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* Motivations
* Lessons from electron scattering
* Neutrino-nucleus scattering

> High energy regime: can the models developed to describe electron
scattering data be extended to the case of neutrino scattering?

> Low energy regime: can the relevant recation mechanisms be consistently
described within ab initio many body approaches?

* Summary & Outlook
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ation I: detection of neutrino oscillations
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> Addressing a number of

> Probability that a neutrino fundamental issues, such as the
oscillate from flavor « to flavor 8 mass hyerarchy, leptonic CP
after travelling a distance L violation and the existence of
sterile neutrinos, will require
. o (AmPL precise measurements of neutrino
P, Sy = SIN 26 sin . . o
@ . and antineutrino oscillations.
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Neutrino interactions are very weak

> Total cross section of the process

> Neutrino-nucleon Vu+tn—pu +p
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Detecting neutrinos requires big detectors

> The SUPER-K detector, in Japan,
is filled with 12.5 million gallon MiniBooNE Detector
of ultra-clean water

> The MiniBooNE detector,at
FNAL, is filled with 800 tons of
mineral oil

> The detected signal results from
neutrino interactions with
Oxygen and Carbon nuclei

> A quantitative understanding of
their response to neutrino *
interactions is required for the
interpretation of the measured
cross sections

Relevant energy scale of accelerator-based experiments: E, ~ 1 GeV
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Motivation II: neutron star evolution

* At much lower energies, (E, < 5MeV), neutrino interactions with
nuclear matter play a critical role in determining both the evolution of
newly formed proto-neutron stars and cooling of aged stars.
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* The gravitational energy released in a supernova collapse is ~ 200-300
times higher than that produced by the Sun over its entire lifetime.

* ~ 99% of it is radiated over a timescale of a few tens of seconds in the
form of an immense flux of low-energy neutrinos.
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Neutrino-nucleus x-section

o Differential cross section of the charged current process v/ +A — ¢~ +X

do A w
494 W
dQ, dE, =

> [ is fully specified by the lepton kinematical variables. Same as in
scattering, but in this case the beam energy is not known.
> the calculation of the target response tensor

Wy = D COVLIIXII0)6 D (Po + kv, = Px = ki)
X

requires a consistent description of the target internal dynamics,
determining the initial and final states, as well as of the nuclear weak

current
Jo=d) =0 =3+ Y i) +

J>i
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Information from electron scattering

@ Vast supply of precise data o Different rection mechanisms
available contributimg to the mesured cross
.5 0 2 sections can be readily identified
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@ Carbon target
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ab initio calculations of the electromagnetic response

e The nucleus is seen as a collection of pointlike protons and neutrons
interacting through the non relativistic hamiltonian

H = ZZ_+ZVU ZU’]k

J>i k>j>i

e the potentials are determined by a fit to the properties of the exactly
solvable two- and three-nucleon systems

e the nuclear electromagnetic current J,, = (och, J) is constructed in such a
way as to fulfill the continuity equation

V- -J+ilH, pnl =0

e at low to moderate momentum transfer, typically |q| < 400 MeV, the non
relativistic approach provides a set of electroweak charge and current
operators consistent with the hamiltonian.

Omar Benhar (INFN) clear eminar, A October 6th, 2015 9/34



Predictions of the ab initio approach

e Non relativistic nuclear hamiltonians can be used to carry out exact
Quantum Monte Carlo (QMC) calculations of the energies of the ground
and low-lying excited states of nuclei with A < 12 using the Green’s
Function Monte Carlo (GFMC) technique.
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J. Carlson et al, arXiv:1412.3081v2 [nucl=th]
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GFMC calculation of the nuclear response

e the GFMC technique is ideally suited for the calculations of the
Euclidean responses

Eyv(IQI,T)OCf dwe™" Wy (lql, w)

Wihr

e Contributions to the logitudinal (L) and transverse (T) channels

Er(lql,7) = Eeo(lal. ), Er(lql,7) = E1i(lql, 7)

e The inversion of the euclidean responses of light nuclei has been recently
obtained exploiting the maximum entropy method
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Euclidean responses of carbon
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rsion of the Euclidean responses of “He
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e Significant two-nucleon current contribution in the transverse channel
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High momentum transfer: the Impulse Approximation (IA)

o In the kinematical regime corresponding
to |q| 2 500 MeV

1< VAVAVAVA'S

where d is the average nucleon-nucleon
distance
@ Nuclear scattering reduces to the incoherent sum of elementary
scattering processes involving individual nucleons

2 2
g, g,» X
2 i
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@ The IA amounts obvioulsy implies the replacement
= ) ju

@ Assuming that Final State Interactions (FSI) between the struck nucleon
and the spectators be negligible leads to the factorized final state

IX) = v, px) ® IR, pr)

@ Nuclear dynamics and interaction vertex are decoupled

doy = f d*kdE doy P(k,E)

> The electron-nucleon cross section doy can be written in terms of stucture
functions extracted from electron-proton and electron-deuteron scattering
data

> The nuclear spectral function P(k, E) , yielding the momentum and energy
distribution of the knocked out nucleon, is an intrinsic property of the
target nucleus, independent of momentum transfer, calculable within the
ab initio many-body approach.
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Carbon quasi elastic cross section within TA
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o FSI corrections included [a. Ankowski et al, PRD 91 033005, (2015)]




Inclusion of inelastic channels
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Generalized factorization ansatz

e GFMC calculations strongly suggest that the contributions arising from
two-nucleon currents is important in the transverse channel

e Use of relativistic currents and a realistic description of the nuclear
ground state requires the extension of the factorization ansatz undelrying
the IA

X) = Ip, p’) ® Ima-2))

(XIi0y — f dkd’K My (k. K') (pp' /j{KK')

> The matrix elements of the two-nucleon current between states
describing non interacting nucleons can be computed using the fully
relativistic expression.

> The amplitude M,,(k, k") = {{na—2)| ® (k,K’[}|0) is independent of |q| and
can be obtained from non relativistic many-body theory
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Results of the generalized factorization ansatz

e Transverse response of carbon, not corrected for FSI
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Comparison to measured carbon cross sections
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Electron vs neutrino nucleus scattering in the QE sector

o In neutrino experiments, the measured double differential cross section is
averaged over the energy of the incoming neutrino, broadly distributed
according to the flux @

doy 1 de O(E,) doy
dT,d cos 6, " No Y ! dE,dT,d cos 6,

@ In addition to F| and F, , the QE electron-nucleon cross section is
determined by the axial form factor F4, assumed to be of dipole form
and parametrized in terms of the axial mass My

@ According to the paradigm succesfully employed to describe electron
scattering data within the IA, M4 must be determined from measurement
carried out using a deuterium target. The resulting value is
My = 1.03 GeV
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Analysis of CCQE data

B> MiniBooNe CCQE data

OB et al, PRL 105, 132301 (2010)
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“Flux averaged” electron-nucleus x-section

@ Electron scattering x-sections off Carbon at §,= 37° and different beam energies
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@ Owing to flux average, a single bin of energy of the outgoing charged lepton
picks up strength corresponding to different reaction mechanism

@ All relevant mechanisms must be included in a consistent fashion

er 6th, 2015



Opacity of neutron matter to low-energy neutrinos

e The opacity of nuclear matter to neutrinos of energy E, < 10 MeV, which plays
a critical role in determining the evolution of compact stars, is parametrized in
terms of neutrino mean free path

with

d3q
0'0([(27[)3L#VW#V

e Consider weak neutral current interactions. In the extreme non relativistic
approximation, the vector and axial vector weak currents reduce to

JW’J Y — t//;g//,,y; = Of: Fermi (F) operator
Y Y U = o l//nf?“ OL,: Gamow-Teller (GT) operator
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Neutron matter response to low-energy neutrino interactions

e The nuclear cross section is computed from
Ly WH o [(1 + cos 0)S(q, w) + C§(3 —cos 0)S(q, w)]
with

S(q, w) = Z |(n|0F|O)|26(w + Ey—E,) , density response
n

S(q, w) Z Z |<n|0iGT|0)|26(w + Ey—E,) , spinresponse
i n

e The expression of the mean free path in terms of the response functions is

1 Gp [ dq
1, a”) @np

[(1 +cos 0)S(q. w) + C3(3 = cos )S(q, w)|
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Interaction effects in the low-energy regime

e In the absence of interactions, nuclear matter reduces to a degenerate Fermi gas,
and the final state is a one particle-one hole state
2 2
_Ip° |h

= —_ 0 0
=1k, E-Ey=d)- e = DL

e Interactions can be included using an effective interaction, Veg, and consistently
replacing the Fermi and Gamow-Teller operators with effective operators, Op
and OGT

e [nteraction lead to a modification of the spectrum
0 k2
e, —ep=—++ KK'|V.g|kKK” — K’k
ke = o kE/ (KK'| Ve )

as well as to a quenching of the transition matrix elements (ph|5p|0) and
(ph|O¢rl0), arising from correlations, coupling between 1p1h states and more
complex, npnh final states
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Interaction effects on the neutron matter response

* (A), (B), (C) =

Benhar (INFN)
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Excitation of collective (phonon-like) modes

e At low neutrino energy A ~ 7/|q| > d, and the interaction process may involve
many nucleons

e propagation of particle-hole states produced at the interactions vertex, leading
to the occurrence of collective excitations, must be taken into account replacing

N
phy = Iny = > Ci Ipihy)
i=1

* The energy of the state |[n) and the coefficients C; are obtained diagonalizing the
N x N hamiltonian matrix

Hjj = (Eo + ey, — ep,)0;; + (hipil Vegt|hjip; — pjh))
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Effective interaction from realistic nuclear hamiltonian

e The formalism of Correlated Basis Functions (CBF) and the cluster expansion
technique can be exploited to obtain V. from a realistic nuclear hamiltonian

e The effective interaction is defined through the relation

k2
(OH|0) = 555 + Z(AE»Z = <50+ (OrglVerlOrc)

where |Op¢) is the ground state of the non interacting Fermi gas, and the ground
state expectation value of the hamiltonian is expanded in a series whose terms
correspond to contributions of clusters containing an increasing numbef of
particles

e The effective interaction constructed retaining two- and three-body cluster
contributions includes the effects of three-nucleon interactions, which are
known to be needed to explain saturation of isospin-symmetric nuclear matter
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e CBF effective interaction obtained from the cluster expansion of the relevant
matrix elements, keeping two- or two- and three-body terms
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Being well-behaved (unlike the bare nucleon-nucleon potential) the CBF

Femi gas basis

effective interaction can be used to carry out perturbative calculations in the
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Equation of state of cold neutron matter

e Comparison between the EOS obtained using the CBF effective interaction and

those resulting from advanced many-body approaches
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Excitation of collective modes at low-momentum transfer

e Fermi (density, left) and Gamow-Teller (spin, right) contributions to the
response of pure neutron matter at nuclear matter equilibrium density
and momentum transfer |q| = 0.1 fm™!
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A. Lovato et al. PRC 89, 025804 (2014)

e the collective mode is only excited in the spin channel
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Neutrino mean free path in neutron matter

2.6 ‘ ‘ ‘ ‘
CTD full expression
CTD simplified expression —----
241 ~ CTD without collective mode === "]
\,\v//

@] 22 B 7
9
<
< 2r 8

1'6 | | | | | | |
) 10 15 20 25 30 35 40

E, [MeV]

A Lovato et al, arXiv 1310.0510 [nucl-th]

* Both short and long range correlations important
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Summary & Outlook

* Ab initio calculations based on nuclear many-body theory and the
available experimantal information on electron-nucleon interactions
provide a remarkably accurate description of the nuclear cross sections
in a broad kinematical range

* The generalization to neutrino-nucleus scattering, needed to reduce the
systematic uncertainty of LBL neutrino oscillation experiments, while
being feasible, involves additional difficulties, arising from the flux
average, and requires a consistent description of all relevant reaction
mechanisms

* The same formalism and dynamical input can be used to investigate
neutrino interactions with nuclear matter in the low energy region,
relevant to astrophysical applications.

* The development of a unified treatment of the nuclear response to
electroweak interactions at energies ranging from few MeV to few GeV
is well under way
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