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Einstein’ s theory of gravity predicts Black Holes
Due to it's high mass density the space-time curved so much that
objects traveling toward it reach a point of no return = Horizon
(& eventually reaches space-time singularity)

Black holes behave’ as thermodynamic objects

w/ Bekenstein-Hawking entropy: S=72 A ,ri0n
A .,on= area of the black hole horizon (w/ h=c=G=1)




Key Issue in Black Hole Physics:

How to relate
Bekenstein-Hawking - thermodynamic entropy: S;,.;mo="2 A
(A, .= area of the black hole horizon; c=h=1;G\=1)
to
Statistical entropy: S

hor

=log N, ?
Where do black hole microscopic degrees N;come from?

stat




Black Holes in String Theory

The role of D-branes



D(irichlet)-branes  Polchinski’ 96
boundaries of open strings with charges at their ends

|. Implications for particle physics (charged excitations)-no time



ll. Implications for Black Holes
Dual D-brane interpretation:
extended massive gravitational objects

SunflowerCosmos

D-branes in four-dimensions:

part of their world-volume on compactified space
& part in internal compactified space



E———————————————————————————————————————————————
Cartoon of (toroidal) compactification

D-branes as gravitational objects Thermodynamic BH Entropy &

wrap cycles in internal space: Statistical field theory interpretation
iIntersecting D-branes in

compact dimensions &
charged black hol

in four dim. space-time
(w/ each D-brane sourcing

charge Q)

D-branes as a boundary of strings:
microscopic degrees N; are string
excitations on intersecting
D-branes w/ S =log N,
Strominger & Vafa ' 9€

the same!

Prototype: four-charge black hole w/ S= 1T\/Q1Q2P3P4
M.C. & Youm 9507090




Microscopic origin of entropy
for extremal (BPS), multi-charged black holes with

M =2 |Q|+ 2 |P;| (schematic)
M-mass, Q, - el., P- magn. charges
Systematic study of microscopic degrees quantified via:

AdS/CFT (Gravity/Field Theory) correspondence_‘

[A string theory on a
specific Curved Space-Time (in D-dimensions)
related to

specific Field Theory (in (D-1)- dimensions) ~r~
on its boundary y\
- Holographic Approach]

Maldacena’97

For multicharged (near)-BPS black holes:
AdS,;/CFT, correspondence



The rest of the talk:
Highlight recent progress on studies of

Internal Structure of Non-Extremal Black Holes



Outline:

|. General asymptotically flat black holes in string theory
[in four (&five) dimensions — prototype STU black holes]
thermodynamics, suggestive of conformal symmetry

ll. Subtracted Geometry: non-extremal black holes in
asymptotically conical box
manifest conformal symmetry

Ill. Variational Principle and Subtracted Geometry
conserved charges and thermodynamics

V. Holography via 2D Einstein-Maxwell-Dilaton gravity
full holographic dictionary

V. Outlook



Background:

Initial work on subtracted geometry

M.C., Finn Larsen 1106.3341, 1112.4846, 1406.4536
M.C., Gary Gibbons 1201.0601

M.C., Monica Guica, Zain Saleem 1301.7032

Recent: variational principle, conserved charges and

thermodynamics of subtracted geometry
Ok Song An, M.C., loannis Papadimitriou, 1602.0150

Most recent: subtracted geometry and AdS, holography
M.C., loannis Papadimtiriou,1608.07018



|. 4D general non-extremal black holes in string theory,
asymptotically flat (zero cosmological constant A=0)

M - mass, Q, P,- multi-charges, J - angular momentum

wi M >2 Q| + 2| P

Prototype solutions of a sector of maximally supersymmetric
D=4 Supergravity

[sector of toroidally compactified effective string theory] -
so-called STU model



STU Model Lagrangian

[A sector of toroidally compactified effective string theory]
1 1
262Ly =R+ 1 — 5 * dn, N\ dn, — 56277“ *dx® N dx*
1 1
— e " x FONFY — 562%—770 * (B + x“F°) A (P + x“FV)

1 1 1
+ icachan N F°€ + §C’abcxabeO N F°€ + EC’abcxaxbchO A FO

(a=1,2,3; C,,.-anti-symmetric tensor)
w/ AY & three gauge fields A%, the three dilatons n® and the three axions y®

Black holes: explicit solutions of equations of motion for the above
Lagrangian w/ metric, four gauge potentials and three axio-dilatons

Prototype, four-charge rotating black hole, originally obtained via

solution generating techniques M.C., Youm 9603147
_ Chong, M.C., LU, Pope 0411045

Four- SO(1,1) transfs. 7 _ (Cf)Sh 0; sinh 5i)

time-reduced Kerr BH sinh0;  cosh o,

Full four-electric and four-magnetic charge solution only recently obtained
Chow, Compeéere 1310.1295;1404.2602



Compact form of the metric for rotating four-charge black holes

M.C. & Youmn 9603147
Chong, M.C., LU & Pope 0411045

2 X
D72 4 X sin? 9d¢2>

—1/2 1/2
dSi _AO / G(dt+A)2 —l_AO/ (7 + G

X =12 —9mr + a2 =o0outer & inner horizon . ;

G:T2—2m7“—|—a,2(30829 HCEHCOSh51, HSEHSinh51
’ =0 =0
2ma sin® 0
A= m"gm (T, — II,)7 + 2mlIL,] do |
3 3
Ny = H(r + 2msinh? 67) + 2a® cos? 0[r® + mr Z sinh? 67 + 4m? (11, — II,)II,
I=0 I=0 | > a

— 2m? Z sinh? &7 sinh? § 7 sinh? § K|+ a*cos* 6 .
1 SI<J<K

GuM = -m'y " cosh 26; | Special cases:
! 4 ;O ! Mass 0,=38 Kerr-Newman
1 &a =0 Reisner-Nordstrom;
G4Qr = ymsinh26; , (I =0,1,2,3) Fourcharges 5.=0 Kerr
& a =0 Schwarzschild;
GaJ = ma(ll, — 1) | Angular momentum

0 > m=>0 w/mexp(2 0 -finite
Or equivalently : m, a, J,(l1=0,1,2,3) extremal (BPS) black hole



Thermodynamics of outer & inner horizons

suggestive of weakly interacting 2-dim. CFT M.C., Youm '96
w/ “left-” & “right-moving” excitations M.C., Larsen '97
Area of outer horizon S, = S + Sy Sy = mm? (I, + I1,)

[Area of inner horizon S_= S, — Sy] Sp =mmvm? — a2 (I, — I1,)

Surface gravity (inverse temperature) of

outer horizon By= %2 (B, + Br ) Br, =27 m (I, — Ilj)
2
[inner horizon B.= % (B, -Br )] bR = 2mm (IT, + IIy)
vVm?2 — a?

Similar structure for angular velocities Q,, Q. and momenta J,, J..

3 3
Depend only on four parameters: m, a, 11, = H coshéd; ., Il = H sinh &;
I=0 I=0
Shown more recently, all independent of the warp factor A, !
M.C., Larsen '11



ll. Subtracted Geometry - Motivation

Quantify this “~“conventional wisdom’~  M.C., Larsen ‘97-" 99
that also non-extremal black holes might have microscopic

explanation in terms of dual 2D CFT

Focus on the black hole “by itself” 2>
enclose the black hole in a box (a la Gibbons Hawking) -
an equilibrium system w/ conformal symmetry manifest

The box leads to a " "mildly” modified geometry
changing only the warp factor Ay=> A

(same horizon thermodynamic quantities)

Subtracted Geometry ~ M.C., Larsen '11



Determination of new warp factor A, > A

via massless scalar field wave eq.: wave eq. separable &
the radial part is solved by hypergeometric functions w/ SL(2,R)?

(manifest conformal symmetry)

The genera| Lap|acian (with warp factor A, — implicit):

1 1 2 A
AO I[@,X@,.—— Aredat_agb)2+Ared 0@2

G " sin 980 Sin 680+sm 9

w Ag = —S-A =2m[(Il. — ILJr + 2mlL]

asin® 0

G = r°—2mr+a*cos*0

A, = A such that wave eq/is separable:f(r)+g(6) (true for A,and A)

& the radial part is solyed by hypergeometric functions:
f(r)+g(B)-const. = uniguely fixes A



M.C., Larsen 1112.4856
Subtracted geometry for rotating four-charge black holes

_ dr? X
ARG+ A)? + AP (% +d6* + 7 sin® 9dgb2)

ds;
X =r®—2mr+a*,

G =1%—2mr+a’cos®0 ,

2 in’ 6
A = magm (IT, — IT)r + 2mlls] do ,

3 3
Ny = H (1 4+ 2msinh? 67) + 2a® cos? 8[r? + mr Z sinh? 67 + 4m?(II, — II,)11,
1=0 1=0
— 2m? Z sinh? 87 sinh? 8 T sinh? ¢ x|+ a*cos* 6 .
I<J<K

Ag = A = (2m)>r(I12 — II2) + (2m)*112 — (2m)* (11, — I1,)%a® cos* 6

Comments: while Ay~r*, A~r (notasymptotically flat!)
subtracted ge%metry dependssonly on four parameters:

m, a, I = Hcosh5, | = Hsinha,
I=0 I=0



Matter fields (gauge potentials and scalars)
M.C., Gibbons 1201.0601

Scalars: M =mMN2 =N3 =17, X1 = X2 = X3 =X,

(2m)? _a (IT. — ITy)
VA X 2m,

cos 6

Running dilaton: e’ =

Gauge potentials;: A = A% = A% = A,

4 _
40 — (2m) agc s) Gn? Ode +

(2ma)? cos? 0 (11, — IL,)” + (2m)*IL.I1,

dt
(IZ — II3) A |

A= 2m cos 0 ([A = (2ma)?* (1L, — I)*sin® 0] dp — 2ma (2mIl, + r(Il, — II)) dt ) .

A .
Magnetic frame
Non-extremal black hole immersed in constant magnetic field

w/ A= (2m)3(I1? — II?)r + (2m)*112 — (2ma)? (1, — II,)? cos? 6



Remarks:

Asymptotic geometry of subtracted geometry is of
Lifshitz-type w/ a deficit angle:

ds? = —(7-)di? + B2dR? + R*(d6° + sin’ 6°d6?) 0=3. B4
0

-> black hole in an "asymptotically conical box”
M.C., Gibbons 1201.0601

- the box conformal to AdS, x S?

- confining, but softer” than AdS



Origin of subtracted geometry

I. Subtracted geometry — as a scaling limit of near-horizon
black hole w/ three-large charges Q, (mapped on m, a, I, I,)

F=re, t=te !, m=me, q=ac M.C., Gibbons 1201.0601

e — 0 . ~ _ , ~ Hg
2msinh? 0 = Q = 2me /3112 — I12)Y3,  sinh? 6y = PR
i. Subtracted geometry - as an infinite boost Harrison
transformations on the original BH M.C., Gibbons 1201.0601
10 Virmani 1203.5088
SO(1,1): H~ ( 1) B—1 Sahay, Virmani 1305.2800
p M.C., Guica, Saleem 1302.7032..

lil. Subtracted geometry — as turning off certain integration constants
In harmonic functions of asymptotically flat black holes

Baggio, de Boer, Jottar, Mayerson 1210.7695
An, M.C., Papardimitriou 1602.0150

- non-extremal black hole microscopic properties associated with its
horizon are captured by a dual field theory of subtracted geometry



Lift of subtracted geometry M.C., Larsen 1112.4856
on a circle S to five-dimension turns out to locally factorize AdS; x S?

([SL(2,R)? x SO(3)]/Z, symmetry)

[globally S? fibered over Banados-Teitelboim-Zanelli (BTZ) black hole
w/ mass M,, angular momentum J; & 3d cosmol. const. A=¢7]

dss = (dsie + dshry)
dS?gQ — i€2 (d(92 -+ Sin2 edQBQ) q_b — ¢ T 16ma(123c _ HS) (Z T t)
(r§ —r3)(rg — i) (?rs r34+13—
dshry = — B dt3 + ° dr3 + r3(des + dt3)’

o3 e T

¢3 — Ev

(
tg — E t,
2
r3 = 16(2ZR) 2m(I12 — 1) + (2m)?112 — a2(11, — T1,)?]

Conformal symmetry of AdS; can be promoted to Virasoro algebra
of dual two-dimensional CFT a la Brown-Hennaux
Standard statistical entropy (via AdS;/CFT,) a la Cardy

- Reproduces entropy of 4D black holes



M.C., Larsen 1406.4536

Subtracted geometry [A, > A=Ar + B cos?6 +C; A,B,C-horrendous]

also works for most general black holes of the STU Model
(specified by mass, four electric and four magnetics charges and angular

momentum) Chow, Compeére 1310.1295;1404.2602

M.C., Larsen 1106.3341

All also works in parallel for subtracted geometry of

most general five-dimensional black holes
(specified by mass, three charges and two angular momenta)

M.C., Youm 9603100



Further developments
Quantum aspects of subtracted geometries:

1) Quasi-normal modes - exact results for scalar fields
two damped branches = no black hole bomb

M.C., Gibbons 1312.2250, M.C., Gibbons, Saleem 1401.0544

) Entanglement entropy —minimally coupled scalar
M.C., Satz, Saleem 1407.0310 No time

ll) Vacuum polarization <@2?> analytic expressions
at the horizon: static M.C., Gibbons, Saleem, Satz 1411.4658
rotating M.C., Satz, Saleem 1506.07189
outside & inside horizon: rotating M.C., Satz 1609....

IV) Thermodynamics of subtracted geometry
via Komar integral: M.C., Gibbons, Saleem 1412.5996 (PRL)

- Systematic approach via variational principle highligts



lll. Thermodynamics via variational principle
An, M.C., Papadimitriou 1602.0150

Following lessons from AdS geometries

Heningson,Skenderis’98; Balasubramanian,Kraus’99; deBoer,Verlinde?'99, ...
achieved through an algorithmic procedure for subtracted geometry:

* integration constants, parameterizing solutions of the egs. of motion, separated
into ‘normalizable’ - free to vary & ‘non-normalizable’ modes — fixed

* non-normalizable modes — fixed only up to transformations induced by
local symmetries of the bulk theory (radial diffeomorphisms & gauge transf.)

» covariant boundary term, S, to the bulk action - determined
by solving asymptotically the radial Hamilton-Jacobi egn. -

_ Skenderis,Papadimitriou’04,Papadimitriou’05
total action S+S_, independent of the radial coordinate

o first class constraints of Hamiltonian formal. lead to conserved charges
associated with Killing vectors

« conserved charge satisfy the first law of thermodynamics



 |dentify normalizable and non-rormalizable modes

Introduce new coordinates:
Rescaled radial coord.:¢*r < (2m)3(I1? — I12)s + (2m)*I1? — (2ma)? (11, — I1,)?,
k 1

i . —1 € tv
Rescaled time /3 (2m)3 (112 — 112)

Trade four parameters m, a, I1, I, for:

(i = (2m)3m(Hg + Hg) — (2ma)2(Hc — HS)2 + \/m2 — a2(2m)3(Hg — Hg)
Pw = 2ma(Il, — II,), B = 2m,

r,, r., w- normalizable modes

B - non-renormalizable mode
(fixed up to bulk diffeomorphisms & global gauge symmetries)



"Vacuum'’ solution
obtained by turning off r,, r_, w — three normalizable modes:

Asymptotically conical box — conformal to AdS, xS?

2
ds®> = \/r (ﬁd% — rk*dt® + (°d6? + * sin” qubz)
r
2 /p2
e":B\//_g, Y =0, AY =0, A = Bcos 0d¢
r

Non-normalizable (fourth) mode B, along with ¢and k, fixed up to
radial diffeomorphism:

r— A\ k— XNk, ¢(—XN, B—B

and global U(1) symmetry:
e — pfe, x = u 2y, AY = pPAY, A — pA, ds? — ds?

which keep kB3/# - fixed



« Radial Hamiltonian formalism
to determine S_, to the bulk action S

Suitable radial coordinate u, such that constant-u slices 2,

2, — 0M asu— .

Decomposition of the metric and gauge fields:
ds* = (N? + N;NY)du? + 2N;dudz" + %-jdxidxj
Al = o du + Aldat,

Decomposition leads to the radial Lagrangian L w/ canonical momenta:

Y =—
0%Yij
oL
T ——=—F
I 55T
. 6L
TTA — :
AT AN

w/ momenta conjugate to N, N,, and a, vanish.



Hamiltonian:
H = / d3x (W%’J% + 1ol + W?AAZ.A) — L= / d*x (NH + NjH' + a* Fy)

First class constraints H = H' = FA =0, - Hamilton Jacobi egs.

& momenta as gradients of Hamilton’s principal function S(y,AM,¢"):
6L

nil IR N N )
. 5L 0%ij 0AY ol
w/ original 7 =5l
. oL
A TS AN

deBoer,Verlinde? '99,...Skenderis, Papadimitriou '04,...
Solve asymptotically (for 'vacuum’ asymptotic solutions) for

S(y, AN @) = -S; !

S(y,AM,0") coincides with the on-shell action, up to terms that remain

finite as £, — dM. In particular, divergent part of S[y, A", @' ] coincides
with that of the on-shell action.



« Hamiltonian Formalism with = 'Renormalized” Action

Sreg = S4+ Sct Sren = lim Spee  Finite-independent of r

T—00

Covariant S, calculated for vacuum asymptotic solutions
(for non-flat, conformal to AdS, x S? geometry)

1 3 B o (4—« — Q@ 9 ii L _4p 0 06
Set = T2 d°x/—7 Ze”/ ( 27 + (a—1)e "Rly] — 3¢ "F FY + 1€ TF E
Renormalized canonical momenta:
i 0Sea ., 08 5Set
M7 =7 4+ = I\ =74+ —, Ij=mn7+
07ij A A 5A§\ ! g ol



 Conserved Charges
Conserved currents, a consequence of the first class constraints
F/\ = () Conserved currents for gauge potentials: Di]_[i = 0, DiHOi — (.

Conserved charges: Q™= — / xIrt, QY9 =— / d?x 1%
omMnNC oMNC

— _3B 64 292

j—[;: O Conserved currents: — 2Djl_[‘g - Hn@m - HxaiX + F,g-ﬂoj + Fz-jl_[j ~ 0

Conserved "‘charges”: Ql¢] = / d%x (21—[; 4 HOtAg_) 4 HtAj) Cj
oOMNC
Asymptotic Killing vector £,
Ck
Mass: M, = —/ d*x (20T, + THAY + TP Ay) = ——(ry +7-)
OMNC 8G34
wl

Angular Momentum:J, = / d°x (2IT' 4 + MG Ag + IT'Ay) = e
oMNC 4



 Thermodynamic relations and the first law
Bylk -
Free Energy: Is = Spo, = —Sren 54g4—;74(<r_—r+>+2w%2,/:—+)

Quantum statistical relation: G, = My — TySy — QuJy — &9 Q0
First law:  dMy — TydSy — QudJy — 59dQ5 — a{™a@Q{™ =0

Smarr’s Formula: My = 2547y + 2QuJ4 + Q4 e)@ © 4 Q m)

Varying parameters: r,, r, w, and B, k, ¢ subject to kB3//# —fixed
@) original parameters m, a, M, M, & a scaling parameter



V. Holography via 2D Einstein-Maxwell-Dilaton
M.C., Papadimitriou 1608.07018

4D STU fields can be consistently Kaluza-Klein reduced on S? by
one-parameter family of Ansatze:

e 21 = e %Y £ \2B?%sin? 6, X = ABcos6
e 2MA% = e72¥ A(?) L AB?sin? 0de, A+ yA° = Bcos0dd

sin? 6
do — NA(2) 2)
1 + A2B2e2¢ gip? 9( ¢ )

eds? = ds5 + B” (d92 +

ds,?, ¥, A -fields of 2D Einstein-Maxwell-Dilaton Gravity:

1 2 _ o 21 gy ab 4
SQD—@(/C‘X —g e (R[g]—l—ﬁ—ze F, F )—I— dtv/—v e V2K

B = 2L; A-independent A = wl? /| B3otational parameter of subtracted geometry



Web of Theories
Subtracted geometry Locally: AdS; x S?

St uplift
4D STU model 3> 5D Einstein-Maxwell-Chern-Simons

K = R,Kk3

R. =2xLk (Z)’
kwl € Z

w-twisted ) 2
S2 reduction | ®3 = 712

KK Ansatz

2 Y
S1 reduction Ky = 7
2D Einstein-Maxwell-Dilaton B 3D Einstein-Hilbert
w/ specific BCs
NCFT, RG
. projected CFT,




General solution of 2D EMD Gravity — running dilaton
Feffeman-Graham gauge:  ds® = du® + vt (u, t)dt?, Auw=0
Analytic general solution:

- y m—pB2t)/2(t) o, ...\ QL% .
Y =) /L\/<” B ) - e

V= = oh) Oe ™

B/ (t)
a(t) , \  (AL2e2 (1) +m — B2 (1)/a’(1) — 2Q/L
28'(8) " C \ AL2e2w/LB2(t) + m — B2 (1) /a(t) + 2Q/L

Leading asymptotic behavior:

Ay = p(t) +

yir = —a?(B)e*/ F1O(1), e ~ B E+O(eT /), Ay = p(t)+O0(e7 /)
running dilaton

« Arbitrary functions af(t), B(t) and u(t) identified with the
sources of the corresponding dual operators

4D uplift results in asymptotically conformally AdS,xS? subtracted
geometries, generalized to include arbitrary time-dependent sources



Repeat Radial Hamiltonian Formalism in 2D

Radial ADM decomposition: ds® = (N? + Ny N")du? + 2Ny dudt + i dt?

Countertern Action: Sct = —— dtv/—y L™ (1 —uo L) e™ ¥
2
Renormalized one-point functions: 7 = o7y, Oy =Ty, J' =-7'

1
Tf = —= lim e/ L (aue_w — e_wL_1>

2/4;% U—> OO
. eu/L
70 = lim
uU—r o0 A/ —
1
Ty = —— lim eu/Le_w (K — L_l)

/1% U— OO



Explicit one-point functions:

12 /12 !/ ./ !/
T:_L (m_ﬁ > jt:ig’ 0, L <m_6 ,Pa +25_>

2k5 \ B Ba? K5 23 \ B Ba? o3 o2

Ward Identities:  9:7 — Oy 0:logB =0, D:J"' =0

Conformal anomaly: 7+ O, = (5” ﬂlO/) Tat (5—/> = A
K3

% o3 K5O o
" I o 0Sren o é 0Sren t _1 dSren \-
Exact generating function (7 = S Ov= e T= ):
L mao 29
ren[ B, ]———2 dt<——|—5_‘|‘lu—Q>
2K5 I} Ba L

Legandre transformed generating function (w «a(t) = (t) ):
Cut = e+ [ dta(T+00)= L [at(r.0) ~n@/r-m)

/{2 “dynamic time”
{r,t} = — —-—5  Schwarzian derivative —a?(t)dt? = — (dr(t))?

c.f., Sadcheyv, Ye, Kitaev '93,... Almeheiri, Polochinski '14;
Maldacena, Stanford, Yang '16; Engelsoy, Merens, Verlinde ’16,...



Asymptotic symmetries and conserved charges

Asymptotic symmetries: subset of Penrose-Brown-Henneaux (PBH)
transformations (diffeomorphisms and gauge transformations preserving
the Fefferman-Graham gauge) that preserve boundary conditions:

dppaa = Ot(ear) + ao /L, dppup =B’ + Bo/L, OpBHM = Ot(ep + ¥)

dpgH (sources) = 0 > constrain functions &(t), o(t) and @(t) in term of two constants &, ,

Conserved Charges: boundary terms obtained by varying the action
with respect to the asymptotic symmetries (and Ward identities) -

. _ L pEN _mL ot 9
U(1)xU(1): Ql_—<57—2m%a2)_%g, %:=aJ' =5

3D perspective: two copies of the Virasoro algebra with the Brown-
Henneaux central charge. Only L*, are realized non-trivially in 2D.



Constant dilaton solutions and AdS, holography

c.f., Strominger '98, ...Castro, Grumiller, Larsen, McNees '08,...
Compere, Song, Strominger ’13,...Castro, Song'14,...

Holography depends on the structure of non-extremal constant
dilaton solutions and choice of boundary conditions -

Provided systematic holographic dictionary for each choice

M.C., Papadimitriou 1608.07018
No Time

: : _ Q=mL/2
Note: non-extremal running dilaton solution -

extremal running-dilaton solution
Wlth RG ﬂOW tO IR flxed p0|nt VEV of irrelevant scalar op.
extremal constant dilaton solution -

non-extremal constant dilaton branch ( Coulomb phase’)
(does not lift into subtracted geometry)



Summary/Outlook with focus on AdS, Holography

Provided consistent KK Ansatze that allow us to uplift any
solution of 2D EMD gravity to 4D STU solutions, which are
non-extremal 4D black holes, asymptotically (conformally)

AdS,xS? — subtracted geometry.
[Works also for 5D solutions asymptotically (conformally) AdS,xS3.]

2D EMD gravity has a well defined UV fixed point,
described by a sector of 2D CFT.

Constructed complete holographic dictionary of
2D EMD gravity theory obtained by an S? reduction of
4D STU subtracted geometry & constant dilaton solutions.

Many aspects of the holographic description are generic
and should apply to generic 2D dilaton gravity theories.



