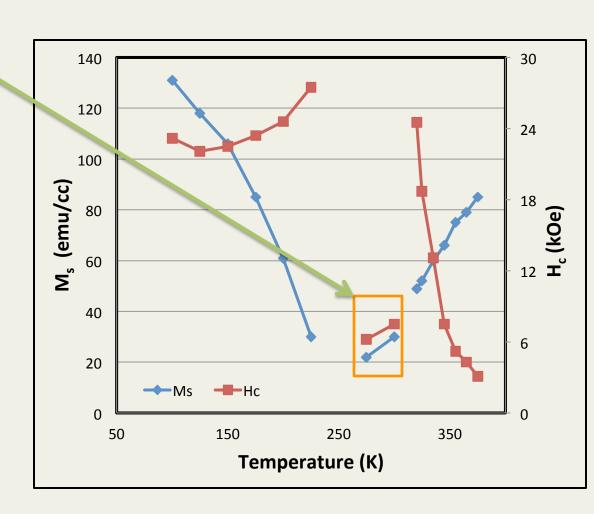
Li et al, Appl. Phys. Lett. 108, 012401 (2016)

4th Year Seminar

8

Exchange Bias in Amorphous Tb₂₆Fe₆₄Co₁₀ Films

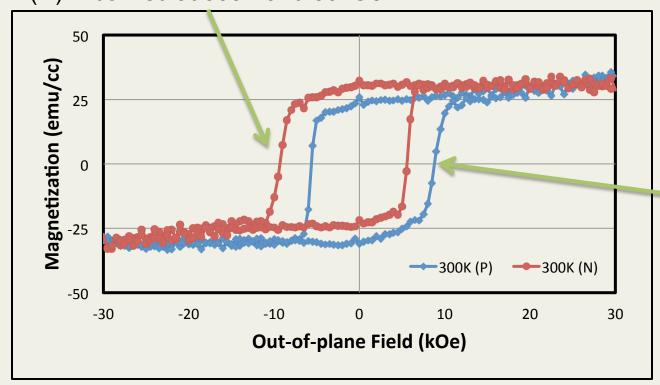
Exchange bias effect is observed near T_{comp}



Exchange Bias in Amorphous Tb₂₆Fe₆₄Co₁₀ Films

 At 300K, both positive (P) and negative (N) exchange bias minor loops are observed, with different initialization procedures

(N) Initialized at 355K and 30kOe



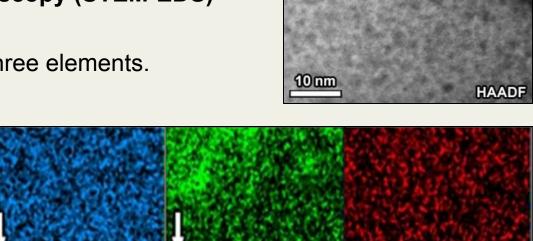
(P) Initialized at 175K and 30kOe

High-angle annular dark field imaging (STEM-HAADF)

Non-uniform contrast indicates local compositional fluctuations

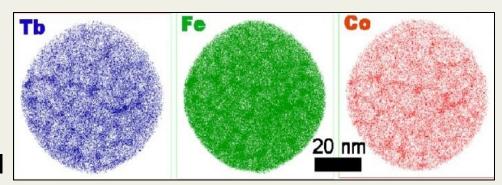
Energy-dispersive X-ray spectroscopy (STEM-EDS)

- Non-uniform distribution of all three elements.
- The regions marked with arrows indicate a local depletion in Tb, which directly coincides with an enrichment in Fe

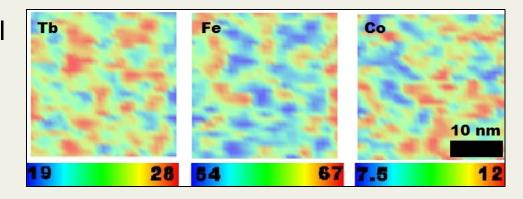


Atomic probe tomography (APT)

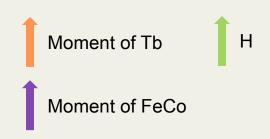
 Tb (blue), Fe (green) and Co (red) distribution along a slice parallel to the film plane

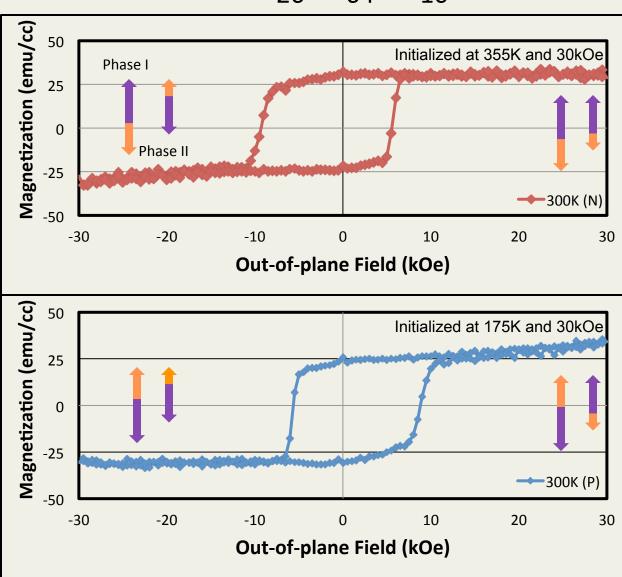


- A network-like segregation of all three elements
- Existence of two compositional phases in amorphous Tb₂₆Fe₆₄Co₁₀ film



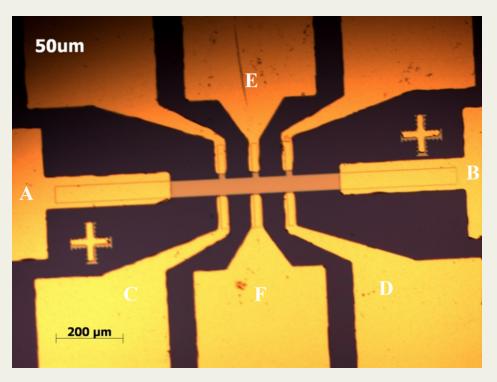
- Two nanoscale amorphous phases on the length scale of 2-5nm are revealed from STEM and APT.
- A Tb-enriched phase (Phase I) is nearly compensated and acts as a fixed layer
- A Tb-depleted phase (Phase II) is far away from compensation and acts as a free layer
- Exchange bias in Tb₂₆Fe₆₄Co₁₀ film originates from the exchange interaction between these two nanoscale amorphous phases





Exchange Bias effect in magneto-transport measurements

Anomalous Hall Effect (AHE) and Magneto-resistance (MR) of Tb₂₆Fe₆₄Co₁₀



Current is injected through A and B

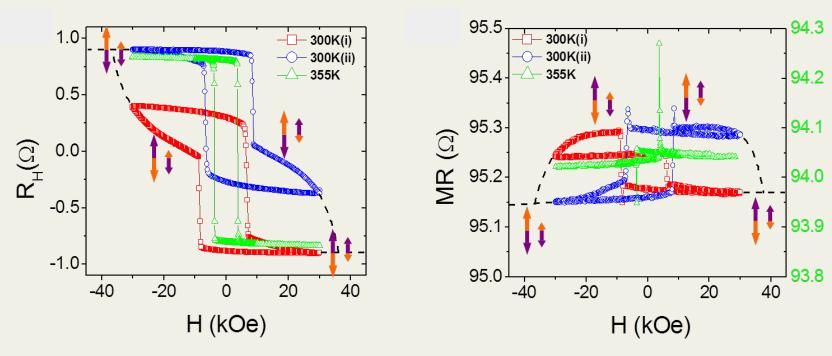
Voltage difference is measured between

EF for AHE

CD for MR

Exchange Bias effect in magneto-transport measurements

Anomalous Hall Effect (AHE) and Magneto-resistance (MR) of Tb₂₆Fe₆₄Co₁₀

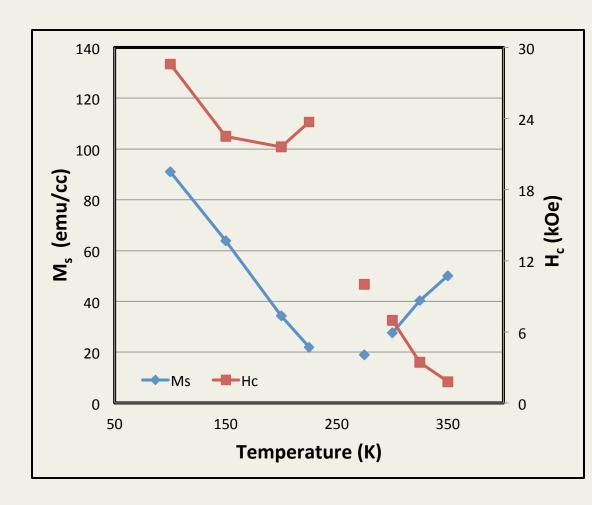


 $R \downarrow H \propto C \uparrow I (R \downarrow T b \uparrow I M \downarrow T b \uparrow I + R \downarrow F e C o \uparrow I M \downarrow F e C o \uparrow I) + C \uparrow I I (R \downarrow T b \uparrow I I$ $M \downarrow T b \uparrow I I + R \downarrow F e C o \uparrow I I M \downarrow F e C o \uparrow I I)$

Bi-stable MR states are revealed at 300K, corresponds to the exchange bias observed in AHE loops.

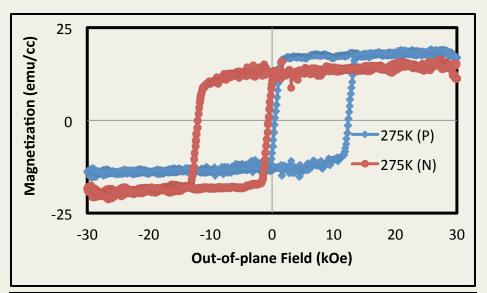
Exchange Bias in Amorphous Tb₂₀Sm₁₅Fe₅₅Co₁₀ Films

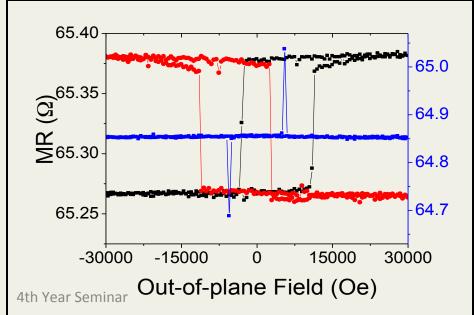
- 100nm thick
- $T_{comp} \sim 250K$
- PMA



Exchange Bias in Amorphous Tb₂₀Sm₁₅Fe₅₅Co₁₀ Films

- Exchange bias at 275K
- Bistable MR states





Experimental Summary

- Exchange bias and bi-stable magneto-resistance states are uncovered in amorphous TbFeCo and TbSmFeCo films with perpendicular magnetic anisotropy
- Structural analysis revealed two nanoscale amorphous phases with different Tb atomic percentages distributed within the films.
- Exchange anisotropy originates from the exchange interaction between the two amorphous phases

Outline

Why are we interested in TbFeCo thin films and exchange bias?

- Experimental Results
 Magnetic and structural properties of exchange biased TbFeCo
- Micromagnetic Simulations
 Two-sublattice, two-phase model.

Landau-Lifshitz-Gilbert Equation

Dynamic of Magnetization M

Landau-Lifshitz-Gilbert (LLG) Equation

$$dM/dt = -\gamma(M \times H \downarrow eff) + \alpha/M \downarrow s (M \times dM/dt)$$

Where γ is the gyromagnetic ratio, and α is the damping factor

Landau-Lifshitz-Gilbert Equation

The Effective Field

$$H\downarrow eff \uparrow = H\downarrow Ext \uparrow + H\downarrow Demag \uparrow + H\downarrow Ani \uparrow + H\downarrow Exch \uparrow$$

- External field
- Demagnetization field
- Anisotropy field
- Exchange field

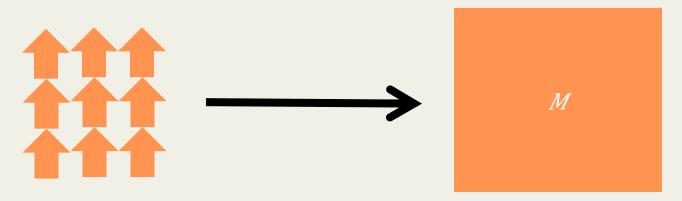
Methods

- Atomistic model
- Micromagnetic model

The Micromagnetic Model

The Continuum Approximation

Multiple spins are grouped together to form a single cell of magnetization.



The Two-Sublattice Model

- Ferrimagnetic
- Tb and FeCo Sublattices
- Two LLG equations for each sublattice

```
dM\downarrow Tb /dt = -\gamma(M\downarrow Tb \times H\downarrow eff \downarrow Tb ) + \alpha/M\downarrow s \downarrow Tb  ( M\downarrow Tb \times dM\downarrow Tb /dt) dM\downarrow Fe /dt = -\gamma(M\downarrow Fe \times H\downarrow eff \downarrow Fe ) + \alpha/M\downarrow s \downarrow Fe  ( M\downarrow Fe \times dM\downarrow Fe /dt)
```

The Two-Sublattice Model

The effective field due to the exchange interaction ($H \downarrow exch \uparrow$)

```
HJexchJTb =2AJTb—Tb /\mu J0 MJTb V12 mJTb +2AJTb

-Fe /\mu J0 MJTb V12 mJFe +BJTb—Fe /\mu J0 MJTb mJFe

HJexchJFe =2AJFe—Fe /\mu J0 MJFe V12 mJFe +2AJFe—Tb
/\mu J0 MJFe V12 mJTb +BJFe—Tb /\mu J0 MJFe mJTb
```

- Neighbor cells from both sublattice
- Same cell from the other sublattice

The Two-Sublattice Model

The effective field due to the exchange interaction (

$H\downarrow exch\uparrow$)		Phase I	Phase II
$A \downarrow Tb - Tb = 1/4 J \downarrow Tb - Tb S$ $r \downarrow nn \uparrow 2 c \downarrow Tb / a \uparrow 3$ $A \downarrow Fe - Fe = 1/4 J \downarrow Fe - Fe S$ $r \downarrow nn \uparrow 2 c \downarrow Fe / a \uparrow 3$	<i>K↓</i> Tb (J/m 1⁄3)	3.4x10 ⁵	1.9x10 ⁵
	<i>A↓</i> Tb−Tb (J/m)	1.90x10 ⁻¹²	1.21x10 ⁻¹²
	A↓Tb−Fe (J/m)	-2.43x10 ⁻¹²	-1.87x10 ⁻¹²
	A↓Fe−Fe (J/m)	1.40x10 ⁻¹¹	1.68x10 ⁻¹¹
	<i>B↓</i> Tb−Fe (J/m <i>1</i> 3)	-1.43x10 ⁷	-1.09x10 ⁷

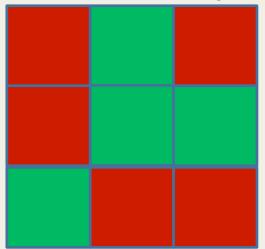
 $A\downarrow Tb-Fe=1/4 J\downarrow Tb-Fe S\downarrow Tb S\downarrow Fe z\downarrow Tb-Fe$ $r\downarrow nn 12 c\downarrow Tb / a 13$

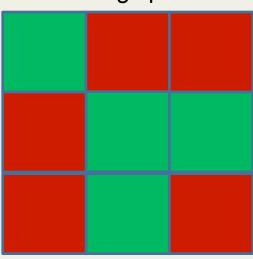
th Year Seminar

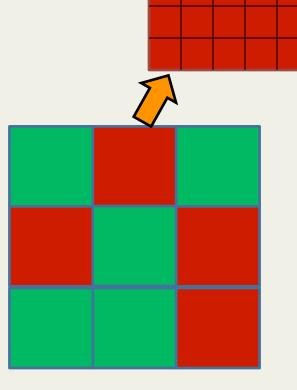
The Two-Phase Model

- Two interpenetrating phase
- Phase I (Red) and Phase II (Green) blocks
- 6x6x6 cells in each block

Distributed throughout the modeling space





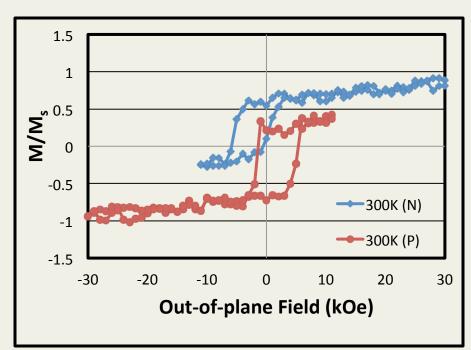


The Two-Phase Model

- Each cell is 0.5nm x 0.5nm x 0.5nm
- Each Phase I and Phase II block is 3nm x 3nm x 3nm
- Each block has 6x6x6 cells (Total 18x18x18 = 5832 cells)
- 27 blocks, 13 Phase I and 14 Phase II blocks
- Finite distance methods based on OOMMF
- M. J. Donahue and D. G. Porter, **OOMMF User's Guide, version 1.0**, Interagency Report No. **NISTIR 6376**, National Institute of Standards and Technology, Gaithersburg, MD, 1999 (http://math.nist.gov/oommf/).

Simulation Result of TbFeCo

- Positive and negative exchange bias minor loops near T_{comp}
- Positive shift in magnetization accompanied by negative exchange bias

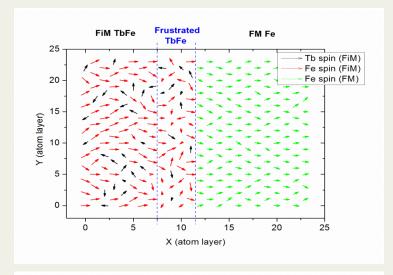


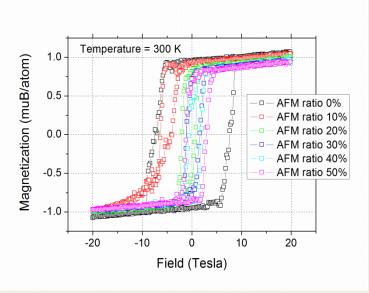
 Negative shift in magnetization accompanied by positive exchange bias

Atomistic Simulations

Courtesy of Xiaopu Li

- Frustrated TbFe region
- Fe-Fe antiferromagnetic coupling





Simulations Summary

Micromagnetic model is employed to study exchange bias in a two-phase magnetic material with ferrimagnets.

Positive and negative exchange bias minor loops are obtained near T_{comp}

This model provides a platform for developing exchange bias materials using ferrimagnets

Summary

Exchange bias and bi-stable magneto-resistance states are revealed in two phase amorphous TbFeCo and TbSmFeCo thin films

A two-phase, two-sublattice micromagnetic model is employed to simulate exchange bias effect in TbFeCo films

Using this study, we can explore various FiM/FM and FiM/FM systems by tuning the composition of FiM phase, and develop desirable EB properties for applications at various temperature

Acknowledgement

University of Virginia
Professor Jiwei Lu
Professor S. Joseph Poon
Xiaopu Li
Chung Ting (Marco) Ma

Pacific Northwest National Laboratory

Dr. Ryan Comes

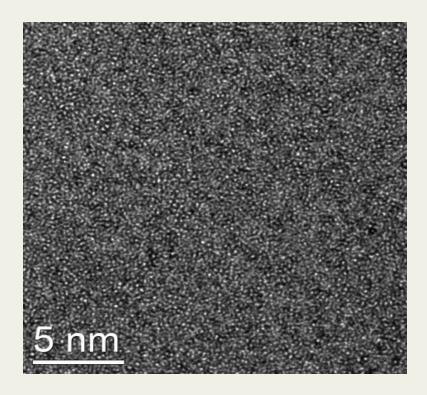
Dr. Arun Devaraj

Dr. Steven Spurgeon

Acknowledgement

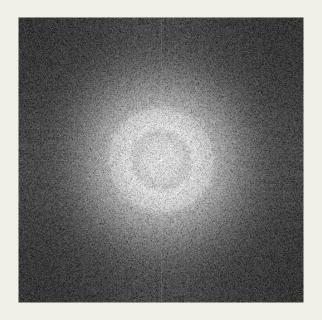
This work was supported by the Defense Threat Reduction Agency (DTRA) grant and the U.S. Department of Energy (DOE).

Supplementary



The HRTEM image of the amorphous ${\rm Tb_{26}Fe_{64}Co_{10}}$ thin film by Titan 300 kV

Supplementary



Reduced FFT of the HRTEM

Derivation of effective field due to exchange interaction

We can rewrite Tb-Tb and Fe-Fe terms as follow

$$\mathcal{H}\downarrow Tb-Tb=-1/2 J\downarrow Tb-Tb S\downarrow Tb12 \sum \langle Tb\downarrow i, Tb\downarrow j \rangle \uparrow m \downarrow Tb\downarrow i \cdot m \downarrow Tb\downarrow j$$

=
$$const. +1/4 J \downarrow Tb-Tb S \downarrow Tb \uparrow 2 \sum \langle Tb \downarrow i, Tb \downarrow j \rangle \uparrow m \downarrow Tb \downarrow i -m \downarrow Tb \downarrow j) \uparrow 2$$

Using the continuous assumption

$$m \downarrow Tb \downarrow j \approx m \downarrow Tb \downarrow i + r \downarrow ij \cdot \nabla m \downarrow Tb \downarrow i$$

$$\mathcal{H} \downarrow Tb - Tb \approx 1/4 J \downarrow Tb - Tb S \downarrow Tb \uparrow 2 z \downarrow Tb - Tb r \downarrow nn \uparrow 2$$

$$\Sigma Tb \downarrow i \uparrow (\nabla m \downarrow Tb \downarrow i) \uparrow 2 = A \downarrow Tb - Tb \int \uparrow (\nabla m \downarrow Tb) \uparrow 2$$

Derivation of effective field due to exchange interaction

The ferrimagnetic (Tb-Fe) term

$$\mathcal{H}\downarrow Tb-Fe=-\sum \langle Tb\downarrow i, Fe\downarrow j>\uparrow IIIIb-Fe$$

 $\mathbf{S}\downarrow Tb\downarrow i \cdot \mathbf{S}\downarrow Fe\downarrow j=1/2 \ J\downarrow Tb-Fe \ S\downarrow Tb \ S\downarrow Fe$
 $\sum \langle Tb\downarrow i, Fe\downarrow j>\uparrow III(\mathbf{m}\downarrow Tb\downarrow i-\mathbf{m}\downarrow Fe\downarrow j)\uparrow 2$

Using the continuous assumption to expand $m \not F e \not j$

$$\mathcal{H}\downarrow Tb-Fe\approx 1/2 J\downarrow Tb-Fe S\downarrow Tb S\downarrow Fe \sum < Tb\downarrow i$$
, $Fe\downarrow j > 1 = (m\downarrow Tb\downarrow i - m\downarrow Fe\downarrow i - r\downarrow ij \cdot \nabla m\downarrow Fe\downarrow i$ $-1/2 r\downarrow ij \uparrow 2 \nabla \uparrow 2 m\downarrow Fe\downarrow i$) $\uparrow 2$ $\approx 1/2 J\downarrow Tb-Fe S\downarrow Tb S\downarrow Fe \sum < Tb\downarrow i$, $Fe\downarrow j$ $> 1 = ((m\downarrow Tb\downarrow i - m\downarrow Fe\downarrow i) \uparrow 2 - 2(m\downarrow Tb\downarrow i - m)$

Derivation of effective field due to exchange interaction

 $\mathcal{H}\downarrow A = \int \uparrow (A\downarrow Fe - Fe (\nabla m \downarrow Fe) \uparrow 2 + A\downarrow Tb - Tb (\nabla m \downarrow Tb) \uparrow 2 - 2A\downarrow Tb - Fe m \downarrow Tb \cdot \nabla \uparrow 2$ $m \downarrow Fe - B \downarrow Tb - Fe (m \downarrow Tb \cdot m \downarrow Fe)) d \uparrow 3 x + 2$ $A \downarrow Tb - Fe \oint \uparrow (m \downarrow Fe \cdot n dS)$

The last term is integrated on the boundary, so the energy density is

$$\mathcal{E}\downarrow A = A\downarrow Fe - Fe (\nabla m \downarrow Fe) 12 + A\downarrow Tb - Tb (\nabla m \downarrow Tb) 12 - 2A\downarrow Tb - Fe m \downarrow Tb \nabla 12 m \downarrow Fe - B\downarrow Tb - Fe (m \downarrow Tb \cdot m \downarrow Fe)$$

The effective field due to exchange interaction

 $H \downarrow eff$, $Tb = -\delta \mathcal{E} \downarrow A /\mu \downarrow 0$ $M \downarrow s$, $Tb \delta m \downarrow Tb$ = $2/\mu \downarrow 0$ $M \downarrow s$, $Tb A \downarrow Tb = Tb \nabla 12$ $m \downarrow Tb + 2/\mu \downarrow 0$ °